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Given the computational challenges involved in calculating the maximum likelihood
estimates for large spatial datasets, there has been significant interest in the research
community regarding approximation methods for estimation and subsequent predic-
tions. However, prior studies examining the evaluation of these methods have primarily
focused on scenarios where the data are observed on a regular grid or originate from
a uniform distribution of locations. Nevertheless, non-uniformly distributed locations
are commonplace in fields like meteorology and ecology. Examples include gridded
data with missing observations acquired through remote sensing techniques. To assess
the reliability and effectiveness of cutting-edge approximation methods, we have initi-
ated a competition focused on estimation and prediction for large spatial datasets with
non-uniformly distributed locations. Participants were invited to employ their preferred
methods to generate corresponding confidence and prediction intervals for synthetic
datasets of varying sizes and spatial configurations. This competition serves as a valu-
able opportunity to benchmark and compare different approaches in a controlled setting.
We evaluated the submissions from 11 different research teams worldwide. In sum-
mary, the Vecchia approximation and the fractional SPDE methods were among the best
performers for estimation and prediction. Furthermore, the nearest neighbors Gaussian
process and the multi-resolution approximation exhibited excellent performance in pre-
dictive tasks. These findings provide valuable guidance for selecting themost appropriate
approximation methods based on specific data characteristics.
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1. INTRODUCTION

The primary and foremost challenge in fitting and analyzing geospatial datasets is often
the estimation of spatial models and the ensuing predictions.When dealingwith large spatial
datasets, modeling becomes computationally complex, particularly when utilizing popular
statistical techniques such as maximum likelihood estimation (MLE). The computational
challenges of MLE come from the computation of the covariance matrix inverse, a process
that demands O(n3) computational steps and utilizes O(n2)memory, where n is the number
of locations. To mitigate this challenge, extensive literature explored various approximation
methods, for instance, composite likelihood (Vecchia 1988), Gaussian predictive process
(Finley et al. 2009), covariance tapering (Furrer et al. 2006; Kaufman et al. 2008), and tile
low-rank approximations (Abdulah et al. 2018b); see also the reviews in Sun et al. (2012) and
Heaton et al. (2019). A significant portion of these studies focused on data observed either on
a regular grid or on irregular locations that are evenly distributed, such as when observations
are generated from a uniform distribution (Finley et al. 2009; Vecchia 1988; Abdulah et al.
2018b). However, observations in different locations may have varying densities in practical
applications. For example, Shi andCressie (2007) investigatedAerosolOpticalDepth (AOD)
data collected from theMulti-angle Imaging SpectroRadiometer (MISR) camera, where the
observations are shaped like various swaths due to the satellite sampling process. Datta et al.
(2016) examined a US biomass dataset, which has two blank squares because the biomass
data in Wyoming and New Mexico were not yet released.

In order to ensure the robustness of approximation methods, it is crucial to conduct com-
prehensive analyses from various aspects, including the distribution of locations in the given
spatial domain. This is because some studies have shown that certain approximation meth-
ods may not be suitable in certain situations. For example, Stein (2014) demonstrated that
low-rank methods might yield poorer performance when neighboring observations exhibit
strong correlations compared to the naive independent block approximation method. Con-
sequently, it is important to verify or generalize the approximation methods when dealing
with unevenly located datasets. Existing literature primarily emphasizes the generalization
of approximation methods, particularly spectral-based methods, for which the estimation
originally works for regularly gridded data. For instance, Fuentes (2007) proposed a ver-
sion of Whittle’s likelihood approximation suitable for regular grids with missing data and
irregularly spaced data. Another study by Bandyopadhyay et al. (2015) formulated a spatial
frequency domain empirical likelihood method for irregularly spaced data. Lu and Tjøs-
theim (2014) proposed a nonparametric kernel estimator for joint probability distribution
functions for irregularly gridded stationary spatial data, which generalizes the nonparametric
method for gridded data. Dealing with irregular observation locations with various applica-
tion backgrounds has also drawn attention in the literature. For example, Huang et al. (2002)
proposed an autoregressive tree-structured model to predict satellite data with multiple res-
olutions. Heaton et al. (2019) reviewed various approximation methods and conducted a
competition focusing on lattice data with missing observations. Saas and Gosselin (2014)
compared different autoregressive models for count data with irregular gridded observations
from real-world data. The motivation of our article is to evaluate the robustness of differ-
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ent approximation methods for various spatial data with more cases of unevenly spaced
observations, such as clustered observation locations.

In addition to utilizing approximation methods, exact computation of MLE for large
datasets becomes feasible with the aid of modern High-Performance Computing (HPC)
systems. An example of such capability is demonstrated by the ExaGeoStat1 software,
which leverages HPC techniques to enable parallel generation, modeling and prediction
of large geospatial datasets using covariance matrices (Abdulah et al. 2018a). By utilizing
ExaGeoStat, generating large synthetic datasets, such as a dataset with a size of 1M, with
various types of observation locations and covariance structures, becomes feasible.

In 2021 and 2022, we organized two competitions to evaluate the performance of existing
methods and tools in estimating and predicting pre-generated spatial and spatio-temporal
datasets. These datasets were generated synthetically from specified statistical models,
specifically covariance models, using the ExaGeoStat software. All the datasets used in
these two competitions are now available for download from Huang et al. (2021b) and
Abdulah et al. (2022a) as benchmarks for new methods. Furthermore, detailed descriptions
of the datasets, the performance of different methods, and discussions of the competition
results can be found in Huang et al. (2021a) and Abdulah et al. (2022b).

This year, we organized a third competition with distinct goals and datasets.We extended
the data generation capability within ExaGeoStat to enable the generation of non-uniform
distributed data locations.Unlike previous competitions focused on point estimation and pre-
diction, the 2023 competition revolves around constructing confidence intervals for param-
eter estimation and prediction intervals. Specifically, the competition comprises four sub-
competitions, namely 1a, 1b, 2a, and 2b. Sub-competitions 1a and 1b require participants
to provide confidence intervals for parameter estimation, while Sub-competitions 2a and 2b
involve providing prediction intervals. The datasets in the competition were generated using
stationary Gaussian random fields, employing an isotropic Matérn covariance function, and
encompassing diverse designs of irregularly spaced locations. To cater to participants with
varying computing resources, we offered two training dataset sizes: 90K and 900K, and
two testing dataset sizes: 10K and 100K. The interval score metric evaluates the accuracy
of confidence interval results in estimation and prediction. Subsequently, a ranking strat-
egy was employed to determine the competition winner based on performance. This year’s
competition garnered submissions from 11 teams, each participating in one or more sub-
competitions. Additionally, ExaGeoStat participated as a benchmark. For clarity, we refer
to the teams by their designated team numbers, as listed in Table S1 in the Supplementary
Material with details of teammembers. The results of the competition can be summarized as
follows: Team4 emerged as the winner in Sub-competition 1a (smaller samples) for parame-
ter estimation, while Team2 and Team6 claimed a tied victory in Sub-competition 1b (larger
samples). For the prediction aspect, Team2 also secured the first position in Sub-competition
2a (smaller samples), while Team8 triumphed in Sub-competition 2b (larger samples).

Based on the competition results, the performances of the winning teams indicate that the
Vecchia approximation and the fractional SPDE methods were among the best performers
for both estimation and prediction. Therefore, considering the results of the competition,

1https://github.com/ecrc/exageostat.

https://github.com/ecrc/exageostat
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we recommend employing specific approximation methods for different sample sizes and
shapes of observation locations. This includes prioritizing using Vecchia approximations
and fractional SPDE and considering the nearest neighbors Gaussian process and the multi-
resolution approximation for prediction tasks.

The subsequent sections of this article are structured as follows. Section2 outlines the
dataset configurations utilized in our competition. Section3 presents an overview of the
competition objectives and the evaluation methods employed to assess the performance
of each submitted result. Section4 provides a detailed introduction to the methods used
in the submitted results. Section5 presents a comprehensive analysis and comparison of
each submitted method, leading to the identification of the best-performing approaches. We
provide the conclusions and discussions derived from the competition in Sect. 6.

2. COMPETITION DATASETS

The simulated datasets for the 2023 competition on spatial statistics for large datasets
were generated using the stationary isotropic Matérn covariance model, considering vari-
ous configurations of observed locations. The following subsections provide more detailed
information about the datasets corresponding to different observed location settings. In all
sub-competitions (Sub-competitions 1a, 1b, 2a, and 2b), we assume that the spatial data
Z(si ), i = 1, . . . , n, follow a zero-mean stationary isotropic Gaussian random field with
Matérn covariance:

C(‖si − s j‖) := Cov
{
Z(si ), Z(s j )

} = σ 2

2ν−1�(ν)

( ‖si−s j‖
β

)νKν

( ‖si−s j‖
β

)
+ τ 21{si=s j },

(1)

whereKν(·) is themodified Bessel function of the second kind of order ν,�(·) is the Gamma
function, σ 2, β > 0, ν > 0, and τ 2 are the variance parameter, range parameter, smoothness
parameter, and nugget variance parameter, respectively.

Our competition datasets specifically address scenarios where the observations are irreg-
ularly located. The observation locations are confined within the unit square [0, 1]2. There
are five different cases considered for the locations of the observations:

1. Chessboard: Generated observations on [0, 1]2 with a chessboard shape;

2. Left-bottom: Generated observations on [0, 1]2 with locations more concentrated in
the left-bottom area;

3. Satellite: Scaled observed locations obtained from a satellite remote sensing scenario,
with locations missing in some bands;

4. Clusters: Generated observations on [0, 1]2 with locations having cluster shapes;

5. Regular: Generated observations are uniformly distributed on [0, 1]2.
The first row of Fig. 1 displays five training sets in Sub-competitions 1a and 2a, which

are of size 90K and generated with the above location configurations and parameters shown
in Table 1. Except for the Regular case, each training set has two testing sets of size 10K.
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Figure 1. Illustration of competition datasets in Sub-competitions 1a and 2a. Training sets of size 90K are
displayed in the first row. Testing sets of size 10K with the same distributions as the corresponding training sets
are shown in the second row. Testing sets of size 10K with uniform distributions are shown in the third row.

Table 1. True parameter values in the Matérn model for different types of locations

Type of locations σ 2 β Effective range ν τ2

1. Chessboard 1.4 0.164056 0.8 1.6 0.27
2. Left-bottom 1.4 0.052579 0.3 2.3 0.27
3. Satellite 1.7 0.021707 0.1 1.4 0.27
4. Clusters 1.5 0.054710 0.3 2.1 0.27
5. Regular 1.7 0.021707 0.1 1.4 0.27

One has the same distribution as the training set, shown in the second row, but the other
has uniform locations, shown in the third row. Similarly, Fig. 2 illustrates the training and
testing sets in Sub-competitions 1b and 2b. With the same parameter settings, the numbers
of locations in Fig. 2 are ten times larger than those in Fig. 1. All the observation values are
generated using theExaGeoStat software (Abdulah et al. 2018a).Moreover, Table 1 presents
the true values of σ 2, ν, τ 2, and the effective range for different observations. The effective
range is determined by finding the smallest distance heff at which the ratio C(heff)/C(0)
equals 0.05. It is worth mentioning that the nugget term is disregarded (i.e., τ 2 is set to 0)
while determining β based on the predefined effective range.

3. COMPETITION OBJECTIVES AND ASSESSMENT METHODS

Herein, we outline the purpose of our sub-competitions and the criteria we have chosen to
evaluate and rank participating teams. The top-ranked teams should demonstrate proficiency
in accurately determining estimation confidence intervals or prediction intervals within each
sub-competition.
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Figure 2. Illustration of competition datasets in Sub-competitions 1b and 2b. Training sets of size 900K are
displayed in the first row. Testing sets of size 100K with the same distributions as the corresponding training sets
are shown in the second row. Testing sets of size 100K with uniform distributions are shown in the third row.

Table 2. Summary of the four sub-competitions

Sub-
competition

Model setting Target # of location
designs

Training
data size

Testing
data size

1a Gaussian Matérn Estimation
(95% confidence interval)

5 90K –

1b Gaussian Matérn Estimation
(95% confidence interval)

5 900K –

2a Gaussian Matérn Prediction
(95% prediction interval)

5 90K 10K

2b Gaussian Matérn Prediction
(95% prediction interval)

5 900K 100K

3.1. COMPETITION OBJECTIVES

According to Burt et al. (2020) and Song et al. (2022), location distributions significantly
impact the convergence rate of a zero-mean Gaussian process. This motivated us to investi-
gate parameter estimation and prediction under various location settings. Additionally, the
existing theory is often developed under the assumption that the testing location distribution
is the same as the training location distribution. Therefore, how methods perform when
training and testing distributions are different is of interest. Sub-competitions 1a and 1b
are dedicated to building confidence intervals for the unknown parameters of the Matérn
covariance function in (1) using the provided datasets. Sub-competitions 2a and 2b require
participants to generate prediction intervals for the given datasets at specific new locations
within the testing datasets. We summarize the configurations of different datasets in Table
2.

For Sub-competitions 1a and 1b, participants were required to present independent 95%
confidence intervals for each of the parameters σ 2, β, ν, and τ 2. Simultaneous confidence
intervals for these parameters were not considered. In Sub-competitions 2a and 2b, the par-
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ticipants were expected to predict the missing measurements at the testing locations using
their preferred tools or methods. Then, they had to provide independent 95% prediction
intervals for each testing point. While the confidence and prediction intervals were manda-
tory for the competition, parameter estimation and prediction values for testing points were
not required.

3.2. ASSESSMENT METHODS

We rely on the scoring rule defined by Gneiting and Raftery (2007) to evaluate the quality
of the confidence and the prediction intervals. Let [l, u] be the (1 − α)% confidence or
prediction interval corresponding to the true value z. The interval score is defined by

Sintα (l, u; z) = (u − l) + 2

α
(l − z)1{z<l} + 2

α
(z − u)1{z>u}, (2)

where 1{·} is the indicator function and α = 0.05.
In the first part, Sub-competitions 1a and 1b, we considered the unknown parame-

ters θ = (θ1, θ2, θ3, θ4)
� = (σ 2, β, ν, τ 2)�. For each parameter, let [lci , uci ] represents

the corresponding 95% confidence interval, where i = 1, 2, 3, 4. To evaluate the perfor-
mance of teams in Sub-competition 1a, assume that K (1a) teams participated. We define
Sintα,k, j (lci , uci ; θi ) as the interval score of team k for θi in dataset j , where k = 1, . . . , K (1a)

and j = 1, . . . , 5. Within each dataset, we sort the interval scores Sintα,k, j (lci , uci ; θi ) for
each parameter and assign a rank Rint

α,k, j (lci , uci ; θi ) to each team in ascending order. The
rank score for team k and dataset j is defined by

R(1a)
est,k, j = 1

4

4∑

i=1

Rint
α,k, j (lci , uci ; θi ).

Finally, for each dataset j , we sort R(1a)
est,k, j , k = 1, . . . , K (1a) in ascending order and assign

rank Rank(1a)k, j to each team. The final score for team k in Sub-competition 1a was calculated

as S(1a)k =
5∑

j=1
Rank(1a)k, j , and the final rank was assigned by sorting S(1a)k in ascending order.

A similar ranking strategy was used for Sub-competition 1b.
In the second part, Sub-competitions 2a and 2b, the prediction interval scoring rule was

defined by

ISpred = 1

Ntest

Ntest∑

i=1

Sintα (lpi , upi ; Zi ),

where Zi are the true realization values in the testing datasets, Ntest is the total number
of testing data points, [lpi , upi ] is the (1 − α) × 100% prediction interval of Zi , and
Sintα (l, u; z) is the interval score defined by (2). Assuming that we have K (2a) participant
teams for Sub-competition 2a, let IS(2a)pred,k,t , k = 1, . . . , K (2a), t = 1, . . . , 9, denote the
prediction interval score from team k for testing dataset t . For each testing dataset t , we sort
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IS(2a)pred,k,t , k = 1, . . . , K (2a) in ascending order and assign rank Rank(2a)k,t to each team. The

final score for team k in Sub-competition 2a was calculated as S(2a)k =
9∑

t=1
Rank(2a)k,t , and

the final rank was assigned by sorting S(2a)k in ascending order. A similar ranking strategy
was used for Sub-competition 2b.

Following the aforementioned ranking criteria, we present the competition outcomes
for all sub-competitions in Tables S2–S5 of the Supplementary Material. Furthermore, we
provide the rankings of each team for every dataset, granting teams valuable insights into
the performance of their approaches across various scenarios. Within each sub-competition,
we highlight the top three teams (or four teams if there is a tie for the third position) as
follows:

• Sub-competition 1a: 1) Team4, 2) Team2, 3) Team6 and Team8;

• Sub-competition 1b: 1) Team2 and Team6, 3) Team5;

• Sub-competition 2a: 1) Team2, 2) Team6, 3) Team8;

• Sub-competition 2b: 1) Team8, 2) Team2, 3) Team6.

4. OVERVIEW OF METHODS IN SUBMITTED RESULTS

In this section, we provide an overview of the methods employed by the teams to con-
struct confidence intervals for estimated parameters and prediction intervals. For each sub-
competition, we delve into specific information regarding team implementations, with a
particular focus on the top-ranked teams.

4.1. SUB-COMPETITIONS 1A AND 1B

For Sub-competitions 1a and 1b, the teams were tasked with assessing confidence inter-
vals for Matérn covariance parameters using datasets of sizes 90K and 900K, respectively.
The teams employing Bayesian methods can easily obtain confidence intervals through pos-
terior distributions and Markov chain Monte Carlo. The teams utilizing frequentist methods
need resampling techniques such as the bootstrap or theoretically deriving and calculating
the asymptotic variance for parameter estimators to get confidence intervals. For example,
ExaGeoStat evaluates the exactMLE for parameters and then computes the asymptotic vari-
ance of the MLE by the inverse of the Fisher information matrix, which is obtained by finite
difference approximation. The confidence intervals are then evaluated by the asymptotic
normality of the MLE. Table 3 summarizes the estimation methods different teams used in
Sub-competitions 1a and 1b. Team5 provided three submissions for Sub-competition 1a,
which they named (1-1), (1-2), and (2-3).

The Vecchia approximation (Vecchia 1988), classified under composite likelihood meth-
ods (Varin et al. 2011; Eidsvik et al. 2014), was the prevailing choice for parameter esti-
mation in our competition. It approximates the joint likelihood with a series of conditional
likelihoods of Z(si ), where the smaller conditioning set includes its (at most) m nearest
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Table 3. Methods used by different teams in Sub-competitions 1a and 1b

Methods SPDE Vecchia approxi-
mation

Combinations and others

Teams Team6 Team1, Team2,
Team4, Team5 (1-
1 and 1-2), Team7,
Team8, Team9

Team3, Team5 (2-3), Team10

neighbors. Efficient implementations of the Vecchia approximation have been developed
through various approaches and packages (Guinness 2018, 2021; Guinness et al. 2021). In
this competition, Team5 (1-1) employed the method proposed by Guinness (2021). Team5
(1-2) relied on their custom-built R package, namedBootstrap for Rapid Inference on Spatial
Covariances (BRISC) (Saha and Datta 2022). Team8 employed the Vecchia approximation
(20 nearest neighbors) within the Nearest Neighbors Gaussian Process (NNGP) framework.
NNGP is a rigorously-defined spatial process that offers valid finite-dimensional Gaussian
distributions characterized by sparse precisionmatrices, founded on the principle that spatial
correlation is most pronounced among neighboring observations (Datta et al. 2016). The
range and smoothness parameters were assigned uniform priors, while the variance param-
eters were assigned inverse gamma priors. Additionally, teams such as Team1, Team2,
Team7, and Team9 utilized the R package GpGp (Guinness et al. 2021) for their implemen-
tations. The main difference among them is the value ofm. For example, Team1 and Team 9
employed the default option and m = 30, respectively. Team7 used m = 30 and 15 nearest
neighbors in the procedures of parameter estimation and resampling, respectively. As the
sample size n increased to 900K, Team7 introduced a data reduction technique known as
hexagonal binning. In this approach, the domain was divided into numerous hexagons, and
the mean value of the data within each hexagon was used to represent its overall value.
Subsequently, Team7 applied their Vecchia approximation to the hexagonal-binned data.

We now provide a detailed account of Team4’s winning strategy in Sub-competition 1a,
where they harnessed the power of the Vecchia approximation combined with a parametric
bootstrap technique to construct 95% confidence intervals. Initially, they obtained the MLE
of the parameter vector θ , denoted as θ̂ , using the Vecchia approximation with m = 1000.
Next, they generated simulated data based on the assumption that θ̂ represents the true
values. Then, by applying the Vecchia approximation with m = 300 to the simulated data,
they obtained another MLE estimate denoted as θ̂

∗
. Finally, they obtained the inference

result by repeating the above steps.
Team2, securing the first two places in both Sub-competitions 1a and 1b, also embraced

the idea of combining bootstrap techniques with the Vecchia approximation. However, they
incorporated some unique aspects into their approach. Team2 developed additional Rcpp-
based functions to enhance their estimation, building upon the R package GpGp. These
custom functions extended the capabilities of the existing fit_model() function in GpGp by
enabling the estimation of Matérn parameters even when the mean of the spatial process
is precisely zero. Team2 also made a distinct choice for the value of m. To elaborate, they
first maximized a 10-neighbor approximation, then proceeded to maximize a 30-neighbor
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approximation, utilizing the 10-neighbor estimates as initial values. Finally, theymaximized
a 60-neighbor approximation, using the 30 neighbor estimates as starting values. Addition-
ally, Team2 utilized the fast_Gp_sim_Linv() function for simulating parametric bootstrap
samples while obtaining the corresponding L-inverses through the vecchia_Linv() function.
Furthermore, they employed the selm() function from the R package sn (Azzalini 2022)
for each parameter to fit a skew-normal distribution to the Bootstrap estimates. They then
calculated the 2.5% and 97.5% quantiles of the distribution using the qsn() function. In
Sub-competition 1b, Team2 adjusted the procedure of generating bootstrap samples while
keeping other procedures. Specifically, they computed the MLE 1000 times on sub-samples
of 10,000 points from the given set of locations. They obtained the samples by giving uneven
weights to each location to de-cluster them. First, the weight of a given point was calculated
as the inverse of the total number of points in a specific neighborhood of that point. Next,
they normalized the weights so that they sum to one. Then, they re-estimated the parameters
for each “approximate” bootstrap sample.

In addition to the Vecchia approximation, Team6, who won (tie) the Sub-competition 1b
and claimed the third place in Sub-competition 1a, employed the fractional SPDE method,
an efficient Bayesian approach involving a sparse approximation for the precision matrix.
Team6 exclusively employed the fractional SPDE approach in all sub-competitions, explic-
itly relying on the covariance-based rational approximations of fractional SPDEs as detailed
in Bolin et al. (2023). The approach is based on the concept that the Gaussian field can
be expressed as a solution to a fractional-order stochastic partial differential equation. To
approximate this equation, the method combines a finite element approximation with a
rational approximation of the fractional power. The implementation of the method can be
found in the rSPDE package, which is accessible on CRAN. The package provides inter-
faces to both R-INLA (Rue et al. 2009) and inlabru (Bachl et al. 2019). In the competition,
Team6 utilized the inlabru interface, resulting in all their outcomes being obtained through a
Bayesian approachwith hyperparameter priors. For further information on themethodology,
please refer to the comprehensive explanation provided in Bolin et al. (2023). The specific
choices for the priors and model approximations were as follows. The priors were chosen
as rather flat log-normal priors for all parameters except the smoothness parameters, which
had a truncated log-normal prior (as described in the vignette on the package homepage).
The rSPDE model was the one with the SPDE parameterization. The mesh was generated
using inla.mesh.2d() with cutoff, offset, and extension depending on the dataset.

Apart from the above-mentioned methods, Team3 employed a variational inference to
approximate posterior densities for GP models. They estimated the spatial autocorrelation
for each training dataset through a variogram and then used it to construct a new sampling
strategy for cross-validating the parameters. Team5 (2-3) utilized a method described in
Zhang et al. (2019), which combines the concepts of covariance tapering (Kaufman et al.
2008) and low-rank approximation (Cressie and Johannesson 2008; Banerjee et al. 2008).
Team10 did not provide descriptions of their methods.
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Table 4. Methods used by teams for evaluating the kriging predictors and variances in Sub-competitions 2a
and 2b. The low-rank and Vecchia methods were employed as low-rank and Vecchia approximations,
respectively

Methods LaGP Low-Rank SPDE Vecchia Combinations
and Others

Teams Team1
Team9
(LaGP)

Team7
Team8

Team6 Team2
Team4
Team9
(Vecchia)

Team3
Team10
Team11

4.2. SUB-COMPETITIONS 2A AND 2B

In Sub-competitions 2a and 2b, teams were tasked with assessing prediction intervals
for the provided testing sets, utilizing datasets of sizes 90K and 900K, respectively. We
are particularly interested in the techniques employed to compute the inverse of a large
covariance matrix in both kriging predictors and variances. These methods used by different
teams are summarized in Table 4. Team9 provided two submissions in Sub-competition
2a, which were named Team9 (LaGP) and Team9 (Vecchia), respectively, due to their
techniques. Additionally, ExaGeoStat was applied to Sub-competition 2a as a benchmark.
ExaGeoStat (MLE) and (True) representmethods of calculating prediction intervals byMLE
and true parameters, respectively.

Low-rank approximationmethods are commonly used in the case of large spatial datasets.
These methods approximate a process as a linear combination of a smaller number (q) of
basis functions with random coefficients (Cressie and Johannesson 2008; Banerjee et al.
2008). The multi-resolution approximation (MRA) is one of these methods. As described
by Katzfuss (2017), the MRA approach constructs basis functions of varying resolutions
through recursive partitioning of the spatial domain. The basis functions are induced with
covariance functions and knots, resulting in an effective approximation technique. Katzfuss
and Guinness (2021) integrated the multi-resolution approximation (MRA) into a broader
framework of Vecchia approximation. They further developed the R package GPvecchia,
which encompasses theMRA implementation andwas utilized by Team7.Moreover, Team8
relied on a parallelizable implementation of MRA proposed by Huang et al. (2019). The
MRA was configured to divide partitions into two at every resolution and to have 49 knots
within each partition.

The local approximation Gaussian process (LaGP), proposed as a solution to the pre-
diction problem in large-scale Gaussian processes, offers an effective approach. It predicts
values at any given location s by training a Gaussian process on a small subset of the data.
This subset can either consist of the nearest neighbors of s or be selected to minimize the
mean squared prediction error at s. Team1 and Team9 (LaGP) utilized the R package laGP
(Gramacy 2016) for their implementations.

While the Vecchia approximation has proven to be successful in Sub-competitions 1a and
1b, it is worth noting that Team2 also employed this method in Sub-competitions 2a and 2b.
Therefore, we explore how they utilized Vecchia approximation for these sub-competitions.
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Figure 3. Interval scores (log scale) for confidence intervals of each parameter of the Matérn model submitted
by teams in Sub-competition 1a. The order of the color/team legend goes from best to worst performance.

Team2 used their method to estimate parameters in Sub-competition 1a as a first step.
They then obtained kriging predictions by employing an adjusted version of the function
predictions() in the GpGp package. This adjusted version allowed for reordering and was
used with a selection of the 200 nearest neighbors (m = 200). Next, leveraging the marginal
distributions of the predictive samples, Team2 used the function cond_sim() from theGpGp
package to simulate 1000 predictive samples. Lastly, they derived the predictive variances
and computed pointwise prediction intervals with a confidence level of 95%.

Besides the above popular techniques, various methods were used in Sub-competitions
2a and 2b. Team3 evaluated the parameters by fixing ν = 2.5 for all datasets, and then
calculated the prediction intervals based on the estimation. Team11 employed the gradient-
boosting decision tree (GBDT) method using package lightgbm (Ke et al. 2017). They
randomized the training data and repeated the training for 2000 times to get a Monte Carlo
mean and variance estimate.

5. COMPETITION RESULT ANALYSIS

In previous sections, we have demonstrated and outlined the approaches employed by the
teams, along with presenting the rankings for each sub-competition. Now, we analyze the
competition results, specifically the interval scores, to facilitate a thorough comparison and
analysis of teamperformances. It isworth noting that a smaller interval score corresponds to a
more favorable estimated interval. Figure3 shows the values of ISint0.05,k, j (lci , uci ; θi ), where
k = 1, . . . , 13, j = 1, . . . , 5, and i = 1, . . . , 4, i.e., interval scores for confidence intervals
of each parameter submitted by teams in Sub-competition 1a. Althoughwe designed various
location distributions to assess parameter evaluation difficulty, it is difficult to determine
which dataset posed the greatest challenge.
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Figure 4. Interval scores (log scale) for confidence intervals of each parameter of the Matérn model submitted
by teams in Sub-competition 1b. The order of the color/team legend goes from best to worst performance.

Table 3 reveals that numerous teams employed the Vecchia approximation method and
the R packageGpGp. However, by examining Fig. 3, significant gaps can be observed when
comparing the interval scores of Team2, Team4, and Team8 with those of Team1, Team7,
and Team9. The gaps may come from the number of nearest neighbors. For example, Team4
used 1000 and 300 nearest neighbors in parameters evaluation and bootstrap, respectively.
Team2 initially used m = 10 and 30 for obtaining initial parameters but ultimately settled
on m = 60. In contrast, Team1, Team7, and Team9 employed a maximum of 30 nearest
neighbors throughout the entire procedure. There could be other factors contributing to the
observed gaps. For instance, Team1 constructed confidence intervals using the information
matrix, while other methods relied on resampling techniques. Also, Team5 (2-3) used the
method of Zhang et al. (2019), combining low-rank approximation and covariance tapering
to obtain a full-scale approximation. Their poor performance in this competition may be
because of our varied location distributions shown in Fig. 1. Albeit using exact MLEs for
parameters, ExaGeoStat is not quite the winner in Sub-competition 1a, since it calculates
confidence intervals based on a derived asymptotic Fisher informationmatrix of parameters.
Some methods may provide over-optimistic confidence intervals compared to the MLE-
derived interval. Such intervals can behave better for one case, but cannot be best for all
parameters and all sample settings. Note that the y-axis scales of the sub-plots are different.
This is why we opted to average the ranking scores across all parameters rather than relying
solely on interval scores. The first column in Fig. 3 shows a larger point concentration in the
top half region. This indicates that estimating the parameters σ 2 and ν is relatively more
challenging.

Figure 4 shows the interval scores in Sub-competition 1b. When comparing Fig. 4 to
Fig. 3, it can be observed that Team2 exhibits improved performance as the sample size
increases to 900K. As the sample size increases, the nearest neighbors in a fixed domain
tend to become even closer, potentially providing additional information for parameter eval-
uation. Recall that Team7 employed a data reduction technique known as hexagonal binning.
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Figure 5. Averaged interval scores (log scale) for prediction intervals among testing points submitted by teams
in Sub-competition 2a. In x-axis, the first number ranging from 1 to 5 represents location settings illustrated in
Table 1, and the second number 1 or 2 represents testing sets 1 or 2, respectively. The order of the color/team
legend goes from best to worst performance.

This step enhanced computational efficiency but also resulted in some loss of information.
The consistent high performance of Team6 highlights the advantages of their method. Addi-
tionally, it is worth noting that all the data were generated with Matérn covariance, which
aligns perfectly with their chosen method.

We provided two testing sets for Sub-competitions 2a and 2b for each training set. The
first testing set maintained the same location distributions as the corresponding training set,
while the second testing set followed a uniform distribution across the entire domain. Fig-
ure5 demonstrates the values of IS(2a)pred,k,t , where k = 1, . . . , 13 and t = 1, . . . , 9, i.e., the
averaged interval scores for prediction intervals among testing points in Sub-competition
2a. The values are also provided in Table S6 for better comparison. Based on Fig. 5, it can be
observed that most teams exhibit slightly higher interval scores on testing set 2, indicating
better performance on testing set 1 compared to testing set 2. This observation is reasonable
considering that testing set 2 follows a different distribution from the training set. An inter-
esting aspect to consider is how to evaluate the impact of such distributional differences on
interval scores. In almost all case, both ExaGeoStat (MLE) and ExaGeoStat (True) dom-
inate Sub-competition 2a, with exact MLE and true parameters, as well as a closed-form
prediction interval expression. In some testing sets 2, i.e., “1.2”, “2.2”, and “3.2”, ExaGeo-
Stat (MLE) performs slightly better than ExaGeoStat (True), which is a consequence of the
estimation error for prediction mean squared errors on testing points. Team3 kept ν = 2.5
fixed during parameter estimation and subsequently calculated prediction intervals based on
those estimates. By comparing 2.5 with values of ν in Table 1, we can see a worse parameter
estimation, which further affects their prediction intervals, especially for testing set 2. Recall
that both Team4 and Team2 used the Vecchia approximation, and Team4 behaves better in
Sub-competition 1a. However, Team4 is worse than Team2 in this sub-competition. Team4
calculated the theoretical prediction intervals, whereas Team2 used the bootstrap to obtain
empirical prediction intervals.
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Figure 6. Averaged interval scores (log scale) for prediction intervals among testing points submitted by teams
in Sub-competition 2b. In x-axis, the first number ranging from 1 to 5 represents location settings illustrated in
Table 1, and the second number 1 or 2 represents testing sets 1 or 2, respectively. The order of the color/team
legend goes from best to worst performance.

Figure 6 illustrates the averaged interval scores for Sub-competition 2b. Comparing Fig. 6
with Fig. 5, interval scores slightly decrease because of the increase in data size. Team7 and
Team11might consider exploring additional parameter tuning to enhance their performance.

6. CONCLUSION AND DISCUSSION

We have conducted a competition to explore the estimation and prediction performances
of the Matérn covariance model, considering various distributions of irregularly located
observations. In this article, we presented concise introductions to the approximation, esti-
mation, and prediction methods employed by each participating team, followed by an eval-
uation of their performances using interval scores. Based on the results, we observed that
the method employed by Team2 is suitable when the observation locations follow a Regu-
lar pattern or pertain to remote sensing applications. This particular method demonstrated
excellent prediction performance and competitive estimation performance. In these set-
tings, the observation locations are distributed more evenly compared to other types, such
as Chessboard, Left-bottom, and Clusters configurations.We observed that Team6’s method
is suitable for unevenly distributed observation locations. This method demonstrated over-
all good performance in both estimation and prediction across various sample sizes and
observation types. For spatial data with smaller sizes and unevenly distributed locations,
we observed the Team4’s method is suitable for estimation. This method has proven to be
the best performer in Sub-competition 1a and exhibited superior interval scores compared
to Team2’s method, except for scenarios involving a Regular pattern and remote sensing
observations. If the primary focus is solely on prediction performance, the Team8’s method
is suitable. This method emerged as the winner in Sub-competition 2b, and the difference
between its performance and other winning methods in Sub-competition 2a was minimal.

Considering the methods employed by the winners of this competition, the Vecchia
approximation and the fractional SPDE method appeared suitable for both estimation and
prediction tasks concerning spatial data. Additionally, one can consider the NNGP method
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and its correspondingmulti-resolution approximationmethod for prediction purposes.Given
that the fractional SPDE method proved to be effective for various observation locations in
our competition, and considering its relatively lesser prominence in the literature compared
to methods that primarily approximate the likelihood function or covariance matrix, we will
further explore the estimation accuracy and prediction efficiency of the fractional SPDE
method when dealing with irregularly observed data.
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