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Saving Storage in Climate Ensembles:
A Model-Based Stochastic Approach

Huang Huang , Stefano Castruccio , Allison H. Baker , and
Marc G. Genton

While climate models are an invaluable tool for increasing our understanding and
therefore, the predictability of theEarth’s system for decades, their increase in complexity
and resolution has put a considerable, growing strain on the computational resources
of research centers and institutions worldwide. The statistics community has a long
history of developing stochastic models as a means to save computational time, but the
emergence of storage as an additional cost for climate investigations has prompted a
reformulation of the aim of statistical models in model-based environmental science.
Can stochastic approximations be useful as a mechanism for saving both computational
time and storage? We focus on a collection of simulations from a climate model and
propose several statistical models of increasing complexity. By analyzing and discussing
the associated costs for each model, we demonstrate how computation and storage are
closely intertwined, and how a statistical model of increasing complexity is justified
only to the extent that information at a fine spatial and/or temporal scale is sought to be
preserved.

Supplementary materials accompanying this paper appear online.
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1. INTRODUCTION

While the environment has been studied using quantitative approaches for centuries, the
use of physical models to drive scientific progress has been marginal for all but the last few
decades owing to the lack of appropriate tools to solve complex equations. However, the
exponential increase in computational power and availability has fueled the unprecedented
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development of numerical models for the Earth’s system. Climate models provide synthetic
representations of an Earth system (or parts thereof) through a collection of equations
(partial differential equations, PDEs) representing fundamental laws of physics, such as
motion and conservation of momentum and energy. These models have been instrumental
in developing our current understanding and hence predictability of the Earth’s climate, so
much that they are now used not just by scientists, but also by governmental bodies such
as the Intergovernmental Panel on Climate Change (IPCC) to deliver periodic assessment
reports (AR) with guidelines for policymakers (IPCC 2021).

While climate models have become increasingly more complex in their representations
of the Earth’s system, they are imperfect because they fail to accurately represent all relevant
physical processes. For example, climate simulations from the Coupled Model Intercom-
parison Phase 6 (CMIP6, Eyring et al. (2016)), the reference simulations for the IPCC AR6
(IPCC 2021), are solved on a spatial scale of the order of tens of kilometers, a resolution
too coarse to capture convective boundary layer processes responsible for cloud formation.
Therefore, a single climate simulation is insufficient to properly characterize the Earth’s sys-
tem, and a collection (ensemble) of simulations is necessary to assess the sensitivity of the
results concerning the parameterization of physical processes, natural (unforced) weather
variability, and future emission scenarios.

Generatingmultiple simulations is a burdensome task, as simulating frommodern climate
models requires weeks to months on high-performance computers available to only a few
research centers and institutionsworldwide. The non-negligible computational cost has been
long acknowledged, and the statistical community has developed a wide range of methods to
provide fast stochastic approximations of climate models. At the core of these emulators is
the idea that a statistical model could be trained with a small number of simulations and then
be used to approximate the simulations for unexplored input values (instead of running full
climate models). Emulators have been developed for decades, and the standard framework
has focused on Gaussian processes in parameter space (Sacks et al. 1989; Kennedy and
O’Hagan 2001; Oakley and O’Hagan 2004). Through the years, more articulated models
have been proposed to incorporate data resolved in space (Chang et al. 2014), time, space
and time (Mak et al. 2018), as well as multivariate (Overstall and Woods 2016) and non-
Gaussian (Chang et al. 2016) models.

At the core of this work is the acknowledgment that the cost of climate models is not
to be evaluated solely in terms of computations. Indeed, over the last few years, storage
has become increasingly relevant as a significant limitation of model-based climate sci-
ence (Baker et al. 2014, 2016). While increases in computational power have enabled, for
example, finer resolutions, larger ensembles, and longer simulations, storage technologies
have, at least up to the present date, not evolved as fast as computational power. Unless
action is taken soon, climate scientists will face hard choices on what data to save, nega-
tively affecting their scientific objectives. For example, here we consider the situation at the
National Center of Atmospheric Research (NCAR), one of the prominent research centers
in the United States for Earth Systems science. Currently, NCAR’s costs for providing and
maintaining data, including the costs of hardware, power, staff, and software licenses, are
approximately $45 per Terabyte (TB) per year, which translates in costs of hundreds of thou-
sands to millions of dollars per project given that modern simulations often require more
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Figure 1. Data storage options and percentage growth at NCAR for its Cheyenne system (Computational and
Information 2017). The GLADE file system, which is divided into /project and /scratch collections, is a high-
performance (i.e., expensive) shared file system with storage resources that are essentially fixed (due to cost).
Campaign storage is a less-expensive resource for medium-term storage of project data that is expandable. The
capacity of each space is in parenthesis in the legend.

than 1 Petabyte (PB). Most importantly, while storage demands are continually increasing,
available storage resources at institutions such as NCAR are limited due to financial consid-
erations. Although storage for simulations has increased at NCAR to the current capacity
of 92 PB to accommodate the growing demand (see Fig. 1), the usable capacity is currently
planned to plateau at approximately 100 to 120 PB within the next few years, after which
the budget share from storage will not increase and will be used to maintain the current
space (i.e., replacing disks that have reached the end of life). The limitation of storage space
has long been acknowledged in the climate community, and some ad hoc solutions ranging
from single-precision storage to subsampling in space, time, or both have been put forward.
Compression algorithms have been recently used as means to decrease the storage burden,
with solutions spanning from JPEG compression (Woodring et al. 2011; Hübbe et al. 2013)
to fpzip and ISABELA (Baker et al. 2014), with a general consensus emerging that no algo-
rithm would be ideal across all variables and levels of temporal aggregation (Baker et al.
2017). More recent studies have acknowledged the need to account for spatial and temporal
proximity in order to maximize the compression rate (Bicer et al. 2013; Poppick et al. 2020),
and using only the number of bits in the number format which carry scientific information
(Kloewer et al. 2021).
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Figure 2. Illustration of stochastic generators of increasing complexity to approximate a climate model output.

From the viewpoint of the statistical community, storage as a cost for climate simulations
leads us to question and reformulate the foundational assumption of statistical models as
a tool designed to only save computational time. Indeed, if a statistical model is to be
used as a means to save space, then an emulator could be considered similar in purpose
to a compression algorithm. Formally, a statistics-based compression can be obtained as
follows. If a numerical simulation is denoted by Y, and we partition it into a compressed
part and a retained part Y = (Ycompress,Ystore), then we can assume that

Ycompress | Ystore ∼ F(θ),

for some probability distribution F controlled by a parameter vector θ . A conditional
approach assumes that Ystore �= ∅ and is predicated on storing information that is chal-
lenging to model and conditionally modelling the rest (Guinness and Hammerling 2018).
In this work, we focus on an unconditional approach, which assumes that Ystore = ∅, so
that the only information retained from the original climate model data is the statistical
parameters, θ (Castruccio et al. 2019; Hu and Castruccio 2021). Two convenient features of
unconditional compression dictate this choice: 1) it achieves more competitive compression
rates because it aims at storing just the statistical model parameters instead of the data; and
2) it is methodologically closer to an emulator because it aims at producing a surrogate
simulation that is similar to the original data, rather than recovering the original simulation.
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In this work, we aim at addressing the topic of stochastic approximations of climate mod-
els from the viewpoint of both storage and computational time by focusing on an ensemble
of simulations and proposing a range of statistical models of increasing complexity, able to
capture the temporal and spatial variability at increasingly high spatial and temporal res-
olutions (see Fig. 2 for a schematic illustration of the proposed models). This increase in
complexity comes at the cost of an increased parameter space and, hence, the computational
time for inference. As such, we will show that stochastic approximations can bring substan-
tial storage savings at various spatial and temporal scales as long as the proposed model is
able to capture the complex dependencies implied by climate data.

The manuscript is structured as follows. Section2 presents the data used in this work,
and Sect. 3 demonstrates a model for global data. Section4 describes a regional model at the
annual and monthly resolutions, and Sect. 5 provides a model for monthly and daily native
grid resolutions. Section6 compares the different proposed models in terms of storage and
computing costs. Finally, Sect. 7 provides a general perspective on the statistical models for
the next generation of climate models.

2. DATA

For the experiments in thiswork,we used data fromapublicly availableCommunityEarth
SystemModel (CESMTM, Hurrell et al. (2013)) project: the CESMLarge Ensemble (LENS;
Kay et al. 2015). This popular collection of climate simulations was created to study the
internal climate variability (and climate change) by isolating the effect of unforced variability
(i.e., fluctuations dictated exclusively by weather conditions instead of perturbed physics
or future scenarios). The CESM-LENS includes a set of 40 ensemble runs for the period
1920 to 2100 using a fully coupled version of CESM at approximately 1◦ latitude/longitude
resolution, comprising 240 TB of data. In order to have a training set which is as uniform
as possible, out of the 40 runs we only consider the 35 performed at NCAR and discard the
5 performed by the University of Toronto as they showed a faster increase in global mean
temperatures. The number of simulations is considerably higher than a typical ensemble,
which usually comprises of only a few runs per scenario. However, since our aim is to
present and validate a general framework, this ensemble represents an ideal benchmark, as
a small number of members are used in the training set, and the uncertainty of our statistical
surrogate can be compared with the ‘ground truth’ of the remaining ensemble members.

The 35 simulations begin in 1920 and use historical forcing through 2005. The ensemble
spread is generated using slight round-off level differences in the initial atmospheric tem-
perature field. Representative Concentration Pathway (RCP) 8.5 (van Vuuren et al. 2011)
forcing is used beginning in 2006, a scenario that reflects near-past and future climate change
by assuming a strong increase in emissions (so that at the end of the century, the radiative
forcing would be 8.5 Wm−2).

The CESM-LENS data project is ideal for our evaluation because of its climate ensemble,
its struggles with storage limitations (Baker et al. 2016), and its availability to the broader
climate community. Further, these data have been used in several previous experiments to
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assess the influence of data compression algorithms on climate models (Baker et al. 2016;
Poppick et al. 2020).

We consider the surface air temperature from the atmospheric component of the model at
different temporal and spatial resolutions, depending on the statistical models applied in the
following sections. The model’s equations are solved on a regular global grid with M = 192
latitudes and N = 288 longitudes, and we consider data aggregated at daily, monthly, and
annual scales. Regional data are obtained by performing a weighted average of each grid
point with weights proportional to surface area across the regions (region boundaries are
given in Figure S1 in the Supplementary Material), and global data are obtained similarly
as the weighted average across the entire globe.

Throughout this work, the temperature for realization r is denoted as Yr (t), which could
be a scalar or vector (Yr (t)) depending on the level of spatial aggregation, and t represents
years, months or days depending on the level of temporal aggregation. Similarly, the model
input is expressed as X (t), the radiative forcing that changes the Earth’s energy balance
under RCP 8.5 and was downloaded from the Potsdam RCP scenario data group (http://
www.pik-potsdam.de/~mmalte/rcps).

3. GLOBAL STOCHASTIC GENERATORS

In this section, we consider the simplest setting, where the temperature is aggregated
globally and annually, so that the analysis is well approximated by a Gaussian time series.
Previous work (Castruccio et al. 2014) has shown that temperature at time t can be modeled
as dependent on the past trajectory of radiative forcing through an infinitely distributed lag
model (Judge et al. 1980). This approach avoids a causality violation (i.e., so that future
forcing would not influence the present temperature). The model is written assuming that
the temperature Yr (t) for realization r at year (2005+ t), t = 1, . . . , T = 95 is as follows:

Yr (t) = β0 + β1X (t) + β2(1 − ρ)

∞∑

i=1

ρi−1X (t − i) + εr (t), (1)

where εr (t) is the residual temporal variability, assumed to be an autoregressive process of
order one: εr (t) = φεr (t − 1) + σνr (t), where εr (0) is zero for notational convenience and
νr (t) is a standard Gaussian white noise. There could be in principle temporal heteroskedas-
ticity, and νr (t) could be generalized to account for that. However, as far as the detrended
residuals of (1) for temperature are concerned, we did not find any clear pattern in the change
in temporal variability across years, as indicated by the 10 years rolling window of the stan-
dard deviation of the said residuals in Figure S2. While the global mean temperature does
not present evidence of a changing variance in time, this is very likely going to be the case
for local and possibly regional temperatures (as well as other variables). As such, a more
flexible model could be formulated including temporally varying variances, with different
degrees of variability in space (e.g., equatorial regions are expected to show an overall more
homogeneous behavior than mid-latitude regions).

Heuristically, the model assumes an intercept β0, a linear contribution of the present
forcing through β1 and another linear contribution of the past forcing through β2. Past

http://www.pik-potsdam.de/~mmalte/rcps
http://www.pik-potsdam.de/~mmalte/rcps
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forcing has an exponentially decreasing contribution function of the lag from the present
time, and the decay is controlled by a parameter ρ ∈ (0, 1). The term 1 − ρ is used for
normalization purposes.

Themodel comprises of a total of six parameters: β0, β1, β2, ρ, φ, and σ , and inference is
straightforward as, conditional on ρ, (1) is a linear model that can be solved by maximizing
the profile likelihood. Once inference is performed, realizations of the statistical model
can be generated quickly and efficiently. For consistency with the number of runs in the
CESM-LENS dataset, we also generated 35 realizations from the statistical model.

To assess the goodness of fit, we used two metrics, Ifit and IUQ, to evaluate the perfor-
mance of the statistical model. They characterize the lack of fit and variability (uncertainty
quantification) of the training data against surrogate simulations from the model:

Ifit =
∑R

r=1
∑T

t=1{Yr (t) − Ŷ (t)}2
R

R − 1

∑R
r=1

∑T
t=1{Yr (t) − Ȳ (t)}2

, IUQ = central_region_area
{
Ŷ1(t), . . . , ŶR(t)

}

central_region_area
{
Y1(t), . . . , YR(t)

} ,

where Ȳ (t) denotes the average of all the available R runs, Ŷ (t) is the fitted mean value,
and Ŷr (t) is a generated realization from the fitted statistical model. Given the temporal
correlation, the index Ifit resembles a lack of fit ratio, albeit a formal test cannot be performed
given the presence of temporal dependence. Heuristically, however, the same interpretation
stands: if the index is close to 1, then thefittedmeanvalue from the statisticalmodel is as good
as the ensemble average, hence representing a good fit (Castruccio et al. 2014). The index
IUQ compares the central region area of the simulated data from the stochastic generator to
that of the CESM-LENS data. The central region is spanned by half of the curves with the
largest modified band depth (López-Pintado and Romo 2009), a commonly used choice of
functional data depths. Functional data depths are extended notions of ranks for functional
data so that the functional data can be ordered. The central region area can be viewed as the
functional interquartile range (see Sun and Genton (2011) for more details), and therefore,
IUQ characterizes whether the variation from the stochastic generator represents the internal
variability in the CESM-LENS data well. The index IUQ is close to 1 if the variations are
similar.

Figure 3(A) illustrates the proposed metrics from the model applied to an increasing
number of CESM-LENS members. As measured by Ifit, the point estimate accuracy has a
sharp decrease for a small training set and then, plateaus relatively fast, whereas the uncer-
tainty assessed by IUQ is essentially unchanged. We chose Rtrain = 6, which results in
Ifit = 1.09 and IUQ = 0.98, so large enough to guarantee parameter accuracy but small
enough to be a realistic number of simulations in other ensembles, such as the CMIP6. Fig-
ure3(B) compares 35 CESM-LENS simulations and 35 surrogates (shifted by 1◦C to clarify
the visualization, the same number of realization was chosen for a fair visual comparison)
from the stochastic generator inferred by Rtrain = 6 CESM-LENS simulations. The ability
of the model to capture both the trend and associated uncertainty of these end-of-century
projections is apparent. Storage and computational information are provided in summary
Table 1 and are discussed in the context of the other models.
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Figure 3. (A)Metrics Ifit (solid black) and IUQ (dashed gray) for the global and annual temperature with different
numbers of CESM-LENS runs in the training set of Model (1). (B) The 35 CESM-LENS simulations (solid green)
and 35 surrogates (solid red) from the stochastic generator (shifted by 1◦C upward for clarity) from Model (1) fit
with Rtrain = 6 CESM-LENS runs. The dashed red line represents the fitted mean from the statistical model. The
radiative forcing is also superimposed (unit measure on the right y axis) to indicate the increasing trend.

4. REGIONALLY AGGREGATED STOCHASTIC GENERATORS

We next consider regional data, where the temperature is regionally aggregated in the
same S = 58 regions as used in the IPCCAR6 (illustrated in Figure S1 in the Supplementary
Material). The temperature for ensemble member r is denoted by Yr (s, t) at region s =
1, . . . , S for time t .

4.1. ANNUAL SCALE

For annually aggregated data, we propose an extension of Model (1) to also account for
spatial dependence:

Yr (s, t) = β0(s) + β1(s)X (t) + β2(s){1 − ρ(s)}
∞∑

i=1

ρi−1(s)X (t − i) + εr (s, t), (2)

where εr (s, t) = φ(s)εr (s, t − 1) + σ(s)νr (s, t), and νr (s, t) is the standard Gaussian
white noise. Regions are dependent in space through the error: if we define νr (t) =
(νr (1, t), . . . , νr (S, t))�, we assume that νr (t) ∼ NS(0,C), which is an independent and
identically distributed vector across realizations and time. The correlationmatrixC could be
parameterized through a spatial model depending on distance, but given the presence of tele-
connections (dependence over distant regions due to various atmospheric dynamics), such
as the El Niño-Southern Oscillation (ENSO, Philander (1990)), we relied on an unstructured
matrix whose only constraints are that it must be symmetric and positive definite.

Given the large parametric space, a single optimizationwould be computationally infeasi-
ble. Instead, to perform inferencewe propose a two-step approach, where trend and temporal
parameters are estimated first and then, the spatial dependence is estimated conditionally on
them. Given the large size of the time series, the trend and temporal dependence can gen-
erally be estimated with high precision, and previous studies (Castruccio and Stein 2013;
Castruccio and Guinness 2017; Castruccio and Genton 2018) showed that error propaga-
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tion from the first to the second inferential stage is small, and hence, in this work will
be regarded as negligible. In the first step, we misspecified (2) by assuming spatial inde-
pendence (i.e., C is instead an identity matrix), which allows the estimation of the trend
parameters β0(s), β1(s), β2(s), and ρ(s) and the temporal parameters φ(s) and σ(s) inde-
pendently for every region by maximizing the profile likelihood, as in the global case in the
previous section.

In the second step, conditional on the estimated trend and temporal parameters, we com-
puted the estimated residuals ν̂r (s, t) = Yr (s, t) − Ŷ (s, t), where Ŷ (s, t) is the fitted value
according to thefirst step, andweused them to estimate the spatial structure.Weestimated the
precision matrix nonparametrically by assuming sparsity. If the sample covariance matrix
is denoted by Ĉ, we solved the following minimization (graphical lasso, Friedman et al.
(2008)):

Ĉsparse(λ) = argmin
C≥0

{log det(C) + tr(C−1 
 Ĉ) + λ‖P 
 C−1‖1}, (3)

where 
 is the element-wise multiplication, P denotes a matrix with ones for off-diagonal
and zeros for diagonal entries, and λ is a tuning parameter for the induced sparsity
penalty. Figure S3(A-B) in the Supplementary Material compares a heatmap of Ĉ−1 against
Ĉ−1
sparse(0.1), where λ = 0.1 was chosen to have approximately 76% zeros. The conditional

dependencies for two regions, Central North America (CNA, land) and the North Atlantic
Ocean (NAO, ocean), are illustrated in Figure S4 from the sample precision matrix Ĉ−1

and the sparse approximation Ĉ−1
sparse(0.1). Graphical lasso results in both regions having a

substantially decreased number of regions with nonzero entries in the precision matrix and
being conditionally independent. Indeed, CNA has only 9 nonzero entries, of which by far
the largest are the contiguous land regions. NAO is instead related to 15 regions, of which
the ones with higher coefficients are the Caribbean and the eastern part of Canada with the
Hudson Bay.

The diagnostic metrics Ifit and IUQ are shown in Figure S5, and the training set com-
prising Rtrain = 6 CESM-LENS members achieves stable estimates, with mean (standard
deviation) of Ifit = 1.06(0.02) and IUQ = 1.03(0.06). Once the model is trained, it can
produce simulations of spatially dependent regions resembling the original simulations. A
marginal comparison of the 35 CESM-LENS simulations against 35 surrogates is shown in
Figure S3(C-D), where the proposed Model (2) is shown to be able to capture the higher
warming trend over land in CNA, as well as its higher variability.

4.2. MONTHLY SCALE

We now consider monthly data in each region. In this framework, Yr (s, t) represents the
temperature at region s and t months after December 2005. We assume in our statistical
model that the radiative forcing X (t) is invariant for different regions and is constant over
a calendar year. To account for the interannual temperature trend, we added harmonics to
the previous functional form for the mean and a month-specific variance for the error:
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Yr (s, t) = β0(s) + β1(s)X (t) + β2(s){1 − ρ(s)}
∞∑

i=1

ρi−1(s)X (t − 12i)

+
K∑

k=1

{
ak(s) cos

(2π tk
12

)
+ bk(s) sin

(2π tk
12

)}
+ εr (s, t),

(4)

where εr (s, t) = φ(s)εr (s, t − 1) + σ(s, t)νr (s, t), the parameter σ(s, t) is a month-
specific standard deviation, and νr (t) = (νr (1, t), . . . , νr (S, t))� ∼ NS(0,C). As
in the annual case, inference was performed in two stages: first the mean parameters
β0(s), β1(s), β2(s), ak(s), bk(s), where k = 1, . . . , K and temporal parameters φ(s) and
σ(s, t), where t = 1, . . . , 12 × 95 = 1,140 were estimated by maximizing the profile
likelihood. Moreover, K harmonics were considered in the model, and the value of K was
determinedusing theBayesian information criterion (BIC) shown inFigureS6,where K = 3
was chosen. After themean and temporal parameters were estimated, the spatial dependence
was estimated conditionally with a graphical lasso approach similar to the annual case to
achieve similar sparsity, for which λ = 0.06; see Fig. 4(A-B).

As before, we chose the number of runs Rtrain = 6 in the training set using the diagnostics
indices, which were evaluated across all regions, and whose mean (standard deviation) is
Ifit = 1.19(0.49) and IUQ = 1.12(0.20), see Figure S7 for a boxplot of these metrics as
a function of R. Figure S8 also shows the sample precision matrix along with its sparse
counterpart for CNA and NAO, showing approximately the same patterns as in the annual
case. To assess the ability of themodel to capture the interannual trend, Fig. 4(C-D) compares
the 35 CESM-LENS simulations with 35 surrogate runs for CNA and NAO for 2022–2025
and monthly level, and Figure S9 performs the same comparison for annual aggregates. The
proposed model is able to capture the different monthly trends across regions, with larger
temperature excursions in CNA due to the continental climate compared to slowly varying
oceanic patterns in NAO. Despite considerable differences also in the variance, the proposed
model appears to be able to capture these features.

5. GRIDDED STOCHASTIC GENERATORS

5.1. MONTHLY SCALE

We now consider monthly temperature at the native model grid scale, so that each ensem-
ble member is simulated globally on a lattice with M = 192 latitudes and N = 288 lon-
gitudes, i.e., M × N = 55, 296 grid points. We denote with Yr (Lm, 
n, t), m = 1, . . . , M ,
n = 1, . . . , N , t = 1, . . . , T = 1,140, r = 1, . . . , R the temperature at latitude Lm , lon-
gitude 
n , ensemble member r and t months after December, 2005. We assume a location-
specific annual and interannual trend along the lines of (1) and (2), with globally spatially
dependent innovations:
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Figure 4. (A) Sample estimate Ĉ−1 and (B) the sparse estimate Ĉ−1
sparse(0.06) from Model (3) with monthly

Model (4). (C) and (D): The 35 CESM-LENS simulations (solid green) and 35 surrogates (solid red) from the
stochastic generator (shifted by 10◦C upwards for clarity) in Central North America (CNA) and North Atlantic
Ocean (NAO) regions from Model (4) with (3) fit with Rtrain = 6 CESM-LENS runs. The dashed red line marks
the fitted mean from the statistical model.

Yr (Lm, 
n, t) = βm,n,0 + βm,n,1X (t) + βm,n,2(1 − ρm,n)

∞∑

i=1

ρi−1
m,n X (t − 12i)

+
K∑

k=1

{
am,n,k cos

(2π tk
12

)
+ bm,n,k sin

(2π tk
12

)}
+ εr (Lm, 
n, t), (5)

where εr (Lm, 
n, t) = φm,nεr (Lm, 
n, t − 1) + σm,nηr (Lm, 
n, t) and the vector ηr (t) =
(ηr (L1, 
1, t), . . . , ηr (LM , 
N , t))� ∼ NMN (0,�). The covariance matrix � needs to
account for spatial dependence across the entire globe. Since the observations are provided
on a regular grid over the sphere and interpolation is not of primary interest, we do not assume
a continuous underlying process, which would imply considerable theoretical challenges
(Gneiting 2013). Instead, we rely on a model for a discrete grid, which will be detailed in the
inference steps. Consistently with Sect. 4.2, we chose K = 3 and used Rtrain = 6 ensemble
members.

Similarly to the previous models, inference is performed in a multi-step procedure: 1)
trend and time; 2) longitude; and 3) latitude. This approach was shown to be the most
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Figure 5. Map of the site-specific autocorrelation φ̂m,n (A) and standard deviation σ̂m,n (B) for the griddedModel
(5). (C) Logarithm of fitted and empirical estimates of the power spectral density, fLm (c; ψm , αm , νm ) in (6) for
two latitudes Lm = −11.8◦ and 51.4◦. (D) Comparison of the empirical estimate of cov{η̂(Lm , 
n), η̂(Lm , 
n+1)}
at Lm = −11.8◦ with the estimated one from the axially symmetric and land/ocean models.

efficient choice for gridded global data as it is computationally efficient for large parametric
spaces, such as the ones implied by this model, while still retaining asymptotic consistency
(Castruccio and Genton 2018; Edwards et al. 2020).

5.1.1. Trend and Time

For each grid point (Lm, 
n), we estimated the mean parameters βm,n, j , j = 0, 1, 2,
am,n,k, bm,n,k , k = 1, . . . , K , and the temporal parameters ρm,n and φm,n via profile likeli-
hood. The estimates φ̂m,n and σ̂m,n at all locations are shown in Fig. 5(A-B), where lower
auto-correlation and higher variability over land (especially at the poles) is readily apparent.

Once the trend and temporal parameters are estimated, the fitted values are obtained and
the innovation estimator η̂r (t) = (η̂r (L1, 
1, t), . . . , η̂r (LM , 
N , t))� is computed, so that
the spatial model can be provided. While on a Euclidean domain a standard simplifying
assumption is isotropy, i.e., lack of directional dependence, for global data longitude and
latitude are expected to have different effects (e.g., variance at mid-latitudes must be higher
than at the equator), therefore a more appropriate assumption is that of stationarity across
longitudes, or axial symmetry (Jones 1963). While constructive approaches for this class of
models have been proposed for a general sampling scheme (Jun and Stein 2008), Castruccio
and Stein (2013) have proposed a spectral model for gridded data, which was shown to
achieve inference on very large datasets by leveraging on the axially symmetric assumption,
and can be extended to multivariate (Edwards et al. 2019) or three-dimensional global
data (Castruccio and Genton 2016). In this work, given the similar gridded geometry of
the simulated data, we used this approach. Since the spatial structure is assumed to be
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independent and identically distributed in time and realization, for simplicity of notation we
omit the dependence from these two indices.

5.1.2. Longitude and Latitude

For each latitude Lm , we assumed η(Lm, 
n) to be stationary in longitude and its
spatial dependence was expressed through the power spectral density at wave numbers
c = 0, . . . , N − 1 as:

f (c;ψm, αm, νm) =
N−1∑

n=0

exp(−2π icn/N )cov{η̂(Lm, 
1), η̂(Lm, 
n+1)}

= ψm
{
α2
m + 4 sin2(cπ/N )

}νm+1/2 , (6)

where i = √−1, the parameter ψm > 0 controls the overall variation, the inverse of
αm > 0 determines the range, and νm > 0 describes the rate of decay as the wave numbers
increase. The MLEs of ψm , αm , and νm are obtained independently at each latitude from
η̂(Lm, 
n). Figure S10 depicts ψ̂m , α̂m , and ν̂m for each latitude, and Fig. 5(C) shows how
the aforementioned functional shape is able to capture the spectral density behavior by
comparing the fitted and empirical estimates for two selected latitudes.

Conditionally on the longitudinal parameters, we then consider different latitudinal
bands and model their dependence through the coherence of η̂(Lm, 
n), i.e., its correla-
tion in the spectral domain. If we denote by fLm ,Lm′ (c) = ∑N−1

n=0 exp(−2π icn/N )cov{η̂
(Lm, 
1), η̂(Lm′ , 
n+1)} the cross power spectral density between Lm and Lm′ , then the
coherence is modeled as:

ρLm ,Lm′ (c; ξ, κ) = | fLm ,Lm′ (c)|
f (c; ψ̂m , α̂m , ν̂m) f (c; ψ̂m′ , α̂m′ , ν̂m′)

=
[

ξ{
1 + 4 sin2(cπ/N )

}κ

]|m−m′|
,

(7)

where ξ ∈ (0, 1) determines the overall coherence decay rate with larger latitude differences
and κ > 0 controls the faster coherence decay for larger wave numbers. The computedMLE
is ξ̂ = 0.96 and κ̂ = 0.46. We provide examples of the fitted coherence in Figure S11 in
the Supplementary Material.

5.2. MONTHLY SCALE WITH LAND/OCEAN MODEL

While the previous model represents a fast and efficient approach to model axial symme-
try, for some variables such as temperature the assumption of stationarity across longitude
needs to be relaxed. Indeed, global variables are expected to have different dependence
structures when land or ocean is present because ocean temperature is slowly varying in
space due to the ocean convection. In order to accommodate this feature, we propose an
evolutionary spectrum model which allows for different spectral densities across the two
domains. Along the lines in Castruccio and Guinness (2017), this approach assumes that
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Figure 6. Maps of skewness (A) and excess kurtosis (B) of the estimated detrended residuals ε̂r (Lm , 
n , t). (C-D)
Histogram and Gaussian and Tukey g-and-h fit of ε̂r (−75.86◦, 0◦, t) and ε̂r (−61.73◦, 163.75◦, t), respectively.

the spectral density, fLm ,
n , is not a constant but varying in longitude:

η̂r (Lm, 
n, t) = N−1/2
N−1∑

n=0

√
f (c, 
n; θ landm , θoceanm ) exp(2π icn/N )η̃r (Lm, c, t).

The longitudinally varying spectral density changes across land and ocean:

f (c, 
n; θ landm , θoceanm )

=
[√

f (c, 
n; θ landm )Iland(Lm, 
n) +
√

f (c, 
n; θoceanm ){1 − Iland(Lm, 
n)}
]2

, (8)

where f (c, 
n; θ
j
m), j ∈ {land, ocean} has the same functional form as (6) with θ

j
m =

(ψ
j
m, α

j
m, ν

j
m)�, j ∈ {land, ocean}. The function Iland(Lm, 
n) is the indicator function for

whether the location (Lm, 
n) is on land. FigureS12 in theSupplementaryMaterial illustrates
all of the estimated parameters for land and for ocean.

To account for the dependence across latitudes, we assume that corr{η̃r (Lm, c, t), η̃r
(Lm′, c′, t ′)} = I{c=c′,t=t ′}ρLm ,Lm′ (c; ξ, κ), as defined in (7). We obtained ξ̂ = 0.95 and
κ̂ = 0.42 in this model, and examples of coherence are also provided in Figure S12.
Figure5(D) shows the empirical and fitted covariance between η̂(Lm, 
n) and η̂(Lm, 
n+1)

according to the axially symmetric and land/ocean models, and it can be seen how the
evolutionary spectrum approach is able to capture the abrupt changes in variability between
the two domains.
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5.3. DAILY SCALE

Finally, we propose a model for daily data. In this setting, Yr (Lm, 
n, t), m = 1, . . . , M ,
n = 1, . . . , N , t = 1, . . . , T = 34,675, and r = 1, . . . , R denotes the temperature at
latitude Lm , longitude 
n , ensemble r , and t days after December 31, 2005. We propose the
same model as in the monthly scale for gridded data (5). However, the Gaussian distribution
for the model residuals εr (Lm, 
n, t) is inadequate for daily resolution. Indeed, the Jarque–
Bera test results in 99.89% locations (55,236 out of 55,296) rejecting Gaussianity, and from
Fig. 6(A-B) it can be seen how large portions of the world are negatively skewed and there is
high excess kurtosis at the poles. In order to account for amore flexiblemarginal distribution,
we propose a trans-Gaussian model with the Tukey g-and-h transformation (Jeong et al.
2019), which allows to control moments of higher orders with two separate parameters.
Formally, we assume that εr (Lm, 
n, t) = ωm,nτgm,n ,hm,n (ε̃r (Lm, 
n, t)) where

τgm,n ,hm,n (z) =
{
g−1
m,n{exp(gm,nz) − 1} exp(hm,nz2/2), if gm,n �= 0,

z exp(hm,nz2/2), if gm,n = 0,

is the Tukey g-and-h transformation. As before, ε̃r (Lm, 
n, t) = φm,n ε̃r (Lm, 
n, t − 1) +
σm,nηr (Lm, 
n, t), where ηr (t) = (ηr (L1, 
1, t), . . . , ηr (LM , 
N , t))� ∼ NMN (0,�)with
the same covariance structure as in Sect. 5.2. Consistently with previous sections, we choose
K = 3 and use Rtrain = 6 ensemble members in the training set. To ease the computational
burden implied by the massive amount of data, nearly 2 billions space-time points, inference
is performed only on daily data for 2020, 2040, 2060, 2080 and 2100. Figure6(C-D) depicts
the fit of the Tukey g-and-h model for two selected points, along with the best fit from the
Gaussian model. The inadequacy of the Gaussian distribution is readily apparent, as the
estimated residuals show substantial asymmetry and more generally non-Gaussian higher
moments. It is also clear that the proposed model is not particularly suitable for capturing
extreme events, but this is to be somewhat expected as its main aim is to capture the entire
probability distribution of daily data. We envision two possible solutions to address this:

1. A single model for both the center of the distribution and extremes or other aspects
such as threshold exceedances could be formulated.

2. Multiple models could be proposed, each with focus on a different aspects of the
distribution.

As of today, the literature on unifying models for extremes, threshold exceedances and
the center of the distribution is sparse and far from being complete and operational. As such,
we believe that it would be more practical to propose a small set of compression models for
different aspects of the distribution rather than a single comprehensive model, especially
since the necessary space to store parameters from a fewmodels is still considerably smaller
than traditionally compressed data, as will be shown in more details in the next section.
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Table 1. Summary of all models used in terms of number of parameters used (#Para), storage required (Storage),
inference and simulation time (I. Time, and S. Time, respectively)

Model #Para Storage I. Time S. Time

Global-annual 6 48 B 0.5 secs negligible
Regional-annual 2,059 16.09 KB 0.93 secs∗ negligible
Regional-monthly 3,045 23.79 KB 5.28 secs∗ 0.1 secs
Gridded-monthly-axial-sym 664,130 5.07 MB 1.46 mins‡ 4.07 mins
Gridded-monthly-land/ocean 664,706 5.07 MB 10.88 mins‡ 4.88 mins
Gridded-daily-land/ocean 830,594 6.34 MB 48.07 mins‡ 1.94 hours

Inference time is reported by performing the inference of the mean trend in parallel for each region∗ or for each
grid point‡, and in parallel for the spatial dependence along longitudes for different latitudinal bands‡

6. MODEL COMPARISON

The models used in this work (see Fig. 2 for a synoptic view) are summarized and com-
pared in terms of number of parameters, required storage (excluding the space for the
programs implementing the statistical model), inference and simulation times in Table 1.
The reported times are for execution on a computer with a 52-core Intel Xeon Gold 6230R
2.10GHz CPU, while the mean trend is inferred in parallel for each region or for each grid
point and each process uses one core of AMD EPYC 7702 2.00GHz CPU. For the gridded
models, the spatial dependence along longitudes is also inferred in parallel for different
latitudinal bands. Different computing hardware will inevitably achieve inference with dif-
ferent computational time, but the change will not be to the extent that it would alter our
conclusions.

The table has some apparent patterns as the models increase in complexity. Firstly, as
we focus on higher spatial and temporal scales, the first column highlights a dramatic
increase in parameters, from 6 to 830,594, with a change of approximately three orders of
magnitude from global to regional and three more from regional to gridded. This increase
is mostly dictated by the presence of region-specific or location-specific trend and temporal
parameters.We choose not to reduce the number of parameters by proposing a spatial model
or some form of compression for trend and temporal parameters, as in terms of storage the
impact of such parameters is minimal. Indeed, from the second column it is apparent how
this steep increase in the number of parameters only implies an additional storage of a few
megabytes, a negligible amount for present-day computers compared to the approximately
500 GB of storage of the temperature for the full LENS. The use of such little space can
be mostly attributed to three features of our proposed model: 1) a simple yet effective
parametrization of annual and interannual trends and temporal dependence; 2) a flexible
and parsimonious spatial model tailored to the nature of global data; and 3) the ability of
our models to reproduce not just one simulation, but the features of an entire ensemble
(unconditional compression).

In terms of computational time for inference and simulation, the last two columns of
Table 1 also highlight an increase as the model complexity increases, albeit not to the same
extent as storage. Global and regional models have an almost negligible computational cost,
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as they require less than a few seconds for inference and simulation. Gridded models instead
rely on a multi-step approach which requires less than an hour (with full parallelization) for
inference and approximately two for simulations for the daily case (due to the very large
number of days to be simulated). The computational efficiency of the proposed models
can be mostly attributed to: 1) multi-step approaches, which allow parallelization of parts
of inference; 2) grid-specific, spectral methods to model the spatial dependence; and 3)
the use of multiple simulations in the training set to improve parameter identifiability, see
Castruccio and Genton (2018) for a complete discussion.

7. DISCUSSION

While computational cost has long been acknowledged as a limiting factor in model-
based climate science, storage is now on the trajectory to become a significant limitation
for the sustainable usage of ever more complex climate models. In the authors’ view, it is
not a matter of if, but rather of when this topic will need to be systematically addressed
with formal methods. Given the long and well-established history of stochastic models for
emulation, this paradigm shift represents an unprecedented opportunity for the statistical
community to provide critical contributions to the next generation of weather and climate
models. This different perspective raises significant challenges in developing new statistical
models: Are statistical models, as currently defined, the best way to perform statistics-based
compression?

Our results suggest that, as long as the aim is to reproduce the distribution fromwhich the
climate simulations are drawn rather than the simulations themselves, the models available
to date provide ameans to store information from climate simulations at a negligible fraction
of the storage cost of the entire ensemble. As such, there is a lot of room for development of a
wide range of statistical models without the cost of storing parameters becoming a substan-
tial concern. This work has described a systematic comparison of previous literature under
the broad topic of proposing multiple stochastic approximations to the same climate model
and has provided evidence that, for a specific ensemble, the classical statistical approaches
are indeed suitable compressionmethods. Future methods could diverge from the traditional
emulator literature, especially since the ensemble used in thisworkwas specifically designed
to isolate internal variability, and the task of compressing ensembles with different scenar-
ios or physics was avoided. It is, however, conceivable that the proposed framework can
be extended to more general ensembles, and a range of models can be designed controlled
by the storage quota for the parameters, as variables with more complex behavior such as
high-resolution precipitation or wind would require more articulated methods such as latent
Gaussian models. Additionally, in order to be widely used and allow to extract valuable sci-
entific information, the proposed framework will have to be extended to multivariate models
and capture behavior of multiple physical variables at the same time. Statistical models for
multiple spatio-temporal variables are widely acknowledged to be extremely challenging to
construct, see Genton and Kleiber (2015) for a general review. As such, in line with the pro-
posed principle of storing only the necessary information and conditionally model the rest,
stochastic compression for multivariate models could be designed so that challenging vari-
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ables would be stored either in full or partially with some dimensional reduction approach,
while variables with simpler behavior could be conditionally stochastically modeled.

The use of stochastic methods to compress climate models is also bound to shape the
development of diagnostics tools. In this regard, conditional compression aims to retrieve
the original data by storing part of it, and then, aiming at producing an uncompressed
dataset which would not be distinguishable from the original data, a form of Turing test for
investigations in climate science. The unconditional approach in this work aims instead to
produce new surrogate realizationswith analogous physical properties, in a similar fashion to
StochasticWeatherGenerators (SWGs,Richardson (1981)). Unlike SWGs,which have been
traditionally developed in the context of time series, compression diagnostics are expected
to have a significant spatial component. Thus, previous work has indicated that the image
processing literature could provide quantitative metrics to assess image similarities in the
context of two-dimensional figures andmovies and virtual-reality environments (Castruccio
et al. 2019).

The aforementioned points are valid only to the extent that no major technological break-
through will alter the current relative trends in the cost of storage and computation. While
technologies such as DNA storage and molecular memory could revolutionize the current
approach to store information and disrupt the balance between cost and computation, their
technological development is still at the proof-of-concept stage. In the foreseeable future,
environmental science is expected to continue to rely on hard disk drives, solid-statememory,
or tapes.

Our results also highlight that inference and simulation require at most hours for models
on the ensemble native grid with negligible storage costs. While these results underscore
how our models require some degree of computational effort, we argue that in the context of
climate simulations, this cost is not a major concern: If a single climate simulation requires
multiple weeks on a computing cluster, a few hours to perform inference for a statistical
model able to reproduce an entire ensemble with 35 simulations is comparatively very
little time that can and should be allocated. Additionally, when inference is performed, the
computational cost for surrogate simulations is minimal: They can be produced in a short
time on any computer. Furthermore, previous work (Jeong et al. 2018) has also shown how
user-friendly interfaces can be developed to allow environmental scientists to generate data
without in-depth knowledge of the statistical model.

Although our work has focused on one ensemble and variable, our results suggest that
stochastic approximations can be a useful means to preserve not just computations, but also
storage, as long as practitioners are willing to accept the notion of approximating a climate
model.
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