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ABSTRACT
The prevalence of multivariate space-time data collected from monitoring networks and satellites, or gener-
ated from numerical models, has brought much attention to multivariate spatio-temporal statistical models,
where the covariance function plays a key role in modeling, inference, and prediction. For multivariate
space-time data, understanding the spatio-temporal variability, within and across variables, is essential in
employing a realistic covariance model. Meanwhile, the complexity of generic covariances often makes
model fitting very challenging, and simplified covariance structures, including symmetry and separability,
can reduce the model complexity and facilitate the inference procedure. However, a careful examination
of these properties is needed in real applications. In the work presented here, we formally define these
properties for multivariate spatio-temporal random fields and use functional data analysis techniques to
visualize them, hence, providing intuitive interpretations. We then propose a rigorous rank-based testing
procedure to conclude whether the simplified properties of covariance are suitable for the underlying
multivariate space-time data. The good performance of our method is illustrated through synthetic data,
for which we know the true structure. We also investigate the covariance of bivariate wind speed, a key
variable in renewable energy, over a coastal and an inland area in Saudi Arabia. The supplementary material
is available online, including the R code for our developed methods.
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1. Introduction

Multivariate spatio-temporal modeling has become a very active
research area in many scientific fields, including climate, hydrol-
ogy, and ecology, due to its capacity to capture the space-time
characteristics of data and provide accurate statistical inference.
For example, Paciorek and McLachlan (2009) used multivari-
ate spatio-temporal models to uncover forest composition in
history based on fossil pollen records; Zammit-Mangion et al.
(2015) used a multivariate spatio-temporal Gaussian Markov
random field to assess Antarctica’s mass balance and contribu-
tion to the rise of sea-level; Mastrantonio et al. (2019) used a
multivariate spatio-temporal model in a Bayesian hierarchical
framework to investigate the extreme temperatures and pre-
cipitation jointly. Gaussian random fields are widely used in
geostatistics, directly representing the variables used in the study
or serving as a building block in more complex statistical mod-
els, where the covariance structure plays a key role in quan-
tifying dependence and providing prediction. Gneiting et al.
(2010) developed valid Matérn covariance functions for multi-
variate spatial random fields. Apanasovich and Genton (2010)
proposed new approaches to build valid multivariate spatio-
temporal covariance models via latent dimensions. Genton and
Kleiber (2015) reviewed approaches to build cross-covariance
functions for multivariate random fields.

For real applications, the choice of the covariance model
is case-specific. Understanding the spatio-temporal variability
within and across variables is essential in choosing a realistic

CONTACT Huang Huang huang.huang@kaust.edu.sa Statistics Program, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
Supplementary material for this article is available online. Please go to www.tandfonline.com/r/JCGS.

covariance model. In addition, with the development of remote
sensing and in situ measurement techniques, and with powerful
computing facilities that enable better physical model simula-
tions, large datasets of unprecedented size are collected. It is
often challenging and slow to perform model inference because
space-time covariance models typically involve many parame-
ters that need to be estimated from data. Specific constraints on
the proposed covariance structure can reduce the model com-
plexity and accelerate the inference procedure. These consider-
ations motivate researchers to study simplified covariance struc-
tures and propose tools to visualize and assess them. Cressie
and Huang (1999) proposed several approaches to build uni-
variate nonseparable spatio-temporal covariances with separa-
ble covariances as special cases. Gneiting et al. (2007) investi-
gated both the univariate separability and symmetry covariance
structures. Graphical evidence for these univariate properties
includes the contour plots in Cressie and Huang (1999) and
the functional boxplot (Sun and Genton 2011) of proposed test
functions in Huang and Sun (2019). Formal testing approaches
have also been developed for the assessment of these prop-
erties. Examples include the test based on spectral represen-
tations (Fuentes 2006) and the likelihood ratio test (Mitchell
et al. 2006) for the univariate separability property, the sepa-
rability and symmetry tests from constructed contrasts of con-
variances (Li et al. 2007), and the rank-based testing proce-
dure using functional data analysis techniques (Huang and Sun
2019); see Chen et al. (2021) for a comprehensive review of
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univariate spatio-temporal covariance structures and models.
When data are multivariate space-time, there are more types of
covariance structures, and the assessment is more complicated.
Wackernagel (2013) used graphical evidence to indicate mul-
tivariate separability and symmetry. Li et al. (2008) extended
their previous testing procedure of the univariate covariance to
the multivariate case, where the property is assessed at selected
spatio-temporal lags by examining the test statistic built from
the asymptotic distribution.

To the best of our knowledge, the description of the different
types of multivariate spatio-temporal separability and symmetry
properties is scattered in the literature and incomplete, and there
has not been any work formally defining all the different types
of multivariate spatio-temporal covariances. In this article, we
introduce several possible types of separability and symmetry
properties for the multivariate spatio-temporal covariance and
give formal definitions. We then develop test functions associ-
ated with each of the properties and use functional data analysis
techniques to visualize them. Our proposed visualization tool
is a very fast approach to view these properties; there has not
been such a tool developed yet in the multivariate setting. We
also propose a rank-based testing procedure that can examine
these properties quantitatively. For simplicity, we focus on a
multivariate strictly stationary spatio-temporal random field
Z(s, t) ∈ Rp for location s ∈ D ⊂ Rd and time t ∈ {1, . . . , l},
where the p × p matrix-valued stationary covariance function
C(h, u) = cov{Z(s1, t1), Z(s2, t2)} depends only on the space lag
h = s2 − s1 and time lag u = t2 − t1.

Our article is organized as follows: Section 2 defines multi-
variate spatio-temporal covariance properties to be studied and
our proposed tools for property visualization and assessment;
Section 3 describes our new methodology to visualize our pro-
posed test functions and formally test covariance properties;
Section 4 uses synthetic datasets to demonstrate the perfor-
mance of the proposed testing procedure; Section 5 provides an
example where we apply our proposed tools to analyze bivari-
ate hourly wind speed over a coastal and an inland area in
Saudi Arabia; Section 6 summarizes our methods and presents
research directions for future improvement.

2. Multivariate Spatio-Temporal Covariance
Properties

For a p-variate strictly stationary spatio-temporal random field
Z(s, t) = {Z1(s, t), . . . , Zp(s, t)}⊤, we denote the covariance
between the ith and jth variable with space lag h and time lag
u as Cij(h, u) = cov{Zi(s + h, t + u), Zj(s, t)}, i, j = 1, . . . , p, s ∈
D, s + h ∈ D.

2.1. Symmetry Structures

For a univariate spatio-temporal covariance, there is a unique
symmetry property; symmetry means C(h, u) = C(h, −u),
equivalent to C(h, u) = C(−h, u), where C(h, u) = cov{Z(s +
h, t + u), Z(s, t)} for a univariate spatio-temporal random
field Z(s, t) (Huang and Sun 2019). When extending it to the
multivariate case, more types of symmetry may occur. The
simplest case is the fully symmetric covariance, where Cij(h, u) =

Table 1. Definition of different types of separability properties.

Type Definition Implication

V|ST Cij(h, u) = ρ1(h, u)Cij(0, 0), ∀i, j ∈ {1, . . . , p} Vsym

S|VT Cij(h, u) = ρ2(h)Cij(0, u), ∀i, j ∈ {1, . . . , p} Ssym

T|VS Cij(h, u) = ρ3(u)Cij(h, 0), ∀i, j ∈ {1, . . . , p} Tsym

V|S Cij(h, u) = ρ4(h, u)Cij(0, u), ∀i, j ∈ {1, . . . , p}
V|T Cij(h, u) = ρ5(h, u)Cij(h, 0), ∀i, j ∈ {1, . . . , p}
S|T Cij(h, u) = ρ6,ij(h)Cij(0, u), ∀i, j ∈ {1, . . . , p}
NOTE: For each type, the covariance function can be written as two components, one

of which is a general function concerning only a part of variables, space, and time,
denoted by ρ. For example, ρ1(h, u) is a function with respect to only space and
time. There are some natural equalities for these functions ρ: all these functions
equal 1 when h = 0 and u = 0; ρ4(0, u) = 1 for any u; and ρ5(h, 0) = 1 for any h.

Cji(h, u) = Cij(−h, u) = Cij(h, −u), ∀i, j ∈ {1, . . . , p}. When
the covariance does not meet all the equality requirements,
we further define more symmetry cases where only part
of the equality requirements holds. We call the covariance
symmetric in variables (denoted by Vsym) if Cij(h, u) =
Cji(h, u), ∀i, j ∈ {1, . . . , p}. This condition is equivalent to
Cij(h, u) = Cij(−h, −u) due to the fact that Cij(h, u) =
Cji(−h, −u) naturally holds. We call the covariance symmetric
in space (denoted by Ssym) if Cij(h, u) = Cij(−h, u), ∀i, j ∈
{1, . . . , p} and similarly symmetric in time (denoted by Tsym)
if Cij(h, u) = Cij(h, −u), ∀i, j ∈ {1, . . . , p}. The properties of
symmetry in variables, space, and time are not independent;
Proposition 2.1 shows the relationship among them with the
proof given in the supplementary material.

Proposition 2.1. If a multivariate spatio-temporal stationary
covariance has any two properties among (a) symmetry in
variables, (b) symmetry in space, or (c) symmetry in time, then
the covariance is fully symmetric, which we denote by Fsym.

2.2. Separability Structures

Several types of separability can happen for multivariate spatio-
temporal random fields, and we define them in Table 1, where
we also show the relation of symmetry properties if there is one.
Some abbreviated notations for ease of presentation are intro-
duced as follows: V|ST, separability between variables and space-
time; S|VT, separability between space and variables-time; T|VS,
separability between time and variables-space; V|S, separability
between variables and space; V|T, separability between variables
and time; S|T, separability between space and time;

We observe that the extension to the multivariate case intro-
duces many more types of separability than the single separa-
bility property between space and time for univariate spatio-
temporal random fields. One can clearly see that these six types
can be grouped into two categories. The first category is that
one component is completely separated from the other two.
Though this may rarely happen for real data, the benefit brought
by this property is significant because it allows us to write
the covariance matrix as a Kronecker product of two smaller
matrices. The three cases in this category are V|ST, S|VT, and
T|VS. For example, when the covariance is V|ST, it can be
decomposed into two parts corresponding to the covariance
among variables (Cij(0, 0)) and the spatio-temporal correlation
(ρ1(h, u)). This is also known as the intrinsic correlation model
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in Wackernagel (2013). We know Cij(h, u) = ρ1(h, u)Cij(0, 0) =
ρ1(h, u)Cji(0, 0) = Cji(h, u), so the multivariate spatio-temporal
covariance is also Vsym.

The second category is the one for which no component in
the covariance can be completely separated, but the interaction
between certain two out of the three components is voided,
which has less restriction than the first category described above.
The three cases in the second category are V|S, V|T, and S|T.
For example, when the covariance is V|S, there is no variable-
space interaction, and the covariance can be decomposed
into two parts corresponding to the variable-temporal corre-
lation (Cij(0, u)) and spatio-temporal correlation (ρ4(h, u)).
For cases in the second category, no symmetry property
holds.

We also call a multivariate spatio-temporal covariance fully
separable (denoted by Fsep) if it satisfies all the separability
properties, which further implies Fsym. Like for symmetry, there
are some constraints among different types of separability sum-
marized in Propositions 2.2–2.4, proofs of which are given in the
supplementary material.

Proposition 2.2. If a covariance is V|ST, then it is naturally V|S
and V|T. Similarly, S|VT implies V|S and S|T, and T|VS implies
V|T and S|T.

Proposition 2.3. If a covariance is V|S and V|T, then the covari-
ance is V|ST. Similarly, V|S and S|T imply S|VT, and V|T and
S|T imply T|VS.

Proposition 2.4. If any two properties of V|ST, S|VT, or T|VS
hold, then the remaining one also holds and the covariance is
Fsep.

Note that in this work, we aim to study the overall property of
the multivariate spatio-temporal covariance. Indeed, the prop-
erties are assumed to hold uniformly across all space lags h and
time lags u, which is different from the point-wise manner of
De Iaco and Posa (2013).

3. Methodology

3.1. Test Functions

The essential idea of examining different covariance properties
is to propose associated test functions whose mean is zero when
the property holds. Our test functions are a collection of realized
random functions of temporal lag u for every pair of variables
and locations, defined through the sample estimate of Ca,b

ij (sb −
sa, u) = cov

{
Zi(sa, t), Zj(sb, t + u)

}
for i, j ∈ {1, . . . , p}, t ∈

{1, . . . , l − u}, and locations sa, sb ∈ D, where l is the number of
time points, as follows:

Ĉa,b
ij (sb − sa, u)

:= 1
l − u

l−u∑

t=1

{
Zj(sb, t + u) −

∑l−u
r=1 Zj(sb, r + u)

l − u

}

×
{

Zi(sa, t) −
∑l−u

r=1 Zi(sa, r)
l − u

}
.

Table 2. Definition of test functions for different types of symmetry.

Type Test Functions

Vsym gv
i,j,a,b(u) := Ĉa,b

ij (sb − sa , u) − Ĉa,b
ji (sb − sa , u), u ∈ N, i < j

Ssym gs
i,j,a,b(u) := Ĉa,b

ij (sb − sa , u) − Ĉb,a
ij (sa − sb , u), u ∈ N; i ≤ j, a < b or i > j, a > b

Tsym gt
i,j,a,b(u) := Ĉa,b

ij (sb − sa , u) − Ĉa,b
ij (sb − sa , −u), u ∈ N+ ; i < j or i = j, a ̸= b

3.1.1. Test Functions for Symmetry
Table 2 lists the definitions of the test functions examining
each symmetry property, where the indices of i, j, a, and b are
selected such that trivial zero curves and redundant realizations
are not considered. For example, the test functions for Vsym are
the differences between the sample estimators of covariance at
particular lags when the order of variables is flipped. It is easy to
observe that the expectation of the test functions is zero when
the corresponding symmetry property holds and vice versa.
For p-variate spatio-temporal random fields at n locations, the
number of test function realizations for Vsym, Ssym, and Tsym are
n2p(p−1)/2, n(n−1)p2/2, and n2p(p+1)/2−np, respectively.

3.1.2. Test Functions for Separability
To build test functions for separability, in addition to estimating
Cij(h, u), we also need to estimate all the functions ρ1(h, u),
ρ2(h), ρ3(u), ρ4(h, u), ρ5(h, u), and ρ6,ij(h). Various approaches
are possible to estimate them. For example, ρ̂a,b

1 (sb − sa, u) can
be

∑p
i,j=1[2Ĉa,b

ij (sa − sb, u)/{Ĉa,a
ij (0, u) + Ĉb,b

ij (0, u)}]/p, which
is the average of the estimator of ρa,b

1 (sa − sb, u) from Zi(sa, t)
and Zj(sb, t) for each i, j ∈ {1, . . . , p} (we call this a mean-
ratio estimator). To obtain the best linear unbiased estimate, we
regress Ĉa,b

ij (sa − sb, u) on {Ĉa,a
ij (0, u)+ Ĉb,b

ij (0, u)}/2 and get the
least-square estimator of ρa,b

1 (sa − sb, u) as follows:

ρ̂a,b
1 (sa − sb, u)

=
2
∑p

i,j=1 Ĉa,b
ij (sa − sb, u){Ĉa,a

ij (0, 0) + Ĉb,b
ij (0, 0)}

∑p
i,j=1{Ĉa,a

ij (0, 0) + Ĉb,b
ij (0, 0)}2

,

where we assume
∑p

i,j=1{Ĉa,a
ij (0, 0) + Ĉb,b

ij (0, 0)}2 ̸= 0. The
least-square estimators for all the other required functions are
as follows, where we also assume the associated denominators
are not zero in each case:

ρ̂a,b
2 (sa − sb)

=
2
∑p

i,j=1 Ĉa,b
ij (sa − sb, 0){Ĉa,a

ij (0, 0) + Ĉb,b
ij (0, 0)}

∑p
i,j=1{Ĉa,a

ij (0, 0) + Ĉb,b
ij (0, 0)}2

,

ρ̂a,b
3 (u)

=
∑p

i,j=1{Ĉa,a
ij (0, u) + Ĉb,b

ij (0, u)}{Ĉa,a
ij (0, 0) + Ĉb,b

ij (0, 0)}
∑p

i,j=1{Ĉa,a
ij (0, 0) + Ĉb,b

ij (0, 0)}2
,

ρ̂a,b
4 (sa − sb, u)

=
2
∑p

i,j=1 Ĉa,b
ij (sa − sb, u){Ĉa,a

ij (0, u) + Ĉb,b
ij (0, u)}

∑p
i,j=1{Ĉa,a

ij (0, u) + Ĉb,b
ij (0, u)}2

,
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Table 3. Definition of test functions for different types of separability.

Type Test Functions

V|ST f v|st
i,j,a,b(u) := Ĉa,b

ij (sb − sa , u) − ρ̂a,b
1 (sb − sa , u){Ĉa,a

ij (0, 0) + Ĉb,b
ij (0, 0)}/2, u ∈ N+

S|VT f s|vt
i,j,a,b(u) := Ĉa,b

ij (sb − sa , u) − ρ̂a,b
2 (sb − sa){Ĉa,a

ij (0, u) + Ĉb,b
ij (0, u)}/2, u ∈ N+ , a ̸= b

T|VS f t|vs
i,j,a,b(u) := Ĉa,b

ij (sb − sa , u) − ρ̂a,b
3 (u)Ĉa,b

ij (sb − sa , 0), u ∈ N+

V|S f v|s
i,j,a,b(u) := Ĉa,b

ij (sb − sa , u) − ρ̂a,b
4 (sb − sa , u){Ĉa,a

ij (0, u) + Ĉb,b
ij (0, u)}/2, u ∈ N+

V|T f v|t
i,j,a,b(u) := Ĉa,b

ij (sb − sa , u) − ρ̂a,b
5 (sb − sa , u)Ĉa,b

ij (sb − sa , 0), u ∈ N+

S|T f s|t
i,j,a,b(u) := Ĉa,b

ij (sb − sa , u) − ρ̂a,b
6,ij (sb − sa){Ĉa,a

ij (0, u) + Ĉb,b
ij (0, u)}/2, u ∈ N+ , a ̸= b

ρ̂a,b
5 (sa − sb, u)

=
∑p

i,j=1 Ĉa,b
ij (sa − sb, u)Ĉa,b

ij (sa − sb, 0)
∑p

i,j=1 Ĉa,b
ij (sa − sb, 0)2

,

ρ̂a,b
6,ij(sa − sb)

= 2Ĉa,b
ij (sa − sb, 0)/{Ĉa,a

ij (0, 0) + Ĉb,b
ij (0, 0)}.

With estimators of these ρ-functions, we can define the test
functions for different types of separability, as shown in Table 3,
where we also remove trivial zero test functions. For example,
the test functions for V|ST are the differences between the
estimates of covariance and the product of covariance among
variables and spatio-temporal correlation at particular lags. For
p-variate spatio-temporal random fields at n locations, the num-
bers of test function realizations are n2p2 for V|ST, T|VS, V|S,
and V|T, and n(n − 1)p2 for S|VT and S|T. Unlike for symmetry
cases, we only have asymptotic results for the expectation of
the test functions under some mild conditions, as given in
Theorem 3.1 with proof provided in the supplementary material.

Theorem 3.1. If the covariance function Cij(h, u) for a multi-
variate strictly stationary spatio-temporal random field Z(s, t) =
{Z1(s, t), . . . , Zp(s, t)}⊤ satisfies the conditions:

1.
∑

t∈Z |cov{Zi(sa, 0)Zj(sb, u1), Zi′(sa′ , t)Zj′(sb′ , t + u2)}| <

∞, for any finite u1, u2 ∈ Z, i, j, i′, j′ ∈ {1, . . . , p}, and
sa, sb, sa′ , sb′ ∈ D,

2.
∑p

i,j=1 C2
ij(0, u) ̸= 0 for the case of separability between

variable and space, and
∑p

i,j=1 C2
ij(0, 0) ̸= 0 for all other

separability cases,

then the expectation of the test functions converges to zero as
the number of time points goes to infinity when the covariance
function is separable with the corresponding type.

3.2. Visualization of Test Functions

We see that, under the symmetry or separability assumption, the
expectation of the associated test functions is zero or asymptoti-
cally zero. The deviation of test functions from zero suggests that
the underlying assumption is violated. To visually summarize

the set of test functions for given data, we use functional box-
plots (Sun and Genton 2011) with particular modification and
extension to emphasize the deviation from zero. In our visualiza-
tion tool, we first compute the test functions and order them by
the modified band depth (López-Pintado and Romo 2009). The
modified band depth is one type of functional data depths, the
computation of which is based on the graphical representation
of the functional data. It shows great computational efficiency
and statistical power in detecting outliers and identifying the
representative realizations. We build the 50% central region by
the 50% test functions with the largest band depth values, the
border of which is drawn in blue. To better show how these
representative test functions are distributed in the central region,
we compute the density of test functions falling into each area
in the central region and fill in each area with a color whose
opacity is proportional to the density. A horizontal black dotted
line is drawn to indicate zero. At each u, we move the upper
(lower) border of the central region upwards (downwards) by
1.5 times the range of the 50% central region and get the outlier
thresholds; the test functions that lie beyond the thresholds
at any u are detected as outliers. The whiskers, which are the
envelope of the remaining test functions, are also drawn in blue.

Figure 1 shows examples of our visualization tools of test
functions f s|vt for data generated from Model 4.2 detailed in Sec-
tion 4.2. Figure 1 (A) and (B) illustrate our modified functional
boxplot of f s|vt for data simulated with β1 = β2 = 0 (S|VT) and
β1 = β2 = 1 (not S|VT), respectively. The visualization tool
also applies the testing procedure explained in Section 3.3 and
obtains the conclusion that the covariance is S|VT for Figure 1
(A) and not S|VT for (B), with p-values shown in the plot.
Therefore, green is used to fill in the central region in Figure 1
(A), meaning that the null hypothesis is not rejected with the
significance level of 5%, and red is used in (B), meaning that the
null hypothesis is rejected. We observe that the central region in
Figure 1 (A) tends to be symmetric around zero (black dotted
line) due to estimation noise, but the central region in (B) is
entirely above zero.

3.3. Testing Covariance Properties

For multivariate spatio-temporal Gaussian random fields, after
obtaining the test functions, we can perform hypothesis tests for
covariance properties based on nonparametric functional data
ranking. We use a similar testing procedure to that introduced by
Huang and Sun (2019) for a univariate spatio-temporal covari-
ance. The key idea is to test whether two functional datasets are
from the same distribution (López-Pintado and Romo 2009).
For ease of presentation, we denote by F the collection of test
functions for an arbitrary property. Then, we denote by H0 and
Ha the null and alternative hypotheses, respectively. For exam-
ple, when we test Vsym, F = {gv

i,j,a,b(u) : i, j ∈ {1, . . . , p}, ss, sb ∈
D}, H0 is symmetry in variables, and Ha is asymmetry in vari-
ables. We summarize the hypothesis test procedure as follows:

• Step 1. We compute all the test functions from the data and
obtain F.

• Step 2. We build the covariance matrix ĈH0(h, u) =
{ĈH0

ij (h, u)}i,j=1,...,p under H0 with forms given in Table 4,
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Figure 1. Visualization of test functions f s|vt for data generated with β1 = β2 = 0 (A) and β1 = β2 = 1 (B) from Model 4.2 in Section 4.2. p-values of the S|VT test for
the two datasets are shown in each panel. The central region is filled with green (as the p-value is greater than 0.05) and red (as the p-value is less than 0.05) for (A) and (B),
respectively, whose opacity is proportional to the density of test functions falling into each area in the central region. The horizontal black dotted line indicates zero. The
upper and lower blue curves are the whiskers.

Table 4. Constructed covariance matrix ĈH0 (h, u) for different types of property
in H0.

Type ĈH0 (h, u)

Vsym ĈH0
ij (h, u) := {Ĉij(h, u) + Ĉji(h, u)}/2

Ssym ĈH0
ij (h, u) := {Ĉij(h, u) + Ĉij(−h, u)}/2

Tsym ĈH0
ij (h, u) := {Ĉij(h, u) + Ĉij(h, −u)}/2

V|ST ĈH0
ij (h, u) := ρ̂1(h, u)Ĉij(0, 0)

S|VT ĈH0
ij (h, u) := ρ̂2(h)Ĉij(0, u)

T|VS ĈH0
ij (h, u) := ρ̂3(u)Ĉij(h, 0)

V|S ĈH0
ij (h, u) := ρ̂4(h, u)Ĉij(0, u)

V|T ĈH0
ij (h, u) := ρ̂5(h, u)Ĉij(h, 0)

S|T ĈH0
ij (h, u) := ρ̂6,ij(h)Ĉij(0, u)

where Ĉij(h, u), ρ̂1(h, u), ρ̂2(h), ρ̂3(u), ρ̂4(h, u), ρ̂5(h, u), or
ρ̂6,ij(h) are the sample estimators from the data.

• Step 3. The obtained covariance matrix ĈH0(h, u) may not
necessarily be positive definite due to estimation noise. We
find the nearest positive definite matrix to ĈH0(h, u) in the
Frobenius norm, using the function nearPD from the R (R
Core Team 2021) package Matrix. Then, we generate two
independent reference datasets with this covariance matrix
and of the same dimension as the original dataset.

• Step 4. We calculate the test function collection from these
two reference datasets, denoted by FH0

1 and FH0
2 , both

obtained from the simulated data samples with the same
covariance under H0.

• Step 5. Because the test functions in FH0
1 and FH0

2 should be
close to zero, we apply the rank-based test for F versus FH0

1
with the reference FH0

2 . More precisely, suppose that there are
nF and nFH0

1
curves in F and FH0

1 , respectively. For each test

function in F, we combine it with all test functions in FH0
2 ,

and calculate its rank using an increasing order of modified
band depths (López-Pintado and Romo 2009), denoted by
r1, r2, . . . , rnF . We do the same for each test function in FH0

1
and obtain the rank among FH0

2 , denoted by r′
1, r′

2, . . . , r′
n

FH0
1

.

• Step 6. We calculate the ranks of r1, r2, . . . , rnF in {r1, r2, . . . ,
rnF , r′

1, r′
2, . . . , r′

n
FH0

1
} in an increasing order and denote them

by q1, q2, . . . , qnF . The final test statistic is W = ∑nF
i=1 qi.

The limiting distribution of W under the null hypothesis H0
is the sum of nF random samples from the integer sequence
1, . . . , nF + nFH0

1
without replacement (Liu and Singh 1993).

The null hypothesis H0 is rejected when W is small. We can
use the limiting distribution to obtain the p-values. However,
in practice, we observe that when we apply the test to a
simulated synthetic dataset under H0 many times, the result-
ing approximated distribution of W gives better test results.
Thus, we use this bootstrap technique to compute the critical
values for arbitrary significance levels.

The most challenging part of performing the test is to gen-
erate the reference dataset in Step 3. The dimension of the
entire covariance matrix can be very large in the multivariate
spatio-temporal case. Memory and computational issues occur
if we generate the reference dataset as a whole. A more feasible
approach is to generate the reference data block by block with a
block size b (temporal length) and assume that each block is only
dependent on the previous block when b is big. However, we find
sensitivity issues for this approach in our study: a small error
in the conditional distribution from the covariance sample esti-
mators could make sequential conditional generation diverge.
To overcome this difficulty, we opt for a simpler approximation
approach where all the blocks are generated independently. This
may lead to inconsistency for the generated reference dataset to
some extent. However, what we need from the reference data
are the values of the test functions in temporal lag u, thus,
the covariance estimates of the simulated data for different u,
rather than the generated data values themselves. In practice, the
temporal lag u considered for the test functions is kept small. In
fact, the errors in covariance estimates due to such an approxi-
mation only occur for time points around the boundary of the
independent blocks, the number of which is negligible compared
to the total sample pairs used to calculate the covariance esti-
mate. Therefore, the obtained FH0

1 and FH0
2 can still reflect the
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Figure 2. Flow chart of the proposed hypothesis testing procedure.

correct variability as long as b is not too small. In general, when
b is larger, this artifact is more alleviated. However, a larger b
causes more computation burden and memory consumption.
We use a parameter M to determine the size of the intermediate
covariance matrix needed in the generation of reference data.
There is a relationship between M and the allowed maximum b:
M ≥ p×n×min(b, l) (recall that p is the number of variables, n
is the number of locations, and l is the number of time points) for
Vsym, Ssym, Tsym, V|S, V|T, and S|T; M ≥ max(p, n × min(b, l))
for V|ST because the needed covariance matrix can be written
as a Kronecker product of two parts; M ≥ max(n, p × min(b, l))
for S|VT; and M ≥ max(p × n, min(b, l)) for T|VS. One can set
M to the maximum value that is feasible for the computer in use.
In our simulation study in Section 4, we use M = 3000, which is
realistic for most laptops and desktops. We obtain results with
good performance, and observe that in our simulation cases,
larger values of M do not lead to much different results but take
much more computational time. We illustrate the whole testing
procedure in Figure 2. For non-Gaussian datasets, it is possible
to extend the test procedure and apply the test to them if we
know the distribution family so that the reference datasets can
be simulated.

4. Simulation Study

4.1. Visualization and Assessment for Symmetry Property

To analyze the symmetry properties of multivariate spatio-
temporal stationary covariances, we consider a bivariate spatio-
temporal Gaussian random field Z(s, t) = {Z1(s, t), Z2(s, t)}⊤
for l time points and n = m2 locations in the unit square, that
is, t ∈ {1, 2, . . . , l} and s ∈ {0, 1/(m − 1), . . . , (m − 2)/(m −
1), 1} × {0, 1/(m − 1), . . . , (m − 2)/(m − 1), 1}. Model 4.1
is used to generate data with different types of asymmetric
covariance.

Model 4.1. The second variable Z2(s, t) is a univariate first-order
autoregressive spatio-temporal random field with a stationary
isotropic Gaussian spatial noise. More specifically,
{Z2(s1, t), . . . , Z2(sn, t)}⊤

=
{

0.5{Z2(s1, t − 1), . . . , Z2(sn, t − 1)}⊤ + εt , t > 1,
εt , t = 1,

where ε1 ∼ Nn(0, #) and εt ∼ Nn(0, 3
4#) for t > 1. Here, # is a

matrix of dimension n×n with (i, j)th value #ij = exp(−2∥si −
sj∥) for i, j ∈ {1, . . . , n}. The first variable Z1(s, t) is defined
as Z1(s, t) :=

√
2

2 Z2(s + $s(
1

m−1 , 1
m−1 ), t + $t) +

√
2

2 ϵ(s, t),
where ϵ(s, t) ∼ N(0, 1), $t ≥ 0 is the time lag, and $s controls
the distance of the spatial lag along the 45◦ direction. To make
Z1(s, t) well defined, Z2(s, t) is generated in a larger spatial grid
and a longer time window as s ∈ {0, 1/(m − 1), . . . , (m − 1 +
$s)/(m − 1)} × {0, 1/(m − 1), . . . , (m − 1 + $s)/(m − 1)}
and t ∈ {1, 2, . . . , l + $t}. However, Z2(s, t) is eliminated when
s /∈ [0, 1] × [0, 1] or t > l after obtaining all the needed Z1(s, t).

One can clearly see that in Model 4.1, $s = $t = 0 leads to
a fully symmetric random field, $s ̸= 0 leads to a random field
that is not Vsym or Ssym, and $t ̸= 0 leads to a random field that
is not Vsym or Tsym.

Figure 3 exhibits all the test functions gv, gs, and gt of one
random dataset generated from Model 4.1 with m = 4 and l =
10, 000. Four examples are shown with different combinations of
chosen values of $s and $t (denoted by Dsym

0,0 when $s = $t =
0 and Dasym

$s,$t
when $s ̸= 0 or $t ̸= 0). From the visualization

and the obtained p-values in the hypothesis testing, we observe
the conclusions coinciding with the truth that when $s ̸= 0 or
$t ̸= 0 the covariance is always not Vsym, and not Ssym or Tsym

according to the nonzero $s or $t . When both $s and $t are
nonzero, the covariance does not satisfy any property of Vsym,
Ssym, and Tsym.

To show how the hypothesis testing performs in assessing the
multivariate spatio-temporal symmetry property, we generate
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Figure 3. Visualization of symmetry test functions obtained from the simulated data Dsym
0,0 , Dasym

0,2 , Dasym
2,0 , and Dasym

2,2 .

Table 5. Percentage of rejections in 1000 replicates of data generated by Model 4.1
for each data type.

Type Dsym
0,0 Dasym

0,2 Dasym
2,0 Dasym

2,2

Vsym 5.1(0.7) 100.0(0.0) 100.0(0.0) 100.0(0.0)
Ssym 6.0(0.8) 6.5(0.8) 100.0(0.0) 100.0(0.0)
Tsym 5.6(0.7) 100.0(0.0) 5.3(0.7) 100.0(0.0)

NOTE: All three types of symmetry properties are tested. Bold values are size,
and others are power. Values in parentheses are estimated standard errors. The
significance level is 5%, M = 3000, and 1000 bootstrap samples are used in the
hypothesis test.

the four types of data Dsym
0,0 , Dasym

0,2 , Dasym
2,0 , and Dasym

2,2 with 1000
replicates. We use a significance level of 5% in the hypothesis
testing, where M is set as 3000 and 1000 bootstraps are used.
The results for the percentage of rejection replicates for each
data type are given in Table 5. All the bold values indicate the
associated properties hold for the particular dataset, meaning
the size of the test. Since we use the significance level of 5%, the
percentage of rejected cases should be ideally close to 5%. We see
the size tends to be slightly higher than the significance level, but
still within two standard errors. All the other cases are reflecting
the power, where the associated properties do not hold. We see
the proposed hypothesis test has a very high power, detecting
asymmetric covariances in all the replicates.

4.2. Visualization and Assessment for Separability
Property

In this separability study, we consider a zero-mean trivariate
spatio-temporal Gaussian random field Z(s, t) = {Z1(s, t),

Z2(s, t), Z3(s, t)}⊤ for t ∈ {1, 2, . . . , l} and s ∈ {0, 1/(m −
1), . . . , (m − 2)/(m − 1), 1} × {0, 1/(m − 1), . . . , (m − 2)/(m −
1), 1}. Following the way of building covariance models through
latent dimensions by Apanasovich and Genton (2010) or using
products of nonseparable functions by Gneiting (2002), we use
a valid covariance function as used in Model 4.2.

Model 4.2. The trivariate Gaussian process Z(s, t) = {Z1(s, t),
Z2(s, t), Z3(s, t)}⊤ has mean zero and the following stationary
covariance function:

Cij(h, u)

= 1
(|0.2u| + 1)(|i − j| + 1)

× exp
(

− |0.2u|2
(|i − j| + 1)β1

− ∥h∥2

(|0.2u| + 1)β2

)
, i, j = 1, 2, 3.

We can easily observe that, when β1 = β2 = 0, the
covariance is Fsep; when β1 = 0, β2 ̸= 0, the covariance is V|ST,
V|S and V|T; when β1 ̸= 0, β2 = 0, the covariance is S|VT,
V|S and S|T; and when β1 ̸= 0, β2 ̸= 0, the covariance is V|S.
Figure 4 exhibits all the test functions obtained from simulated
data (denoted by Dsep

0,0 when β1 = β2 = 0 and denoted by
Dnonsep

β1,β2
when β1 ̸= 0 or β2 ̸= 0) with m = 4, l = 10, 000

for different values of β1 and β2. The visualization and obtained
p-values reflect the correct covariance structure in theory. We
also observe that the covariance built by Model 4.2 is always V|S
because we do not add a variables-space interaction term in the
covariance model.
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Figure 4. Visualization of separability test functions obtained from the simulated data Dsep
0,0 , Dnonsep

0,1 , Dnonsep
1,0 , and Dnonsep

1,1 .

The size and power study of the hypothesis testing for the
multivariate spatio-temporal separability property also uses the
synthetic data from Model 4.2 with different values of β1 and
β2. To have more insights into the trend of power on nonzero
β1 or β2 values, we use three distinct values 0, 0.5, 1 for both
β1 and β2. We still generate 1000 replicates for each data type
and use a significance level of 5% in the test, where M is set as
3000 and 200 bootstraps are used. The results for the number of
rejection replicates for each data type are given in Table 6, where
the bold values are the size and others are power. The obtained
sizes are close to the true nominal level 5%, and the power
generally increases as β1 or β2 increases when more interaction
is introduced. For the most extreme case when β1 = β2 = 1, all
the powers are above 95%.

We also give the hypothesis testing results when the mean-
ratio estimator of the ρ-functions are used (see Section 3.1) in

Table S1 in the supplementary material. Most of the results are
similar, but our least-square estimators show Type I errors much
closer to the nominal level than the mean-ratio estimates for V|S.

5. Application to Bivariate Wind Data

In this section, we apply our visualization and assessment
method to test the covariance structure in wind speed, which is
a very important variable in many environmental studies. Wind
farms and power grids are especially interested in obtaining
sensible models of wind speed to better operate and manage
the devices. For this purpose, we study the bivariate hourly
wind speed in two areas in Saudi Arabia: one is an inland wind
farm, Dumat Al-Jandal, currently being built; the other one is a
new mega-city, NEOM, in the northwestern coast, which is still
under construction and expected to consume a large amount
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Table 6. Percentage of rejection in 1000 replicates of data generated by Model 4.2 for each data type.

Type β1 = 0 β1 = 0.5 β1 = 1

β2 = 0 β2 = 0.5 β2 = 1 β2 = 0 β2 = 0.5 β2 = 1 β2 = 0 β2 = 0.5 β2 = 1

V | ST 6.1(0.8) 5.7(0.7) 4.7(0.7) 76.3(1.3) 81.3(1.2) 87.1(1.1) 100.0(0.0) 100.0(0.0) 100.0(0.0)
S | VT 6.1(0.8) 99.7(0.2) 100.0(0.0) 4.6(0.7) 100.0(0.0) 100.0(0.0) 5.0(0.7) 100.0(0.0) 100.0(0.0)
T | VS 5.3(0.7) 100.0(0.0) 100.0(0.0) 80.0(1.3) 100.0(0.0) 100.0(0.0) 100.0(0.0) 100.0(0.0) 100.0(0.0)
V | S 7.9(0.9) 6.4(0.8) 5.7(0.7) 6.9(0.8) 6.9(0.8) 6.3(0.8) 8.0(0.9) 5.8(0.7) 6.1(0.8)
V | T 5.6(0.7) 3.9(0.6) 4.7(0.7) 81.2(1.2) 89.5(1.0) 93.6(0.8) 100.0(0.0) 100.0(0.0) 100.0(0.0)
S | T 6.1(0.8) 100.0(0.0) 100.0(0.0) 4.3(0.6) 100.0(0.0) 100.0(0.0) 4.6(0.7) 100.0(0.0) 100.0(0.0)

NOTE: All six types of separability properties are tested. Bold values are size, while others are power. Values in parentheses are estimated standard errors. The significance
level is 5%, M = 3000, and 200 bootstrap samples are used in the hypothesis testing.

Figure 5. The bivariate wind speed at 00:00, January 1, 2009. A 5 × 5 grid in each of the two areas (NEOM city and Dumat Al-Jandal wind farm) are selected, shown as the
magenta points.

of renewable energy (wind and solar). The two areas are shown
in Figure 5, where we choose 5 × 5 = 25 locations in each
area. We use high-resolution wind speed data in 2009 simulated
by the Weather Forecasting and Research (WRF) model from
Yip (2018). The U and V components corresponding to two
orthogonal directions of the wind vector are used as the bivariate
variable. Figure 5 depicts the U and V components of the wind
speed at 00:00, January 1st, 2009. After exploring the dataset
by Fourier transformation, we find strong periodic variability
associated with 12-hour and 24-hour periods. Thus, we use
a harmonic regression to remove the periodic mean and the
intercept for each variable at each location as follows,

X(s, t)
= βZ,0(s) + βZ,1(s) cos(2π t/24) + βZ,2(s) sin(2π t/24)

+ βZ,3(s) cos(2π t/12) + βZ,4(s) sin(2π t/12)

+ X̃(s, t), X ∈ {U, V}.

After the regression, the remaining process Z(s, t) := {Ũ(s, t),
Ṽ(s, t)}⊤ becomes zero-mean, and we assess its covariance
structure.

Wind has a very complex dynamic, and the structure may
change from time to time (Vincent et al. 2010). We analyze
the bivariate hourly wind speed Z(s, t) for each month in 2009
and assume Z(s, t) is stationary for each month as an example

to show the intra-annual variability of the wind structure. As
revealed in previous studies, wind speed has often a strong
interaction between space and time, and the prevailing wind
direction generally makes the wind speed asymmetric. For this
reason, we choose a less conservative significance level, 10%, to
perform the hypothesis test.

For the symmetry test, we find that Vsym and Ssym are rejected
in all cases. Figure 6 summarizes the p-values of testing Tsym

for the two areas in each month. Tsym is not rejected for more
months in NEOM, while only November in Dumat Al-Jandal
shows Tsym. We also observe that the covariance for all summer
months (June, July, August) are not Tsym, inferring a more com-
plex structure of wind in summer, due to potentially prevailing
wind direction. Figure 7 gives the visualized test functions gt for
May in the two areas.

All the rejected symmetry assumptions lead to the rejec-
tion of the corresponding separability assumptions of V|ST,
S|VT, and T|VS. We examined the rest and found that only S|T
is not rejected in Dumat Al-Jandal in January and February,
the p-values for which are given in Figure 8. The fact that no
separability properties in the first category (V|ST, S|VT, and
T|VS) in any month and area are observed implies the general
inappropriateness to use a Kronecker product covariance model
in analyzing wind speed. Figure 8 also gives the visualized test
functions f s|t and f v|t for February in Dumat Al-Jandal. It is
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Figure 6. p-values of testing Tsym for the covariance in each month in NEOM and Dumat Al-Jandal. We show the month numbers in red if Tsym is rejected and in green
otherwise when using the significance level 10%.
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Figure 7. Visualization of test functions gt in May at NEOM and Dumat Al-Jandal. The green plot shows gt where Tsym is not rejected, and the red plot shows gt where Tsym

is rejected when using the significance level 10%.
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Figure 8. p-values of testing S|T for the covariance in each month in Dumat Al-Jandal (left). We show the month numbers in red if the corresponding property S|T is rejected
and in green otherwise when using the significance level 10%. Visualization of test functions f s|t (middle) and f v|t (right) for February in Dumat Al-Jandal, with red and
green indicating whether the corresponding separability property is rejected using the significance level 10%.

noteworthy that January and February in Dumat Al-Jandal do
not show V|T; this is not surprising, because V|T and S|T lead
to T|VS, and subsequently Tsym by Proposition 2.3, but we know
Tsym is rejected for the two months.

6. Discussion

In this work, we elaborated on different types of symmetry and
separability properties of multivariate spatio-temporal station-
ary covariances. We developed test functions associated with

each property to visualize and assess them. We used and modi-
fied the functional boxplot to visualize the developed test func-
tions so that insights into the underlying covariance structures
can be obtained. We proposed a rank-based testing procedure
to examine these properties in a more formal way, with demon-
strated good size and high power in the simulation study. We
applied these tools to study the covariance of the bivariate wind
speed in two areas of Saudi Arabia.

Obtaining and visualizing the test functions are always very
fast. When the deviation of test functions from zero is clearly
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observed, one may directly proceed with covariance models that
do not assume the corresponding simplified property, such as
the test functions for S|VT shown in Figure 1(B), where we
see the entire central region is above zero. However, when a
visual inspection cannot find obvious evidence to reject the
null hypothesis, the testing procedure is then needed to provide
a better indication by p-values, which is generally slower and
needs more computational time due to boostrap and the gen-
eration of data under the null hypothesis.

Our proposed testing procedure also has limitations. As we
showed in Section 2, there are some constraints on the covari-
ance properties. What we proposed is an independent individual
testing scheme. In practice, there may be contradictory testing
results from different independent tests. Developing a multi-
testing framework may potentially resolve this problem. How-
ever, rigorous design and careful power studies are needed. This
would be a direction for future research.

It is also noteworthy that what we have studied is the overall
property for the multivariate spatio-temporal covariance. The
proposed symmetry or separability requires the correspond-
ing covariance property to hold for every pair of variables. It
is possible to define more subtypes from various emphasized
perspectives where only a part of the variables is required to
meet the requirement. However, these subtypes are rather trivial
extensions, and the developed test can be easily adapted to them.

The way we study multivariate spatio-temporal covariance
properties is by building univariate test functions. Alternatives
to our proposed approach are also possible, such as develop-
ing multivariate test functions and then visualizing and testing
them based on multivariate functional data depths (e.g., López-
Pintado et al. 2014). The performance of this work can be used
as a benchmark for future techniques to be developed.

The R code (R Core Team 2021) for our proposed visualiza-
tion and test methods (code.zip) is provided in the supplemen-
tary material. In addition, an interactive R ShinyApp (shiny.zip)
is also provided in the supplementary material and available at
https://hhuang.shinyapps.io/mstCovariance, where one can eas-
ily make different settings in the simulation examples described
in Section 4 and see how the multivariate space-time covariance
properties are changed.

Supplementary Material

supplementary-document.pdf: Proofs and supplementary table
code.zip: R code for our proposed visualization and test methods
shiny.zip: Interactive R ShinyApp showing simulation examples
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