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Abstract
We employ a general Monte Carlo method to test composite hypotheses of goodness-of-fit for several popular multivariate
models that can accommodate both asymmetry and heavy tails. Specifically, we consider weighted L2-type tests based on a
discrepancy measure involving the distance between empirical characteristic functions and thus avoid the need for employing
corresponding population quantities which may be unknown or complicated to work with. The only requirements of our tests
are that we should be able to draw samples from the distribution under test and possess a reasonable method of estimation of
the unknown distributional parameters. Monte Carlo studies are conducted to investigate the performance of the test criteria
in finite samples for several families of skewed distributions. Real-data examples are also included to illustrate our method.
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1 Introduction

Since the late 1980s, L2-type tests for goodness-of-fit based
on the characteristic function (CF) have witnessed increas-
ing popularity. The main reason is that the CF uniquely
determines the underlying distribution and that it may be
consistently estimated by the empirical CF. For multivariate
distributions, there is the extra advantage that multivariate
CFs and empirical CFs are well-defined and smooth, unlike
the cumulative distribution function and its empirical coun-
terpart, and thus it is easier to work with, even when the
population distribution function is known.

Simos G. Meintanis: On sabbatical leave from the University of
Athens.

B Maicon J. Karling
maicon.karling@kaust.edu.sa

1 Statistics Program, King Abdullah University of Science and
Technology, Thuwal, Saudi Arabia

2 Department of Economics, National and Kapodistrian
University of Athens, Athens, Greece

3 Pure and Applied Analytics, North-West University,
Potchefstroom, South Africa

Not surprisingly, testing for multivariate normality occu-
pies a prominent place in this setting (see, e.g., Chen and
Genton 2022; Ebner et al. 2021; Henze 2002; Henze et al.
2019; Henze and Wagner 1997; Pudełko 2005) as a wide
range of procedures is available, including CF-based tests.
Outside the multivariate normal context, however, the range
of CF-based goodness-of-fit procedures is limited to only
a handful of distributions, most of them belonging to the
elliptical class (see, e.g., Fragiadakis and Meintanis 2011;
Meintanis et al. 2015; Székely and Rizzo 2013). One of the
main reasons for this lack of available procedures is that CFs
and empirical CFs, despite being smooth, are often required
to be numerically integrated in the L2 setting, a task that may
be problematic in higher dimensions, let alone the fact that
the analytic form of the population CFs may be altogether
unknown for most multivariate distributions under test.

Recently Chen et al. (2022) proposed a procedure that is
based on a Monte Carlo approximation of the CF under test,
thereby avoiding the use of corresponding population quan-
tities. However, the elliptical families considered by Chen
et al. (2022), as important as they may be, render a range
of shapes that limit their potential application, given the fact
that asymmetry, in addition to excess kurtosis, is typically
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expected in real data analysis from Economics, Finance, and
most other disciplines.

In this paper, we follow the approach suggested by Chen
et al. (2022), but, at the same time, abandon the context
of ellipticity adopted therein towards more general shapes.
Specifically, we consider goodness-of-fit tests for certain
popular families of multivariate skewed distributions. In this
connection, an extra element that needs to be addressed in
implementing the tests compared to Chen et al. (2022) is that,
unlike the parameters-free tests proposed in that paper, in the
current setting the presence of shape parameters necessitates
an additional re-sampling cycle to replicate the empirical
distribution of the test statistic for a given parameter config-
uration. In doing so we take advantage of the canonical form
of the distributional family under test, whenever available.

The remainder of this work unfolds as follows. In Sect. 2,
we revisit some of the main ideas of the work by Chen et al.
(2022) and the background for our tests shall be provided.
Section3 specifies the actual implementation of the new test
procedure using bootstrap re-sampling. In Sect. 4 we intro-
duce and provide a short review of the collection of families
that shall be used for the simulations and goodness-of-fit
tests and study their respective canonical forms. An extensive
Monte Carlo study is presented to illustrate the finite-sample
properties of the tests in Sect. 5. The paper concludes with
several real-data applications in Sect. 6 and a discussion of
the overall results in Sect. 7. An online Supplement contains
some extra Monte Carlo results.

2 Characteristic function-based tests

Let X ∈ R
p (p ≥ 1) be a random vector with an absolutely

continuous distribution function FX . We are interested in the
composite goodness-of-fit testing problem represented by the
null hypothesis

H0 : the law of X ∈ Fϑ , for some ϑ ∈ �, (2.1)

whereFϑ = {Fϑ , ϑ ∈ �}denotes a specificparametric fam-
ily of distributions admitting a parameterization in terms of
the parameter vector ϑ . The corresponding parameter space
� will be taken as an open subset of Rq (q ≥ 1). Given
the uniqueness of CFs, we may equivalently state the null
hypothesis in (2.1) as

ϕX (t) = ϕϑ (t), ∀ t ∈ R
p, for some ϑ ∈ �, (2.2)

where ϕX (t) = E(eit
�X ) denotes the CF of X and ϕϑ (t)

corresponds to the CF of some random vector in the family
Fϑ . Here i = √−1 and � means transposition of vectors
and matrices.

A CF-based statistic for goodness-of-fit is typically for-
mulated in terms of ‖ϕn − ϕ

̂ϑn
‖2w, where

‖ f − g‖2w :=
∫

Rp
| f (t) − g(t)|2 w(t) dt (2.3)

is an L2-typeweighted distance between the pair of complex-
valued functions ( f , g),

ϕn(t) = 1

n

n
∑

j=1

eit
�X j (2.4)

is the empiricalCFcomputed fromacollection (X1, . . . , Xn)

of independent and identically distributed (i.i.d.) copies of
X , and ϕ

̂ϑn
is the CF corresponding to the null hypothesis

H0 with the parameter ϑ replaced by an estimator ̂ϑn :=
̂ϑn(X1, . . . , Xn). The weight function w > 0 will be further
specified below.

There exist cases though of distributions, some of which
will be considered herein, forwhich the nullCFϕϑ (·) is either
completely unknown or too complicated to work with. In
such caseswe suggest formulating a test statistic analogously
butwithout direct reference to theCFof the distribution under
test. Specifically, and in line with Chen et al. (2022), we
suggest the test statistic

T (w)
n,m = ‖ϕn − ϕ̂0,m‖2w, (2.5)

where ϕn(·) is as in (2.4), while

ϕ̂0,m(t) = 1

m

m
∑

j=1

eit
�X0, j (2.6)

is an empiricalCFcomputed froma sample (X0,1, . . . , X0,m)

which is drawn from F
̂ϑn
, i.e., from a sample of size m

(m ≥ n) taken from the distribution under testwith parameter
estimated by a consistent estimator̂ϑn := ̂ϑn(X1, . . . , Xn).
In other words, ϕ̂0,m is a Monte Carlo approximation of the
null CF ϕϑ (·). Rejection is thus obtained for large values of
T (w)
n,m .
A clear advantage of using the test statistic T (w)

n,m is its com-
putational simplicity. To see this, write | · | for the modulus of
a complex number and, thereafter, by using standard algebra,
we obtain

|ϕn(t) − ϕ̂0,m(t)|2 = 1

n2

n
∑

j,k=1

cos t�(X j − Xk)

+ 1

m2

m
∑

j,k=1

cos t�(X0, j − X0,k)

− 2

nm

n
∑

j=1

m
∑

k=1

cos t�(X j − X0,k).
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Now suppose that the weight function w(·), figuring in (2.3)
and (2.5), is chosen as the density of a random vector W ∈
R

p following a certain spherical distribution. Then it is well
known that the CF of W simplifies to ϕW (t) = E(cos t�W)

and it is eventually given by�(‖t‖2), where�(·) is called the
“kernel" associated with W and ‖ · ‖ stands for the standard
Euclidean norm in R

p (see Fang et al. 1990). By using the
last equation and such a weight function w(·) in (2.5), we
end up with the test statistic

T�(Xn;X0,m) = 1

n2

n
∑

j,k=1

�(‖X j − Xk‖2)

+ 1

m2

m
∑

j,k=1

�(‖X0, j − X0,k‖2)

− 2

nm

n
∑

j=1

m
∑

k=1

�(‖X j − X0,k‖2), (2.7)

for fixed (n,m, �), where Xn = (X1, . . . , Xn) denotes the
observed data andX0,m = (X0,1, . . . , X0,m) denotes a set of
generated data fromF

̂ϑn
, i.e., from the null distribution with

estimated parameters. Note that we have made the depen-
dence of the test statistic on the kernel �(·) explicit, so that,
provided that this kernel is simple enough, (2.7) can be read-
ily computed. Some prominent examples of simple kernels
at our disposal are:

• the standard normal kernel �(ξ) = e−ξ/2;
• the kernel �(ξ) = e−ξb/2 , b ∈ (0, 2), derived from the

stable distributions (see Nolan 2013);
• and the generalized Laplace kernel �(ξ) = (1 +

ξ)−b, b > 0 (see Kozubowski et al. 2013).

In the present work, we shall restrict our tests by making
use only of the standard normal kernel. For a more in-depth
discussion on kernels, we refer to Micchelli et al. (2006).

3 Test implementation by re-sampling

When some of the component parameters occurring in ϑ can
be standardized out, the asymptotic null distribution of the
proposed test statistic T�(Xn;X0,m) in (2.7) does not depend
on them. Such parameters are typically location and scatter
parameters, while others, labeled as shape parameters, such
as skewness and kurtosis, cannot usually be standardized out
and, therefore, will ultimately affect the asymptotic null dis-
tribution of the test statistic (see Meintanis and Swanepoel
2007). In such cases, we can decompose the parameter vec-
tor as ϑ = (θ,λ), where θ denotes the non-shape parameters
and λ denotes the part of ϑ that contains only shape param-
eters. In the presence of a canonical form of the distribution

under test (see Sect. 4), the asymptotic null distribution of the
test statistic may be simulated by setting θ = θ0, where θ0
is some standard value of θ , and λ is set equal to its value
˜λ := ˜λ(λ, θ) in the canonical form.

In the following, we outline the re-sampling procedure
used within this work to approximate the test statistic’s
asymptotic distributionunder thenull hypothesis and indicate
how the test can be carried out in practice. We consider two
cases of null hypotheses, one “composite” with all parame-
ters being estimated, while the otherwill be labeled “simple”,
although in this second case too, some, but not all, parameters
are estimated.

3.1 Simple null hypothesis

Here we are interested in the goodness-of-fit testing problem
associated with the simple null hypothesis

Hs
0 : the law of X ∈ Fθ ,λ, for a fixed λ = λ0,

and for some θ; (3.1)

and alternative hypothesis

Hs
1 : the law of X /∈ Fθ ,λ, for a fixed λ = λ0, and any θ .

(3.2)

Although we labeled (3.1) as a simple null hypothesis, it
should be pointed out that the parameter θ is left unspecified
inHs

0, and that our test procedure incorporates an estimation
step for this parameter. For this case, the computation of
critical points is based on simpleMonte Carlo sampling from
the distribution figuring in the null hypothesis. The steps of
this Monte Carlo run are as follows:

Step 1: Generate a random sampleXn = (X1, . . . , Xn) from
Fθ0,λ0 .

Step 2: Compute the estimate ̂θn from Xn and, whenever
possible, obtain the standardized sample ̂Xn =
(̂X1, . . . , ̂Xn), where ̂X j = ̂X j (X j ,̂θn), for j ∈
{1, . . . , n}, denotes a standardization applied to X j

which is induced bŷθn .
Step 3: Generate a randomsampleX0,m = (X0,1, . . . , X0,m)

from Fθ0,λ0 .
Step 4: Compute the test statistic T := T�( ̂Xn;X0,m),

according to (2.7).
Step 5: Repeat Steps 1–4 several times, sayM , and obtain the

set of test statistics {T1, . . . , TM}. Then the critical
point, say ĉδ , is defined as the (1 − δ)% quantile of
(Tm, m = 1, . . . , M).

Having obtained the empirical critical point, ĉδ is used
to compute the test’s empirical powers. In this connection,
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we generate a random sample Xn = (X1, . . . , Xn) from any
distribution belonging to the set of alternatives in the alter-
native hypothesisHs

1, and perform Steps 1–4 above, thereby
computing the test statistic T . We reject the null hypothesis
Hs

0 if T > ĉδ . We repeat this procedure several times, say
L , and obtain the empirical power rate as L−1 ∑L

�=1 1T�>ĉδ ,
where T� denotes the test statistic corresponding to the �th

sample, for � ∈ {1, . . . , L}.

3.2 Composite null hypothesis

Here we are interested in the (fully) composite goodness-of-
fit testing problem whereby all distributional parameters are
estimated from the observed data. For reasons of explicitness,
we state the null hypothesis as

Hc
0 : the law of X ∈ Fθ ,λ, for some (θ ,λ); (3.3)

as well as the alternative

Hc
1 : the law of X /∈ Fθ ,λ, for any (θ ,λ). (3.4)

For this case, the re-sampling scheme is as follows. On
the basis of Xn , compute the estimator ̂ϑn = (̂θn,̂λn) of
ϑ and standardize the observations as ̂X j = ̂X j (X j ,̂θn),
j ∈ {1, . . . , n}, where ̂X j (X j ,̂θn) denotes a standard-
ization applied to X j induced by the estimate ̂θn . Next,
generate a random sample ̂X0,m := (̂X0,1, . . . , ̂X0,m) under

the null hypothesis with (θ ,λ) set equal to (θ0,
̂
˜λn), where

̂
˜λn = ̂

˜λn(̂λn,̂θn) is the parameter estimate of λ induced by
the standardization.Then the value of the original test statistic
is computed according to (2.7) as T = T�( ̂Xn; ̂X0,m), where
̂Xn := (̂X1, . . . , ̂Xn). In turn, the critical point against which
the value of T will be compared is computed using a para-
metric bootstrap procedure, the steps of which are outlined
below:

Step 1: Generate a random sample X ∗
n := (X∗

1, . . . , X
∗
n)

under the null hypothesis with (θ,λ) set equal to
(θ0,

̂
˜λn).

Step 2: On the basis of X ∗
n , compute the estimator ̂ϑ

∗
n =

(̂θ
∗
n,

̂λ
∗
n).

Step 3: Standardize the components of X ∗
n as ̂X

∗
j = ̂X

∗
j

(X∗
j ,

̂θ
∗
n), j ∈ {1, . . . , n}.

Step 4: Generate a random sample ̂X ∗
0,m := (̂X

∗
0,1, . . . ,

̂X
∗
0,m) under the null hypothesis with (θ ,λ) set equal

to (θ0,
̂
˜λ

∗
n), where

̂
˜λ

∗
n = ̂

˜λ
∗
(̂θ

∗
n,

̂λ
∗
n) is the bootstrap

parameter estimate of̂˜λn .
Step 5: Compute the value of the bootstrap test statistic

by (2.7) as T ∗ = T�( ̂X ∗
n ; ̂X ∗

0,m), where ̂X ∗
n :=

(̂X
∗
1, . . . ,

̂X
∗
n).

Step 6: Steps 1–5 are repeated several times, say B, and
thereby we compute the (1 − δ)% quantile cδ , with
δ ∈ (0, 1), of the empirical distribution of (T ∗

b , b =
1, . . . , B) as the size-δ critical value of the test statis-
tic.

Step 7: Repeat Steps 1–6 several times, say M , and thereby
obtain pairs of test statistics and corresponding boot-
strap critical points (Tm, cδ,m), m ∈ {1, . . . , M}.

Step 8: Compute the empirical rejection rate as M−1
∑M

m=1 1Tm>cδ,m .

Because the above parametric bootstrap procedure is time-
consuming, we adopt the warp-speed bootstrap method of
Giacomini et al. (2013). Thus, rather than computing a crit-
ical value cδ,m for each of the M Monte Carlo samples, we
produce a single critical value that is used for all Monte
Carlo samples. To do so, we generate only one single boot-
strap sample, i.e., with B = 1 on Step 6, for each of the M
Monte Carlo samples and compute the corresponding boot-
strap test statistic, say T ∗

m , from this single bootstrap sample.
Then the warp-speed critical value, say c̃δ , is computed from
(T ∗

m, m ∈ {1, . . . , M}) analogously as in Step 6 above, and
the empirical rejection rate is given by M−1 ∑M

m=1 1Tm>c̃δ .

4 Families of skewed distributions

In this section, we consider a collection of five families
of skewed distributions and exemplify how our method,
described in Sects. 2 and 3, may be applied to perform
goodness-of-fit tests with them. In the following Sects. 5 and
6, we shall use these five families of distributions, respec-
tively, in simulation studies and applications to real data sets.

4.1 Multivariate skew-normal distribution

The multivariate skew-normal (SN) distribution may be con-
veniently defined by the CF (see Azzalini and Dalla Valle
1996)

ϕϑ (t) = 2eit
�ξ− 1

2 t
��t �

(

i
α��t√

1 + α��α

)

, (4.1)

where �(·) is the standard normal cumulative distribution
function, ϑ := (ξ ,�,α) is the associated parameters vector,
with (ξ ,α) ∈ R

p × R
p being, respectively, the location and

skewness parameters, and where � ∈ R
p×p is a symmet-

ric positive definite matrix. We shall write SNp(ξ ,�,α) to
denote this distribution, with α = 0 rendering the p-variate
normal distribution with mean ξ and covariance matrix equal
to�. A consistent estimator of the parameters inϑ is required
to apply our test. There exist a variety of methods for esti-
mating them, including maximum-likelihood (MLE) and
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moments-based estimation methods (see, e.g., Azzalini and
Capitanio 1999; Azzalini et al. 2010; Flecher et al. 2009), as
well as packages available for the same purpose (seeAzzalini
2022). There also exist a fewgoodness-of-fit tests in this case,
namely, the tests of Balakrishnan et al. (2014), González-
Estrada et al. (2022), Jiménez-Gamero and Kim (2015), and
Meintanis and Hlávka (2010), which will be discussed fur-
ther down in the paper (see Sect. 5.4).

It may be shown that if X ∼ SNp(ξ ,�,α), then there
exists a matrix H ∈ R

p×p such that H�(X − ξ) ∼
SNp(0, I,α∗), with 0 and I denoting, respectively, the zero
vector and identity matrix in the indicated dimension, and
α∗ = (α∗, 0, . . . , 0)�, with α∗ = (α��̄α)1/2 and � =
ω�̄ω, where ω = diag(ω1, . . . , ωp) is a positive-definite
scale matrix (see eq. (5.2) in Azzalini and Capitanio 2014).
In the literature (see, e.g., Azzalini and Capitanio 2014; Cap-
itanio 2020), the SNp(0, I,α∗) distribution is also called the
canonical form.Moreover, it was proved byCapitanio (2020)
that the choice of

H = �−1/2Q, (4.2)

where �−1/2 is the unique inverse matrix of the posi-
tive definite symmetric square root matrix of �, and Q
is obtained through the spectral decomposition Q	Q� =
�−1/2
�−1/2, with 
 being the covariance matrix of X ,
leads to the conclusion that H�(X − ξ) follows a canoni-
cal skew-normal distribution. In this connection, writêϑn =
(̂ξn,

̂�n, α̂n) for an estimator of ϑ , and consider the stan-

dardized observations ̂X j = ̂H
�
n (X j −̂ξn), j ∈ {1, . . . , n},

where ̂Hn = ̂�
−1/2
n

̂Qn . Then the test figuring in (2.7)
is readily applied by replacing X j by ̂X j , and where the
X0, j are drawn from a SN distribution with parameters
(ξ ,�) = (0, I) and α∗, the latter being replaced by α̂∗

n =
(̂α∗

n , 0, . . . , 0)
�, where α̂∗

n = (̂α�
n
̂�̄nα̂n)

1/2. For obtaining
the estimates of̂ξn , ̂Hn , and α̂∗

n , we suggest the use of the sn
(Azzalini 2022) package within the R (R Core Team 2022)
software environment.

4.2 Multivariate skew-t distribution

The multivariate skew-t (ST) distribution is related to the
multivariate skew-normal distribution through the stochas-
tic equation Y = ξ + √

ηX , where X has a multivariate
skew-normal distribution, X ∼ SNp(0,�,α), and η has an
inverse-Gamma distribution with shape and scale parameters
both equal to ν/2, i.e., η ∼ IG(ν/2, ν/2). It was shown by
Kim and Genton (2011), theorem 7, that the CF of Y is given
by

ϕϑ (t) = exp(it�ξ)[ψTp (�
1/2 t) + iτ+(ρ, ωt)], (4.3)

where

ρ = �α/(1 + α��α)1/2,

ψTp (t) = ‖√ν t‖ν/2

�(ν/2) 2ν/2−1 Kν/2(‖√ν t‖), for t ∈ R
p, ν > 0,

τ+(ρ, ωt) =
∫ ∞

0
exp(−x t��t/2)τ (

√
xρ�ωt) dH(x),

for ρ�ωt > 0,

with τ+(ρ,−ωt) = −τ+(ρ, ωt), τ(x) = ∫ x
0

√
2/π

exp(u2/2) du, for x > 0, with τ(−x) = −τ(x), H(x) =
�(ν/2, ν/(2x))/�(ν/2), for x > 0, denoting the cumulative
distribution function of η, with �(a) = �(a, 0) and where
�(a, b) = ∫ ∞

b ta−1e−tdt , for b ≥ 0, represents the upper
incomplete Gamma function, and Kλ(·) is the integral rep-
resentation of the modified Bessel function of the third kind,
defined as Kλ(w) = 1

2

∫ ∞
0 xλ−1 exp

{−w
2

(

x + 1
x

)}

dx , for
w > 0 and λ ∈ R. Here ϑ = (ξ ,�,α, ν) and we write
Y ∼ STp(ξ ,�,α, ν).

Since themultivariate skew-t distribution can be expressed
as a scale mixture of a skew-normal distribution, proposi-
tion 2 in Capitanio (2020) guarantees that, by taking once
again the matrix H as defined in (4.2), any random vector
Y ∼ STp(ξ ,�,α, ν) can be transformed into the canonical
multivariate skew-t distributionH�Y ∼ STp(0, I,α∗

Y , ν). In
particular, ξ and�, like in the skew-normal case, are nuisance
parameters, so that they can be dismissed for hypothesis test-
ing after the standardization is performed. Additionally, for
the simulation studies in Sect. 5, it will suffice to implement
the tests for different choices of p, ν, and α∗ (the unique
non-null component of α∗

Y = (α∗, 0, . . . , 0)�), substantially
reducing the cases that need a proper investigation. Here
the sn (Azzalini 2022) package in R (R Core Team 2022)
can also be used to retrieve the desired multivariate skew-t’s
parameters estimates as it was also designed for this pur-
pose. The hypothesis test is then carried out similarly to the
skew-normal case, as discussed in the preceding subsection.

4.3 Multivariate skew-Laplace distribution

Themultivariate skew-Laplace (SL) distributionmay be con-
veniently defined by the CF (see Arslan 2010)

ϕϑ (t) = eit
�ξ

(1 + t�� t − 2it�α)(p+1)/2
, (4.4)

with ϑ = (ξ ,�,α), where (ξ ,α) ∈ R
p × R

p are,
respectively, location and skewness parameters, and � is a
symmetric positive definite matrix. We will use the notation
SLp(ξ ,�,α) for this distribution. Although the multivariate
skew-Laplace distribution proposed by Arslan (2010) has
very similar properties to the distinct version introduced by
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Kotz et al. (2001), Arslan’s alternative has a simpler probabil-
ity density function, allowing for uncomplicated estimation
methods of its parameters in the multivariate setting. Also,
Arslan (2010) proposed an efficient EM algorithm that can
be used for estimating ξ ,�, and α.

Analogously to the skew-normal and skew-t distributions,
provided thatα �= 0, it may be shown that X ∼ SLp(ξ ,�,α)

can be reduced to a canonical form. This novel result brings
down the burden of testing for nuisance parameters and
reduces the skewness to a singular one-dimensional com-
ponent.

Proposition 4.1 (Canonical form - SL distribution) Let X ∼
SLp(ξ ,�,α) with α �= 0 and consider the affine non-
singular transform

X∗ = H�(X − ξ), (4.5)

with H = �−1/2Q, where �−1/2 denotes the inverse of
the unique positive definite symmetric square root matrix
of �, and Q = [v1 . . . v p] is the orthogonal matrix with
v1 = �−1/2α/‖�−1/2α‖ as its first column vector and
the remaining columns v2, . . . , v p belong to the orthog-
onal complement of v1. Then X∗ ∼ SLp(0, I,α∗

X ) with
α∗
X = (α∗, 0, . . . , 0)� and α∗ = ‖�−1/2α‖.

Proof From proposition 3 in Arslan (2010), if A ∈ R
p×p

is any full rank matrix, it follows that A(X − ξ) ∼
SLp(0,A�A�,Aα). Since α = (α1, . . . , αp)

� �= 0 and
�−1/2 is non-singular, we have�−1/2α �= 0. Hence, there is
at least one component uk in u = (u1, . . . , u p)

� = �−1/2α

that is non-null. Moreover, if e j represents the j th canonical
vector in Rp, for j ∈ {1, . . . , p}, then {u} ∪ {e j ∈ R

p : j �=
k} is a basis of Rp. For ease of reading, let us rename the
vectors u1 = u, u j+1 = e j , for 1 ≤ j < k, and u j = e j , for
k < j ≤ p. Then we can apply the Gram-Schmidt process
to find an orthonormal basis {v1, . . . , v p} of Rp. For this,

take ṽ1 = u1 = �−1/2α and ṽ j = u j − ∑ j−1
i=1

ṽ�
i u j

ṽ�
i ṽi

ṽi ,

for 2 ≤ j ≤ p. The desired basis is obtained from the
normalizations v j = ṽ j/‖ṽ j‖, for j ∈ {1, . . . , p}. There-
fore, taking Q = [v1 . . . v p] and H = �−1/2Q, it follows
that H�(X − ξ) ∼ SLp(0,H��H,H�α), with H��H =
Q��−1/2��−1/2Q = I and H�α = Q��−1/2α =
(‖�−1/2α‖, 0, . . . , 0)�. ��

Analogously to the SN and ST cases, the fact that a
canonical form is available for the skew-Laplace distribu-
tion is useful in the implementation of the goodness-of-fit
test due to a reduced number of parameters to be consid-
ered. Moreover, the proof of Proposition 4.1 gives at the
same time an algorithm to find the canonical form of a
multivariate SL distribution. Taking this in consideration,

let ̂X j = ̂H
�
n (X j − ̂ξn), j ∈ {1, . . . , n}, be the standard-

ized observations. Then the test figuring in 2.7 is applied by

replacing X j by ̂X j , where X0, j are drawn from a SL distri-
bution with parameters (ξ ,�) = (0, I) and α is set equal to

(‖̂�
−1/2
n α̂n‖, 0, . . . , 0)�. To obtain the estimates of̂ξn , ̂�n ,

and α̂n , we suggest the EM algorithm proposed by Arslan
(2010). As there is no package available in R (R Core Team
2022) for this purpose, the algorithms involving estimation
of the multivariate skew-Laplace distribution in the present
work were implemented by a replication of the steps intro-
duced in Section 3 of Arslan (2010).

4.4 Multivariate Tukey g-and-h distribution

The multivariate Tukey g-and-h distribution (GH) was first
introduced by Field and Genton (2006) as a generalization
of its univariate counterpart presented by Tukey in 1977.
It has been gaining popularity due to its flexible marginal
distributions, allowing for the fitting of skewed and heavy-
tailed data sets from climate and environmental problems
(see, e.g., Jeong et al. 2019; Yan and Genton 2019; Yan et al.
2020). Given two parameter vectors g = (g1, . . . , gp)� ∈
R

p and h = (h1, . . . , h p)
� ∈ R

p
+, the random vector Y ∈

R
p is said to have a standard multivariate Tukey g-and-h

distribution if it can be represented as

Y = τ g,h(Z) := (τg1,h1(Z1), . . . , τgp,h p (Z p))
�, (4.6)

where Z = (Z1, . . . , Z p)
� ∼ Np(0, I) has a standard mul-

tivariate normal distribution and, for two given g ∈ R and
h ∈ R+, the univariate function τg,h is defined as

τg,h(z) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

exp(gz) − 1

g

)

exp

(

hz2

2

)

, g ∈ R \ {0},

z exp

(

hz2

2

)

, g = 0,

(4.7)

for any z ∈ R. The general multivariate Tukey g-and-h dis-
tribution is then defined as

Y = � τ g,h(Z) + ξ , (4.8)

where � ∈ R
p×p and ξ ∈ R

p are, respectively, a positive
definite matrix and a location vector. Here ϑ = (ξ ,�, g, h)

and the nuisance parameters are ξ and � as they can be
standardized out.We shall use the notation GHp(ξ ,�, g, h).

In contrast with the SN, ST, and SL distributions, the
Tukey g-and-h distribution does not have a known transfor-
mation that allows one to represent it in a reducible canonical
form. Also, since the inverse of τg,h(·) does not have a closed
expression, classical estimation methods, such as the MLE
method, rely on numerical approximations. Likewise, the
CF, probability density function, and cumulative distribution

123



Statistics and Computing            (2023) 33:99 Page 7 of 18    99 

function can only be computed numerically. Several differ-
ent techniques have been proposed for the estimation and
fitting of the univariate Tukey g-and-h distribution (see the
review paper by Möstel et al. 2021). However, for the multi-
variate case, only a few methods are available. For instance,
Field and Genton (2006) used multivariate quantiles for data
fitting. He and Raghunathan (2012) assumed that� is a diag-
onal matrix and, for this reason, they proposed an algorithm
that uses quantiles from the univariate Tukey g-and-h.

In this work, we opted for the MLE method. For this pur-
pose, we need to find the parameters ϑ that maximize the
log-likelihood function

�(ϑ |Y1, . . . ,Yn) = −n ln |�|

+
n

∑

i=1

p
∑

j=1

[

ln
{

φ(u( j)
i )

}

− ln
{

τ ′
g j ,h j

(u( j)
i )

}]

, (4.9)

where u( j)
i = τ−1

g j ,h j

({�−1(Y i − ξ)}�e j
)

, for i ∈ {1, . . . , n}
and j ∈ {1, . . . , p}, e j denotes the j th canonical vector
in R

p, φ(·) is the pdf of a standard univariate normal dis-
tribution, and τ ′

g j ,h j
(z) denotes the derivative of τg j ,h j (z)

concerning its argument z. To give an approximated value
of the quantities u( j)

i , we use the uniroot function avail-
able in the stats (RCore Team and contributors worldwide
2022) package in R (R Core Team 2022). For the maximiza-
tion procedure, we use the optim function available in the
MASS (Ripley 2022) package in R (R Core Team 2022),
together with the “Nelder-Mead” method (see Nelder and
Mead 1965).

4.5 Multivariate˛-stable distributions

The α-stable distributions (AS), similar to the multivariate
skew-t and Tukey g-and-h distributions, are another pos-
sible extension of the multivariate normal distribution that
comports skewness. However, while the multivariate skew-t
family has finite second moments, the α-stable distributions
are regulated by a parameter α ∈ (0, 2], called the tail index,
and it has onlyfinite secondmoments ifα = 2,which reduces
itself to the multivariate normal case. Particularly, if X has
a multivariate α-stable distribution, then E(‖X‖s) < ∞, if
0 < s < α, and E(‖X‖s) = ∞, if s ≥ α. Several param-
eterizations for the CF have been proposed in the literature.
Here, for numerical reasons, we adopt the S0 parameteriza-
tion introduced inAbdul-Hamid andNolan (1998), for which
the CF is given by

ϕϑ (t) = exp

(

−
∫

Sp

ψα(t�s) �(ds) + it�ξ

)

, t ∈ R
p,

(4.10)

where

ψα(u) =
⎧

⎨

⎩

|u|α
(

1 + i sign(u) tan
(

πα
2

) (|u|1−α − 1
)

)

, α �= 1,

|u|
(

1 + i 2
π
sign(u) ln |u|

)

, α = 1.

(4.11)

In this case, we denote X ∼ S0α(�, ξ) to indicate that the ran-
dom vector X has an α-stable distribution with finite spectral
measure �(·), defined on the unitary sphere Sp := {s ∈ R

p :
‖s‖ = 1}, and shift vector ξ ∈ R

p. We note from (4.10) that
the multivariate α-stable distributions are a semi-parametric
family, being completely defined by the triplet (α, �, ξ) and
belonging to the more general class of infinitely divisible
distributions. Furthermore, X − ξ ∼ S0α(�, 0), so that ξ is
a nuisance parameter vector and it coincides with the mean
vector when 1 < α ≤ 2.

Byczkowski et al. (1993) proposed a discrete approx-
imation for the spectral measure �, which is useful for
numerical computations and simulations. This approxima-
tion is described as follows: consider a finite partition P =
{A1, . . . , Am} of Sp and a set of points S = {s1, . . . , sm} ⊆
Sp. Then, by setting γi = �(Ai ), the discrete spectral mea-
sure associated to (P, S, �) is defined as

�∗(·) =
m

∑

i=1

�(Ai )1si (·) =
m

∑

i=1

γi 1si (·), (4.12)

for any Borelian in Sp. Here �∗ is implicitly defined by
concentrating the mass of �(Ai ) at each point si , the only
requirement being that sups∈Ai

|s − si | is sufficiently small,
for each i = 1, . . . ,m. Hence, the discrete spectral measure
�∗ can be used in practice instead of its continuous counter-
part �. For simulating multivariate α-stable random vectors,
we shall use the result from Modarres and Nolan (1994)
which states that, if X ∼ S0α(�∗, ξ), with �∗(·) defined in
(4.12), then

X =
{

∑m
i=1 γ

1/α
i Zi si + ξ̃ , α �= 1,

∑m
i=1 γi (Zi + 2

π
ln(γi ))si + ξ̃ , α = 1,

(4.13)

where ξ̃ = ξ − tan
(

πα
2

) ∑m
i=1 γi si and Z1, . . . , Zm are

i.i.d. one-dimensional α-stable random variables with Zi ∼
Sα(1, 1, 0) (i.e., scale = skewness = 1 and location = 0). As
for the estimation part, we use the projection method pro-
posed by Nolan et al. (2001), which relies on the projections
of the multivariate samples into a specifically chosen grid of
values from the unitary sphere.

As it is well known, X ∼ S0α(�, ξ) is symmetric if and
only if �(·) is symmetric on Sp. So far, no tests available in
the literature have been designed specifically for the general
asymmetricmultivariateα-stable distributions, except for the
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one presented by Meintanis et al. (2015) which covers only
the symmetric case. Here we propose a test that can be used
for both symmetric and asymmetric cases. Although it is not
usual in the literature, we use the notation X ∼ ASp(ξ , �, α)

to indicate that X has an asymmetric α-stable distribution.
For a more substantial review of these and further techni-
cal details concerning multivariate α-stable distributions, we
suggest reading Karling et al. (2023) and Samorodnitsky and
Taqqu (2000).

5 Simulation studies

In this section, we present the results of simulation studies
that were produced using the tests described in Sects. 2 and
3 with the five families of skewed distributions introduced
in Sect. 4. For these simulations, we used M = L = 1000
as a standard value in the steps described in Sects. 3.1 and
3.2. Firstly, we start by calculating the empirically estimated
sizes of the tests for each family under a δ = 0.05 designed
nominal level. Then we calculate the power of the test in two
distinct situations, the simple hypothesis case, and the com-
posite hypothesis case, respectively,within a second and third
round of simulations. In the latter, we test the five families of
distributions against the family of sinh-arcsinh distributions
(see Jones and Pewsey 2009). It is worth pointing out that,
as the sample size n increases, naturally, the tests require
more computational time to run. Also, the efficiency of the
test is prone to the number of parameters present in each
family and the method used for their estimation. Finally, we
close this section with a comparison between our test and a
few competitors for the skew-normal family that was already
available in the literature.

5.1 Estimated sizes

The values presented in Table 1 were generated with the
test described in Sect. 3 corresponding to the composite null
hypothesis case, for δ = 0.05 and M = 1000 replications.
The dimension considered for the samples in the tests is
p = 2. An analogous table for p = 3 can be found in the
Supplement. For simplifying the simulations, in each case,
we fixed the value of m to be equal to n, the sample size,
with n ∈ {100, 250, 500, 750, 1000}. In a later section, and
to have a better understanding of the effect of the size m of
the artificial sample, we present simulation results where we
fix the sample size n and let m vary; see Simulation 12 in
Sect. 5.4.

Simulation 1 We simulated n observations from an SNp

(0, I,α)distribution,withα = (3, 0, . . . , 0)�.We calculated
the empirical sizes of the test and the results are presented
in Table 1. We notice from this table that, as the sample size

increases, the empirical sizes of the test stabilize around 0.05,
which corresponds to the designed nominal level.

Simulation 2 Next, we simulated n observations from an
STp(0, I,α, ν) distribution, with α = (3, 0, . . . , 0)� and
ν = 5. The estimated sizes of the test are presented in Table
1. Comparing this case with the one in Simulation 1, we note
that, for small values of n (100, 250, 500), the estimated sizes
are not that close to 0.05 as the ones observed in the SN case,
but they start to converge to the designed nominal level as we
increase the value of n, showing consistency. This behavior
could be due to the heavier tails presented by the ST family
of distributions, requiring a larger sample size to reach the
designed nominal level.

Simulation 3 Here, we simulated n observations from an
SLp(0, I,α) distribution, with α = (3, 0, . . . , 0)�. The esti-
mated sizes of the test are presented in Table 1. In this
case, similar results to the two preceding simulations can be
observed; as the sample size increases, the estimated sizes of
the test converge to the designed nominal level.

Simulation 4 Next, we simulated n observations from a
GHp(0, I, g, h) distribution, with g = (1, . . . , 1)� and
h = (0.5, . . . , 0.5)�. The estimated sizes of the test are
presented in Table 1. Since all marginal components of h
are equal to 0.5, we are in a situation when the variance is
not finite and heavier tails than the SN, ST, and SL cases
are observed. This, in particular, is reflected in the estimated
sizes of the test. We observe that for n = 1000, the rejection
rate is equal to 0.071, which is relatively high. This might be
explained due to the wide range dispersion of the observed
data sets over the tails. Another case, similar to this one, is
shown in the next simulation.

Simulation 5 Finally, we simulated n observations from an
AS2(0, �, α) distribution, with discrete spectral measure
�(·) = (1/3)

∑3
k=1 1sk (·), where sk = (cos(2πk/3),

sin(2πk/3))�, for k ∈ {1, 2, 3}, and stability index α = 1.5.
For the estimation procedure, we used a grid size of N = 24
projections (see Nolan et al. 2001). The estimated sizes of the
test are presented in Table 1. Here, like in Simulation 4, the
observations originate from a distribution with infinite vari-
ance and heavy tails. However, for this case, as we observed
an increasing trend in the estimated size of the test when
we increased the sample size n to 1000, we generated two
extra rounds of simulations with n = 2500 and n = 5000
to ensure that it was not diverging from the designed nomi-
nal level. The rejection rates obtained for these cases were,
respectively, 0.066 and 0.070.
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Table 1 Estimated sizes of the tests correspondent to Simulations 1–5

n = 100 n = 250 n = 500 n = 750 n = 1000

SN 0.045 0.047 0.049 0.045 0.053

ST 0.063 0.054 0.062 0.052 0.057

SL 0.063 0.045 0.048 0.055 0.046

GH 0.063 0.046 0.057 0.063 0.071

AS 0.051 0.064 0.063 0.076 0.080

5.2 Estimated power functions for the simple null
hypothesis case

Consider the goodness-of-fit problem with simple null
hypotheses Hs

0 as given in (3.1) and alternative hypothe-
ses Hs

1 as in (3.2). In the next five simulations (6-10), we
calculate the empirical power functions of the test for a few
cases of the GH, SL, SN, ST, and AS distributions. For the
four first simulations (6-9), we considered the sample sizes
of n ∈ {100, 250, 500, 750, 1000} and p ∈ {2, 3} for the
dimensionof the generatedobservations.The results are sum-
marized and illustrated in Fig. 1. Whereas for Simulation 10,
we consider n ∈ {250, 500, 750, 1000, 2500} and p = 2,
with the results plotted in Fig. 2.

Simulation 6 We generated n observations from a GH

p(0, I, g, h) distribution. For the null hypothesis, we take
λ0 = (g0, h0), with g0 = (2, . . . , 2)� and h0 =
(1, . . . , 1)�. The power functions were calculated for λ =
(g, h) with h = (h, . . . , h)�, for h ∈ {0.2, 0.4, 0.6, 0.8},
and g = 2h, so that they only depend on the choice of h. The
results are plotted in Fig. 1, items (a) and (b), respectively, for
p = 2 and p = 3. A quick overview of the plotted functions
suggests the obvious, as the sample size increases, the power
also increases. Moreover, as h approaches 1, the power func-
tions converge to the size of the test as theoretically expected.

Simulation 7 Next, we generated n observations from an
SLp(0, I,α) distribution. For the null hypothesis, we take
λ0 = α0 = (α∗

0 , 0, . . . , 0)
� with α∗

0 = 3. Then we calcu-
lated the power functions for λ = α = (α∗, 0, . . . , 0)� with
α∗ ∈ {0, 1, 2, 5, 8, 13} and the results are plotted in Fig. 1,
items (c) and (d), respectively, for p = 2 and p = 3. We
notice from the steepness present in the graphs that, for both
dimensional cases, the power function is very sensitive to
slight changes in α∗, producing more power as its argument
increases or decreases. Additionally, one can notice a small
asymmetry on its graphs about α∗ = 3, precisely where the
size of the test is located.

Simulation 8 Here, we generated n observations from an
SNp(0, I,α) distribution. For the null hypothesis, we con-
sidered λ0 = α0 = (α∗

0 , 0, . . . , 0)
� with α∗

0 = 3, and
λ = α = (α∗, 0, . . . , 0)� with α∗ ∈ {0, 1, 2, 5, 8, 13}

for calculating the empirical power functions. The resulting
functions are plotted in Fig. 1, items (e) and (f), respectively,
for p = 2 and p = 3. As one can notice from the graphs,
the empirically estimated size of the test acts as an inflec-
tion point and the power functions are asymmetrically higher
when α∗ < 3. This behavior might be due to the asymme-
try of the distributions; the closer α∗ is to 0, the closest the
distribution becomes to the multivariate normal distribution.
The test has not much power when α∗ increases, showing
less steepness in that direction.

Simulation 9 Finally, we generated n observations from an
STp(0, I,α, ν) distribution with α = (3, 0, . . . , 0)� fixed.
We considered ν0 = 5 for the null hypothesis and ν ∈
{3, 8, 13, 21, 34,∞} are used for calculating the empirical
power functions, plotted in Fig. 1, items (g) and (h), respec-
tively, for p = 2 and p = 3. By visualizing these figures,
one can notice that as ν increases the power functions rapidly
increase to 1 for large sample sizes and the size of the test is
attained at ν = 5. Here ν = ∞ is interpreted as the asymp-
totic distribution when ν → ∞.

Simulation 10 We generated n observations from an AS

2(0, �, α) distribution. For the null hypothesis, we take
the spectral measure �0(·) = (1/3)

∑3
k=1 1sk (·), where

sk = (cos(2πk/3), sin(2πk/3))�, for k ∈ {1, 2, 3}, and
α0 = 1.5. Then we take two distinct sets for the alterna-
tive hypotheses. In the first set, we fix the stability index
α = α0 and calculate the power functions for the alter-
native spectral measures �q(·) = (1/q)

∑q
k=1 1sk (·), with

sk = (cos(2πk/q), sin(2πk/q))�, for k ∈ {1, . . . , q} and
q ∈ {34, 21, 13, 8, 5}. The resulting estimated power func-
tions are plotted in Fig. 2a. In the second set, we fix the
spectral measure as �(·) = (1/3)

∑3
k=1 1sk (·) and vary the

parameter α instead, for α ∈ {1.1, 1.3, 1.7, 1.9}. The result-
ing estimated power functions for this case are plotted in
Fig. 2b. In both figures, we also plotted the estimated size of
the test with α = α0 and �(·) ≡ �3(·).

5.3 Estimated power functions for the composite
null hypothesis case

For the next simulations, consider the goodness-of-fit testing
problemwith composite null hypothesesHc

0 as stated in (3.3)
and alternative hypotheses Hc

1 as in (3.4).

Simulation 11 Wegeneratedn ∈ {100, 250, 500, 750, 1000}
observations from an STp(0, I,α, ν) distribution with p ∈
{2, 3}, a fixed value for α = (3, 0, . . . , 0)�, and ν ∈
{1, 2, 3, 5, 8, 13,∞}. For the null hypothesis, we considered
the family of skew-normal distributions. Hence the gener-
ated observations belong to the set of alternative hypotheses.
Then we calculated the empirical power functions and the
results are plotted in Fig. 3. We notice that, as ν → ∞,
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Fig. 1 Power functions generated throughout Simulations 6-9: a, b Simulation 6 → GHp(0, I, g, h); (c),(d) Simulation 7 → SLp(0, I,α); e, f
Simulation 8 → SNp(0, I,α); g; h Simulation 9 → STp(0, I,α, ν). The horizontal dotted line corresponds to the 5% significance level
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Fig. 2 Power functions of the test when the null hypothesis is
an AS2(0, �0, α0) distribution, with α0 = 1.5 and �0(·) =
(1/3)

∑3
k=1 1sk (·), where sk = (cos(2πk/3), sin(2πk/3))�, for

k ∈ {1, 2, 3}, corresponding to Simulation 10. On the left-
hand side figure, the indexes in the abscissa correspond to the

alternative spectral measures �q (·) = (1/q)
∑q

k=1 1sk (·), where
sk = (cos(2πk/q), sin(2πk/q))�, for k ∈ {1, . . . , q} and q ∈
{34, 21, 13, 8, 5}. On the right-hand side, we plotted the power of the
test when, now, �(·) is fixed, but the alternative hypotheses are for
α ∈ {1.1, 1.3, 1.7, 1.9}

the STp(0, I,α, ν) distribution converges to the SNp(0, I,α)

distribution. In particular, this effect is also observed in the
power functions, with convergence to the significance level,
here set equal to 5%.

Simulation 12 Now consider the family of multivariate sinh-
arcsinh distributions introduced by Jones and Pewsey (2009).
Our aim with this simulation is to compute the power
functions by considering the sinh-arcsinh as the alternative
hypotheses of our test, and as the null hypothesis we shall
consider the five families of distribution presented in Sect. 4.
To define the multivariate sinh-arcsinh distribution, let us
consider the univariate transformation

Sa,b(z) = sinh{b sinh−1(z) − a}, a ∈ R, b ∈ R+. (5.1)

Also, let (e, f ) ∈ R
p×R

p
+, with e = (e1, . . . , ep)� and f =

( f1, . . . , f p)�, and Z ∼ Np(0, I) followa standard p-variate
normal distribution. Then, applying (5.1) component-wise,
we say that

Ye, f = S−e/ f ,1/ f (Z)

:=
(

S− e1
f1

, 1
f1

(Z1), . . . ,S− ep
f p

, 1
f p

(Z p)

)�
(5.2)

has a sinh-arcsinh distribution with parameters (e, f ).
We simulated n random samples from Ye, f when e =
(e, . . . , e)�, with e ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}, and f =
( f , . . . , f )�, with f = (e + 1)−1, so that 1/ f ∈
{1, 1.1, 1.2, 1.3, 1.4, 1.5} and −e/ f ∈ {0,−1/11,−1/6,

−3/13,−2/7,−1/3}. In particular, if e = 0, then Ye, f has
a standard normal distribution. Moreover, as e increases, its
distribution departs rapidly from the standard normal distri-
bution and turns out to be positively skewed on each axis
concerning the origin. For the generation of these random
samples, we considered two settings. In the first setting,
we take n ∈ {50, 100, 250, 500} and m = n in our tests.
While in the second set, we fixed the size of the gener-
ated samples, with n = 100, and shifted m along the set
{100, 250, 500, 1000}, the sample size of the newly gener-
ated data needed for the tests, as discussed in Sect. 2. Then
we calculated the empirical power functions for each test,
with the five different families of distributions considered in
Sect. 4 to be the designed null hypothesis. The results found
for each of the two different settings are plotted in Figs. 4
and 5. The latter figure shows that, if we have a small sam-
ple size data (in this particular simulation, with n = 100),
gradually increasing the value of m from 100 to 1000 also
slightly increases the power, which is good to know in cases
of small sample size; see for instance, the AIS data set from
Sect. 6.1.

5.4 Comparison over competitor tests

Although the major tests proposed in the literature are
restricted to the SN family, we dedicate this subsection to
discussing and comparing our test to these alternatives. In a
retrospective overview, Meintanis and Hlávka (2010) intro-
duced one of the first goodness-of-fit tests for the family
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Fig. 3 Power of the test when the null hypothesis is assumed to
be an SNp(0, I,α) distribution, for some α = (α∗, 0, . . . , 0)� with
α∗ ∈ [0,∞), against the alternative family of STp(0, I,α, ν) dis-

tributions, with p ∈ {2, 3}, α = (3, 0, . . . , 0)� fixed, and ν ∈
{1, 2, 3, 5, 8, 13,∞}. The horizontal dotted line corresponds to the 5%
significance level

of multivariate skew-normal distributions which utilizes the
empirical moment-generating function. However, the com-
putational formulas for this test are practically restricted to
the two-dimensional case since the case p > 2 requires
a solution of a differential equation that is difficult to be
numerically evaluated. Later on, Balakrishnan et al. (2014)
proposed a test that is based on the skew-normal’s canon-
ical form. Its main advantage relies on the argument that
no re-sampling step is needed, saving computational time.
However, it is only valid for the skew-normal distribution
as the test is based on the fact that the ratios Xi, j/|Xi,1|, for
j ∈ {2, . . . , p}, of the observations X i = (Xi,1, . . . , Xi,p)

�,
for i ∈ {1, . . . , n}, are distributed as Cauchy random vari-
ables if the X i ’s follow a canonical skew-normal distribution.
More recently, González-Estrada et al. (2022) introduced
two randomized tests that, similarly to Balakrishnan et al.
(2014)’s test, are based on the estimated canonical form of
the SN distribution. The first test (W) applies the principle
of a generalization of the Shapiro-Wilk test after the sam-
ple is transformed into approximately multivariate standard
normal observations, whereas the second test (S) relies on a
closure property of the sum of univariate independent skew-
normal and normal random variables. Jiménez-Gamero and
Kim (2015) proposed a pair of re-sampling schemes, one of
which is the parametric bootstrap (PB in the paper) which is
what we also use in our tests.

In the next simulation, we replicate one of the original
simulation studies from Balakrishnan et al. (2014) and com-
pare the estimated powers of our test with the ones reported
by these authors and the ones given inGonzález-Estrada et al.
(2022).

Simulation 13 This study takes into account the 3-variate
skew-normal distribution for the composite null hypothesis,
and the ST3(ξ ,�,α, ν) distribution in the alternative set,
with ξ , �, and α defined as follows

ξ =
⎛

⎝

1
2
3

⎞

⎠ , � =
⎛

⎝

1 1 1
1 2.5 1
1 1 5

⎞

⎠ , α =
⎛

⎝

1
−2
3

⎞

⎠ . (5.3)

The degrees of freedom ν are taken in the set {1, 2, 3, 5, 10}.
We generated ten rounds of replications of our test with dif-
ferent seeds when the sample size is n = 100 andm = 1000.
The rejection rates are presented in Table 2. For comparison
reasons, we transcribed the values of the powers reported for
this case in Tables 2 and 5 from Balakrishnan et al. (2014)
and González-Estrada et al. (2022). As we can see, all ten
rounds of tests have shown higher powers than Balakrish-
nan et al. (2014)’s test. In comparisonwith González-Estrada
et al. (2022)’s test, except for ν = 10, our test also has shown
higher powers. This shows that, in particular, when the SN
distribution is being tested against the ST distribution, our
tests are equivalent or even better in terms of powers than the
competitor tests presented in the literature.

Before closing this section we wish to point out that while
our simulations are extensive we do not wish to overgener-
alize our conclusions. Nevertheless due to the wide range
of shapes included both under the null hypotheses as well
as under alternatives we expect that at least the qualitative
aspects of our findings will also hold under other, not drasti-
cally different, settings.
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(e) n = 250, p = 2
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Fig. 4 Power of the tests against the alternative family of sinh-arcsinh distributions correspondent to Simulation 12. Here the sample sizes considered
are n ∈ {50, 100, 250, 500} and m = n
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(f) m = 500, p = 3
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(g) m = 1000, p = 2
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Fig. 5 Power of the tests against the alternative family of sinh-arcsinh distributions correspondent to Simulation 12 with sample size n = 100 fixed
and m ∈ {100, 250, 500, 1000}
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Table 2 Simulated values of
power from 1000 replications
when the sample size is n = 100
and the data originates from a
ST3(ξ ,�,α) distribution with
ξ , �, and α defined as in (5.3)
and the composite null
hypothesis is assumed to be in
the skew-normal family

ν (degrees of freedom) 1 2 3 5 10

Balakrishnan et al. (2014)’ test 0.864 0.475 0.277 0.193 0.165

González-Estrada et al. (2022)’s test 1.000 – 0.979 0.758 0.299

Our test—Round 1 1.000 1.000 0.993 0.838 0.308

Our test—Round 2 1.000 1.000 0.988 0.797 0.247

Our test—Round 3 1.000 1.000 0.992 0.808 0.273

Our test—Round 4 1.000 0.999 0.989 0.801 0.257

Our test—Round 5 1.000 1.000 0.994 0.785 0.281

Our test—Round 6 1.000 1.000 0.990 0.816 0.321

Our test—Round 7 1.000 1.000 0.994 0.791 0.282

Our test—Round 8 1.000 1.000 0.991 0.778 0.265

Our test—Round 9 1.000 1.000 0.995 0.791 0.238

Our test—Round 10 1.000 1.000 0.993 0.806 0.269

Here, values reported in boldface characters indicate the estimated powers that are lower than González-
Estrada et al. (2022)’s test

6 Data applications

This section considers some exampleswith real-data samples
previously presented in the literature. We apply and discuss
the results of the goodness-of-fit tests proposed in the present
paper. We considered a 5% confidence level for each test that
we performed. The p values shown in boldface characters
throughout Tables 3, 4 and 5 below indicate rejection of the
null hypothesis concerning the designated confidence level.
Additionally, to obtain more power for each test, we setm =
max{n, 1000} to be in accordance with the results presented
in Simulation 12.

6.1 AIS data set

The Australian Institute of Sport (AIS) data set is one of
the classical examples presented by Azzalini and Capitanio
(1999) to illustrate the fitting of a skew-normal distribution.
The data consists of biomedicalmeasurements on 100 female
and 102 male athletes collected at the Australian Institute
of Sport, including body mass index (BMI), body fat per-
centage (BFP), the sum of skin folds (SSF), and lean body
mass (LBM), among others, and it can be retrieved through
the sn (Azzalini 2022) package in R (R Core Team 2022).
These four mentioned indexes were also recently used by
Balakrishnan et al. (2014) andGonzález-Estrada et al. (2022)
for testing the goodness-of-fit of the skew-normal distribu-
tion. Here, in addition to including tests for the skew-normal
family, we also include the tests for asymmetric α-stable
(two-dimensional case only), Tukey g-and-h, skew-Laplace,
and skew-t distributions.

We applied our tests on the two-dimensional and four-
dimensional data with the athletes segregated by gender,

female and male, and we obtained the estimated p values
shown in Table 3. We observe that the one with the GH
distribution was the only test that failed to reject the null
hypothesis in the four-dimensional case, for both female and
male athletes. As for the SL and ST distribution, the tests
suggest the rejection of the null hypotheses only for the data
on female athletes. Moreover, the test leads to the conclusion
in favor of the SN distribution for the data on female athletes,
while for the data onmale athletes, the test suggests the rejec-
tion of the SN distribution. These two tests are, therefore, in
line with the conclusions presented by Balakrishnan et al.
(2014) and González-Estrada et al. (2022). For the pairwise
two-dimensional case, we observe that most of the tests with
the AS distribution suggest rejection of the null hypothesis,
with 10 out of 12 pairs of data showing p values lower than
0.05.

6.2 BMI of Australian twin sample biometric data

Nowadays it is clear from a statistical perspective that the
BMI’s population distribution is not symmetric, usually
showing skewness to the right towards a higher ratio of
weight to height (see Nuttall 2015). By considering the
BMI observations of the AIS data discussed in Sect.6.1,
Marchenko and Genton (2010) presented strong evidence
that the skewness parameter is different from zero. It has also
been pointed out in the literature (see, e.g., Tran et al. 2017;
Tsang et al. 2018) that the skew-t distribution is reasonably
competitive when describing unimodal BMI data. So, as our
second application, we consider the observations of BMI of
monozygotic (MZ) twins retrieved from the twinData set,
available in the OpenMx (Boker et al. 2022) package in R (R
Core Team 2022). In our analysis, we included individuals
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Table 3 Estimated p values of the tests for the four-dimensional and
pairwise two-dimensional AIS data set

GH SL SN ST

Four-dimensional AIS data

Female athletes 0.715 0.004 0.068 0.022

Male athletes 0.175 0.503 0.013 0.247

AS GH SL SN ST

Pairwise two-dimensional AIS data

Female athletes

BMI & BFP 0.002 0.074 0.003 0.234 0.201

BMI & SSF 0.000 0.000 0.008 0.044 0.010

BMI & LBM 0.000 0.618 0.203 0.102 0.236

BFP & SSF 0.000 0.287 0.001 0.049 0.037

BFP & LBM 0.000 0.000 0.010 0.115 0.087

SSF & LBM 0.271 0.105 0.012 0.162 0.123

Male athletes

BMI & BFP 0.000 0.258 0.033 0.001 0.648

BMI & SSF 0.257 0.058 0.209 0.003 0.778

BMI & LBM 0.001 0.157 0.038 0.300 0.486

BFP & SSF 0.022 0.018 0.213 0.002 0.204

BFP & LBM 0.000 0.281 0.052 0.032 0.243

SSF & LBM 0.041 0.001 0.118 0.199 0.472

of all ages, separated by gender, with 1171 pairs of females
and 532 pairs of males, and we only removed the pairs of
twins that showed missing BMI data. There are two reasons
why we decided to use this data set rather than the BMI from
the AIS data: the first one is because it has more observa-
tions and they are more homogeneous (the AIS data includes
athletes frommixed categories of sports, which increases the
heterogeneity of the data due to distinguished physiological
traits); the second reason is that if we singled out the BMI
observations from the AIS data it would only be univariate,
while the present work is concentrated on multivariate data.

We fitted the two-dimensional vectors of observed BMI
to the five distributions introduced in Sect. 4 and applied our
goodness-of-fit tests. The estimated p values are presented in
Table 4. For the 5% confidence level, the tests rejected the
SN and ST distributions for both female and male MZ twins.
Nevertheless, it is interesting to observe that the p value of
the ST test is significantly higher than the one obtained by the
SN test, which corroborates the claims found in the literature
that the ST distribution is reasonably better. As for the AS
and SL distributions, the tests showed ambiguous results for
the two genders, rejecting the two distributions in the male
case and showing a relatively high p value for the female
case. Lastly, the test with the GH distribution did not show
enough evidence to reject the null hypothesis for both data
on females and males.

Table 4 Estimated p values of the test correspondent to the two-
dimensional BMI of Australian monozygotic twin sample data sets

AS GH SL SN ST

Female MZ twins 0.458 0.290 0.288 0.000 0.042

Male MZ twins 0.000 0.216 0.000 0.012 0.046

6.3 Wind speed data

As a third and final example, we tested the wind speed data
set presented in Azzalini and Genton (2008), consisting of
278 observations of hourly average wind speed measure-
ments from February 25 to November 30, 2003, recorded at
midnight and collected at threemeteorological towers:Good-
noe Hills (gh), Kennewick (kw), and Vansycle (vs), located
along the Columbia Gorge and the Oregon-Washington bor-
der in the US Pacific Northwest. Azzalini and Genton (2008)
proposed the fitting of the data by using an i.i.d. skew-t
three-dimensional model, claiming that it “brings significant
improvements over the normal distribution”. This same data
set was also used by Arslan (2010) to illustrate the fitting
of the skew-Laplace distribution. The author considered the
two-dimensional vectors ofwind speed recorded at the towers
(gh, kw) and (vs, gh), arguing that the data were satisfacto-
rily fitted to the scatterplots by the skew-Laplace distribution
and that it captured the skewness and the apparent heavy
tailedness.

We run our goodness-of-fit tests on the tri-dimensional
wind speed data set to verify if any of the skewed mod-
els introduced in Sect. 4 is inappropriate. To get additional
information, we also applied the same tests to the pairwise
two-dimensional data sets, now including the α-stable dis-
tribution. The estimated p values are presented in Table
5. Considering the 5% level of significance, in the tri-
dimensional case, only the test for the GH distribution did
not show enough evidence for rejecting the null hypothesis,
whereas all the other tests, namely, for SL, SN, and ST distri-
butions, presented a p value lower than 0.05, thus suggesting
the rejection of these three distributions. In the pairwise two-
dimensional case, most of the tests suggest rejection of the
null hypothesis. This conclusion might be because the data
from the Goodnoe Hills and Kennewick towers shows signs
of bi-modality, as can be seen in their histograms, and per-
haps a mixture of distributions is more appropriate to model
this data set.

7 Conclusion

In this paper, we proposed a goodness-of-fit test for several
types of multivariate skewed distributions. On the one hand,
the major advantage of the technique addressed in our work
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Table 5 Estimated p values of the goodness-of-fit tests correspondent
to the tri-dimensional and pairwise two-dimensional wind speed data
set

GH SL SN ST

Three-dimensional data

0.938 0.000 0.000 0.000

AS GH SL SN ST

Pairwise two-dimensional data

gh & kw 0.006 0.000 0.000 0.002 0.006

gh & vs 0.001 0.067 0.000 0.000 0.004

kw & vs 0.397 0.001 0.000 0.000 0.000

resides in the fact that it is flexible and can be applied to
any multivariate parametric family of distributions, provided
that a reasonable method of estimation of its parameters is
available and that the generation of new replicates is feasi-
ble. On the other hand, in terms of computational cost, the
implementation is highly demanding since the parametric
bootstrap step requires an extra cycle of re-sampling within
each Monte Carlo run.

While the need for such nested re-sampling is shared
by most goodness-of-fit tests available in the literature, this
drawback can be easily circumvented with the use of a paral-
lel algorithm, since the parametric bootstrap does not require
any sequential procedures, andwith the use of thewarp-speed
bootstrap method of Giacomini et al. (2013). An important
fact to be mentioned is that all tests were run with the help of
an Intel Xeon Gold 6230R CPU, of which 100 out of its 104
threads have been intensively used to accelerate even more
the completion of the simulations.We demonstrated its effec-
tiveness through five families of multivariate distributions,
namely, the multivariate skew-normal, skew-t, asymmetric
skew-Laplace, skew α-stable, and Tukey g-and-h (for most
of which there are no available tests), by utilizing the corre-
sponding canonical forms whenever possible.

As the simulations in Sect. 5.1 show (see Table 1), the
estimated sizes of the test are reasonable and consistent
for all five families. Similarly, the simulations presented in
Sects. 5.2 and 5.3 show that the tests have enough power
to detect and reject alternative hypotheses. Compared to the
alternative options of tests introduced in the literature, as pre-
sented in Sect. 5.4, for the particular case when testing under
the composite null hypothesis of an SN distribution, our test
has also shown to be better in terms of power when testing
against the alternative ST distribution.

The effectiveness of our tests has also been illustrated
with real data examples in Sect. 6, showing its applicability
and usefulness when applied to biological and natural events
observed, respectively, in our daily lives and our environ-
ment. In closing, we wish to remind the reader that our test

allows a certain flexibility concerning the actual kernel �

used; see the last paragraph of Sect. 2. In this connection, it
would be interesting to investigate the effect that this choice
has on the finite-sample properties of our test. More work is
needed in this direction.
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