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Large-scale statistical modeling has become necessary with the vast flood of geospace data coming from 
various sources. In space statistics, the Maximum Likelihood Estimation (MLE) is widely considered for 
modeling geospace data by estimating a set of statistical parameters related to a predefined covariance 
function. This covariance function describes the correlation between a set of geospace locations where 
the main goal is to model given data samples and impute missing data. Climate/weather modeling is a 
prevalent application for the MLE operation where data interpolation and forecasting are highly required. 
In the literature, the Gaussian random field is often used to describe geospace data as one of the most 
popular models for MLE. However, real-life datasets are often skewed and/or have extreme values, and 
non-Gaussian random field models are more appropriate for capturing such features. In this work, we 
provide an exact and approximate parallel implementation of the well-known Tukey g-and-h (TGH) 
non-Gaussian random field in the context of climate/weather applications. The proposed implementation 
alleviates the computation complexity of the log-likelihood function, which requires O(n2) storage and 
O(n3) operations, where N is the number of geospace locations, M is the number of time slots, and 
n = N × M . Based on tile low-rank (TLR) approximations, our implementation of the TGH model can 
tackle large-scale problems. Furthermore, we rely on task-based programming models and dynamic 
runtime systems to provide fast execution for the MLE operation in space and space-time cases. We 
assess the performance and accuracy of the proposed implementations using synthetic space and space-
time datasets up to 800K . We also consider a 12-month precipitation dataset in Germany to demonstrate 
the advantage of using non-Gaussian over Gaussian random field models. We evaluate the prediction 
accuracy of the TGH model on the precipitation dataset using the Probability Integral Transformation 
(PIT) tool showing that the TGH model outperforms the Gaussian modeling in the real dataset. Moreover, 
our performance assessment indicates that TLR computations allow solving larger matrix sizes while 
preserving the required accuracy for prediction. The TLR-based approximation shows a speedup up to 
7.29X and 2.96X over the exact solution.

© 2023 Elsevier Inc. All rights reserved.
1. Introduction

Geostatistical space and space-time modeling techniques from 
the statistics literature are becoming very popular for analyzing 
climate/weather data over space and space-time because of their 
wide range of applications. The Gaussian model is among the most 
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broadly used space and space-time statistics models. Indeed, it is 
more straightforward to fit the Gaussian model to geospace data, 
draw inferences, and make predictions compared to the physics-
based modeling of space and space-time processes that solve mul-
tiple discretized partial differential equations. We fit the Gaussian 
model by finding the Maximum Likelihood Estimate (MLE) of the 
model parameters obtained by maximizing a predefined likelihood 
function. To compute this likelihood function for Gaussian models 
for a univariate dataset with N space locations and M time slots, 

https://doi.org/10.1016/j.jpdc.2023.104715
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2023.104715&domain=pdf
mailto:sameh.abdulah@kaust.edu.sa
https://doi.org/10.1016/j.jpdc.2023.104715


S. Mondal, S. Abdulah, H. Ltaief et al. Journal of Parallel and Distributed Computing 180 (2023) 104715
with n = N × M , we need to invert an n × n symmetric, positive 
definite covariance matrix by using the Cholesky factorization. The 
latter requires O(n3) computation complexity and O(n2) memory 
space complexity. Naturally, if n is large, which is most often the 
case for climate and environmental datasets nowadays, this com-
putation becomes very daunting. This fact emphasizes the neces-
sity of parallel computation for these applications where compute-
intensive kernels dominate the execution. Another solution is to 
provide an algebraic method to approximate the calculation of the 
covariance function inversion. In particular, low-rank approxima-
tion of the covariance matrix has been shown to be effective in the 
space statistics framework by Stein et al. [43], Abdulah et al. [2], 
and Salvaña et al. [40] and in the space-time statistics framework 
by Salvaña et al. [41]. With the low-rank approximation of the 
covariance matrix, one can counter the memory space and the 
computation complexity for problems with a very high number of 
space-time locations. In this work, we combine parallel process-
ing and algebraic approximation method to settle the complexity 
of computing the likelihood function.

The assumptions of the Gaussian model for real geospace data 
are relatively strong. The Gaussian model assumes the process 
has a symmetric distribution at each space location for each time 
point. Furthermore, the Gaussian model also fails to capture tail-
thickness, which often is a feature of real-life environmental and 
climate data. Hence, we need more general space-time models for 
handling skewed and tail-heavy random fields. In space statistics, 
one popular approach for capturing non-Gaussian features is to ap-
ply a nonlinear transformation on a space Gaussian random field. 
The square-root transformation by Berrocal et al. [13] and Yan and 
Genton [50], the Box-Cox transformation by De Oliveira et al. [22], 
and the log-normal transformation by Rios and Tobar [38] are a 
few examples of such non-Gaussian space models obtained from 
this transformation approach. However, these transformations are 
applicable only to all-positive datasets and are ineffective when we 
have negative values in some locations for any particular dataset. 
Moreover, such transformations for arbitrary datasets are not al-
ways easy to find. The authors in [49] proposed a transformation-
based space non-Gaussian random field for which the transforma-
tion itself is parameterized. This random field is known as the 
Tukey g-and-h (TGH) random field. Consequently, one can avoid 
foreguessing the transformation for an arbitrary dataset and di-
rectly fit this model. The parameters of the transformation will 
adapt themselves according to the dataset. Xu and Genton [49]
have shown that many well-known non-Gaussian models obtained 
by this transformation approach are indeed exceptional cases of 
the Tukey g-and-h random field.

This work proposes a parallel implementation for the Tukey 
g-and-h random field in exact and approximate forms. The im-
plementation involves non-Gaussian space and space-time model-
ing for large climate and environmental applications datasets. We 
rely on the task-based programming model and runtime systems 
to provide a robust implementation that can easily be ported to 
different parallel hardware architectures. Precisely, we rely on the 
Chameleon [17] library for the dense linear algebra operations re-
quired to compute the likelihood function. In addition, we rely 
on the StarPU runtime system [11] to orchestrate computational 
tasks. We also provide an approximate modeling framework based 
on Tile Low-Rank (TLR) approximation. For TLR, we rely on the 
HiCMA library [3] for matrix compression and linear algebra op-
erations. The TLR-based implementation speeds the execution up 
to 7.29X and 2.96X on shared-memory and distributed-memory 
systems, respectively, compared to the exact implementation.

Our main contributions can be summarized as follows: 1) we 
propose a parallel implementation of the exact computation of the 
TGH likelihoods and predictions to model a wide range of space 
and real space-time datasets on leading-edge parallel systems; 2) 
2

we provide parallel TLR-based approximations to the exact pre-
dictive space and space-time models to allow better compression 
to the covariance matrix and faster computation to its inverse; 3) 
we provide a qualitative comparison between Gaussian and non-
Gaussian modeling on large synthetic and real datasets to highlight 
the advantages of using non-Gaussian modeling on geospace appli-
cations; 4) we assess the performance of the provided exact and 
TLR approximation using Chameleon/StarPU implementations on 
shared-memory and distributed-memory systems; 5) we demon-
strate the quality of our implementation using space and space-
time precipitation datasets in Germany with a covariance matrix 
of dimensions up to 300K . The results show the effectiveness of 
the non-Gaussian modeling and TLR approximation when consid-
ering real geospace datasets.

The remainder of this paper is organized as follows. Section 2
covers related work. Section 3 gives an overview and background 
of our problem. Section 4 describes the TGH algorithm and our 
parallel implementation for modeling and prediction. Section 5 an-
alyzes accuracy and performance using synthetic and real datasets 
in the context of climate/weather applications. Finally, we conclude 
in Section 6.

2. Related work

This section briefly reviews some existing popular space and 
space-time non-Gaussian models in the statistical literature. In 
space statistics, many non-Gaussian distributions have been used 
for constructing various non-Gaussian random fields. For exam-
ple, the skew-Gaussian distribution [32], Student’s t-distribution 
[39], skew-t distribution [14], log-skew-elliptical distribution [35]. 
Palacios and Steel [37] built non-Gaussian models using a scale 
mixture of the Gaussian random field. The theory of copulas has 
also been used to construct non-Gaussian random fields [34]. Us-
ing stochastic partial differential equations, [48] created a class 
of non-Gaussian space Matérn fields. The idea of constructing 
non-Gaussian models by taking a nonlinear transformation of a 
Gaussian process has been discussed before. A few other re-
lated works where the transformation approach has been used 
to construct non-Gaussian models are the logarithm transforma-
tion by De Oliveira [21], the square-root transformation by Johns 
et al. [30], and the power transformations by Allcroft and Glas-
bey [7].

Some ideas from space non-Gaussian models can be extended 
to the space-time regime. For example, Fonseca and Steel [24] pro-
posed a non-Gaussian space-time model using the scale mixture of 
the Gaussian space-time process. The non-Gaussian space models 
based on copulas can also be extended to non-Gaussian space-
time processes. Krupskii and Genton [33] extended the factor cop-
ula model to the space-time setting. Tang et al. [46] proposed a 
copula-based semiparametric space-time model for analyzing non-
Gaussian space-time data. The idea of the trans-Gaussian random 
field can also be extended to the space-time setting by apply-
ing nonlinear transformations to a Gaussian space-time random 
process. Hence, all the afore-discussed transformations can be ap-
plied to constructing space-time non-Gaussian processes. In recent 
years, other proposals for constructing non-Gaussian space-time 
processes have been proposed. For instance, [44] introduced quan-
tile function estimators for space and temporal data with a fused 
adaptive Lasso penalty for modeling the dependence in space and 
time. Hazra et al. [29] proposed a Dirichlet process mixture of 
space skew-t processes for modeling space-time extremes. Barze-
gar et al. [12] developed a class of non-Gaussian space-time pro-
cess models based on the closed skew-normal distribution. Tagle 
et al. [45] provided a space-time non-Gaussian model that assumes 
an unconditional skew-t data distribution with a convenient hi-
erarchical representation. Among all the non-Gaussian space-time 
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models, we select the space-time TGH model for large-scale imple-
mentation. The space-time TGH model is defined by taking Tukey’s 
g-and-h transformation on a Gaussian space-time process. We se-
lect the TGH model because of its easily-interpretable parameteri-
zation and its many appealing statistical properties for large-scale 
implementation.

Similar to the space-time Gaussian random process, the main 
computational challenge for fitting the space-time TGH model is to 
evaluate the log-likelihood function for a given parameter vector. 
For both models, the computation of the log-likelihood requires 
dense matrix inversion. The matrix in question is a symmetric 
matrix of size n × n, n being the number of space-time loca-
tions for a particular dataset. This inversion is almost impossible 
in sequential computation when n is large. Given that nearly all 
the datasets on climate and environment applications consist of 
very large space-time locations, parallel computation frameworks 
are needed for space-time statistical analysis. Many space statistics 
techniques have already been implemented in parallel computa-
tion frameworks. For example, the space prediction (or kriging) 
routine has been implemented for the Gaussian model in paral-
lel computing by Goulart et al. [28] and Cheng [18] using Message 
Passing Interface (MPI), OpenMP, Parallel Virtual Machines (PVMs), 
and/or Graphics Processing Units (GPUs). The authors in [1] pro-
vided a parallel framework for computing the exact log-likelihood 
of the Gaussian model using dense linear algebra task-based al-
gorithms and dynamic runtime systems. This framework has been 
extended to the non-Gaussian settings [36] by providing the space 
TGH modeling framework. Furthermore, the framework by Abdu-
lah et al. [1] has been extended to accommodate the multivariate 
space Gaussian modeling by Salvaña et al. [40] and to adjust the 
Gaussian space-time modeling by Salvaña et al. [41].

Various matrix approximation techniques have tackled the com-
putation and storage complexity problems. Furrer et al. [25] and 
Sang and Huang [42] used the covariance tapering method to ap-
proximate the large covariance matrix where the correlation be-
tween two points is very far apart is assumed to be zero to 
make the large covariance matrix sparse. Other approximation 
techniques include low-rank approximations of the covariance ma-
trix. For example, Abdulah et al. [2], and Geoga et al. [26] used 
Tile Low-Rank (TLR) and Hierarchically Off-Diagonal Low-Rank 
(HODLR) approximations of the covariance matrix for computation 
of the log-likelihood of the Gaussian model. Mondal et al. [36] have 
compared the two low-rank approximation methods, the TLR and 
the HODLR, in the context of TGH space modeling.

3. Problem statement

This section overviews the Tukey g-and-h space and space-time 
models. We also show the log-likelihood function and prediction 
function for these two models. Finally, we describe the construc-
tion of the geospace covariance matrix under the Tile Low-Rank 
(TLR) approximation technique.

3.1. Definition of Tukey g-and-h space random fields

The Tukey g-and-h space random field is introduced by Xu and 
Genton [49] by applying Tukey’s g-and-h transformation on a la-
tent Gaussian random field. The Tukey’s g-and-h transformation

τg,h(z) = g−1{exp(gz) − 1}exp(hz2/2), (1)

is a monotonic function of z for g ∈ R and h ≥ 0. From now on, 
the values of quantities involving g at g = 0 are defined as their 
limit when g → 0. Tukey’s g-and-h transformation on a random 
variable following a Gaussian distribution induces skewness and 
tail-thickness in the distribution. The parameter g is responsible 
3

for the skewness in the distribution, the sign of skewness is the 
same as the sign of g , and the parameter h is responsible for the 
tail-thickness in the distribution.

The standard Tukey g-and-h space random field is defined as

T (s) = τg,h{Z(s)}, (2)

where, Z(s), s ∈Rd , d ≥ 1 is a standard Gaussian random field, i.e. 
E{Z(s)} = 0 and Var{Z(s)} = 1, with some correlation function 
Cor{Z(s1), Z(s2)} = ρZ (s1, s2). Unlike the Gaussian random field, 
the TGH random field can have skewed and heavy-tailed marginals. 
Moreover, when g and h are zero, we return the Gaussian random 
field. Hence, the TGH random field is more flexible than the Gaus-
sian random field, with two additional parameters, g and h. The 
TGH random field includes a large family of trans-Gaussian ran-
dom fields. For example, when g > 0 and h = 0, T (s) becomes a 
shifted log-Gaussian random field, and when g = 0 and h > 0, T (s)
becomes a random field with a Pareto-like marginal distribution. 
The standard TGH model can be generalized further by introducing 
the location and scale parameters. The location-scale TGH space 
random field (from now on, will be referred to as the TGH space 
process) with location parameter ξ ∈R and scale parameter ω > 0
is defined as

T (s) = ξ + ωτg,h{Z(s)}. (3)

3.2. Definition of Tukey g-and-h space-time random fields

Similar to the space TGH model, we define the space-time 
TGH model by applying Tukey’s g-and-h transformation on a la-
tent Gaussian space-time random process. Suppose we have a 
zero mean and unit variance space-time Gaussian process Z(s, t), 
s ∈ Rd and t ∈ R, d ≥ 1. Here, we assume that the correlation of 
the process Z(s, t) is obtained from a space-time correlation func-
tion, i.e., Cor{Z(s1, t1), Z(s2, t2)} = ρZ (s1, t1, s2, t2), where ρZ (·)
is a space-time correlation function. The standard space-time TGH 
process is defined as

T (s, t) = τg,h{Z(s, t)}. (4)

This transformation imposes skewness and tail-thickness on the 
marginal distribution of the space-time Gaussian random field. 
The standard space-time TGH process is further generalized to the 
location-scale TGH space-time process (from now on will be re-
ferred to as the TGH space-time process) and is defined as

T (s, t) = ξ + ωτg,h{Z(s, t)}, ξ ∈R, ω > 0. (5)

3.3. Log-likelihood of Tukey g-and-h space random field

In the space case, let θ1 = (ξ, ω, g, h)� and θ2 be the pa-
rameter vector corresponding to ρZ (s1, s2), the correlation func-
tion of Z(s) in (3), and let θ = (θ�

1 , θ�
2 )� . Consider a dataset 

Ds = {y(s1), . . . , y(sN)} collected from the TGH random field, T (s), 
at locations s1, . . . , sN . The log-likelihood function of θ given the 
dataset Ds is

L(θ1, θ2|Ds) ∝ − 1

2
{Z�

θ1
(R−1

θ2
+ h I N)Z θ1 + log |Rθ2 |}

−
N∑

i=1

log[exp(gzθ1,si )

+ g−1{exp(gzθ1,s ) − 1}hzθ1,s ] − N logω, (6)
i i
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where zθ1,si = τ−1
g,h

{
y(si) − ξ

ω

}
, Z θ1 = (zθ1,s1 , . . . , zθ1,sN )� and 

(Rθ2 )i, j = ρZ (si, s j), i, j = 1, . . . , N . We estimate θ by maximiz-
ing the log-likelihood in (6).

3.4. Log-likelihood of Tukey g-and-h space-time random field

In the space-time case, let θ1 = (ξ, ω, g, h)� and θ2 be the pa-
rameter vector corresponding to the correlation function of Z(s, t)
in (5), ρZ (s1, t1, s2, t2), and let θ = (θ�

1 , θ�
2 )� . Consider a dataset 

Dst = {y(s1, t1), . . . , y(sn, tn)} collected from the TGH space-time 
random process, T (s, t), at space-time locations (s1, t1), . . . , (sn, tn), 
n = NT . The log-likelihood function of θ given the dataset Dst is

L(θ1, θ2|Dst) ∝ − 1

2
{Z�

θ1
(R−1

θ2
+ h In)Z θ1 + log |Rθ2 |}

−
n∑

i=1

log[exp(gzθ1,si ,ti )

+ g−1{exp(gzθ1,si ,ti ) − 1}hzθ1,si ,ti ] − n logω,

(7)

where zθ1,si ,ti = τ−1
g,h

{
y(si, ti) − ξ

ω

}
, Z θ1 = (zθ1,s1,t1 , . . . , zθ1,sn,tn )

�

and (Rθ2 )i, j = ρZ (si, ti, s j, t j), i, j = 1, . . . , n. Like the space case, 
we find the maximum likelihood estimates (MLE) of θ for the given 
space-time dataset Dst by maximizing the log-likelihood in (7).

3.5. Kriging with Tukey g-and-h random fields

One problem of interest is making predictions at new locations. 
This problem of making predictions is also known as kriging. In 
kriging, the objective is to find an optimal point estimator of the 
process under consideration at a new location s0 by minimizing 
some loss function. For TGH space random fields, the best kriging 
predictor of T (s0) under the mean squared error loss function is

T̂ (s0) = ξ̂ + ω̂

ĝ
√

1 − ĥσ̃ 2
exp

{
ĥμ̃2

2(1 − ĥσ̃ 2)

}
×

[
exp

{
ĝ2σ̃ 2 + 2̂gμ̃

2(1 − ĥσ̃ 2)

}
− 1

]
, (8)

where μ̃ = r�̂
θ2

R−1
θ̂2

Z θ̂1
, σ̃ 2 = 1 − r�̂

θ2
R−1

θ̂2
rθ̂2

and rθ̂2
= {ρZ (s0, s1),

. . . , ρZ (s0, sN)}� and ̂θ = (̂θ
�
1 , ̂θ�

2 )� is the MLE of θ .
For the space-time TGH model, the kriging equation for a new 

space-time location (s0, t0), obtained by minimizing the mean 
squared error loss function is

T̂ (s0, t0) = ξ̂ + ω̂

ĝ
√

1 − ĥσ̃ 2
exp

{
ĥμ̃2

2(1 − ĥσ̃ 2)

}
×

[
exp

{
ĝ2σ̃ 2 + 2̂gμ̃

2(1 − ĥσ̃ 2)

}
− 1

]
, (9)

where rθ̂2
= {ρZ (s0, t0, s1, t1), . . . , ρZ (s0, t0, sn, tn)}� , μ̃ =

r�̂
θ2

R−1
θ̂2

Z θ̂1
, σ̃ 2 = 1 − r�̂

θ2
R−1

θ̂2
rθ̂2

, and θ̂ = (̂θ
�
1 , ̂θ�

2 )� is the MLE 
of θ .

3.6. Space Matérn correlation function

For defining the space TGH model in Equation (3) we need a 
space correlation function for constructing the correlation matrix 
of the latent Gaussian random field Z(s). The correlation matrix 
has to be a symmetric positive definite matrix. We use the Matérn 
4

correlation function in this work because of its high flexibility, 
which is defined as

ρZ (s1, s2) = ρZ (h) = 1

�(ν)2ν−1

(
4
√

2ν
h

φ

)ν

Kν

(
4
√

2ν
h

φ

)
,

(10)

where h = ‖s1 − s2‖ is the distance between locations s1 and s2, 
ν > 0 is the smoothness parameter, φ > 0 is the range parame-
ter, �(·) is the gamma function, and Kν(·) is the modified Bessel 
function of the second kind of order ν . As the name suggests, the 
smoothness parameter ν dictates the smoothness of the random 
field, and the range parameter φ controls how quickly the correla-
tion of the random field decreases with distance. Many popular 
correlation functions come under the Matérn correlation family. 
For example, when ν = 0.5, the Matérn correlation function be-
comes the exponential correlation function ρ(h) = exp(−4h/φ), 
when ν = 1, it becomes the Whittle correlation function ρ(h) =
(4h/φ)K1 (4h/φ).

3.7. Space-time Matérn correlation function

A proper space-time correlation function is needed in the 
space-time case, which yields a positive definite correlation matrix 
for Z(s, t). For this work, we use the space-time Matérn correla-
tion function introduced by Gneiting [27], and its functional form 
is

ρZ (s1, t1, s2, t2) = ρZ (h, u)

= 1

2ν−1�(ν)(u2α/at + 1)

{
h/as

(u2α/at + 1)β/2

}ν

×Kν

{
h/as

(u2α/at + 1)β/2

}
, (11)

where h = ‖s1 − s2‖ is the distance between locations s1 and s2, 
u = |t1 − t2| is the absolute difference between two-time points, 
ν > 0 and α ∈ (0, 1] are the smoothness parameters in space and 
time, respectively, as, at > 0 are the range parameters in space and 
time, respectively, β ∈ [0, 1] is the space-time interaction parame-
ter, �(·) is the gamma function, and Kν(·) is the modified Bessel 
function of the second kind of order ν . The smoothness param-
eters ν and α dictate the smoothness of the random process in 
space and time, respectively. The range parameters as and at con-
trol how quickly the correlation of the random process decreases 
with distance and the time difference, respectively. The space-time 
interaction parameter β dictates to what extent the space-time 
components interact between themselves. When the parameter 
β = 0, the correlation function can be written as factors of pure 
space and purely temporal components. These kinds of correlation 
functions are known as separable correlation functions. There is 
no interaction between space and time components for a separa-
ble correlation function.

3.8. Assessment of fitted TGH model using PIT

The Probability Integral Transformation (PIT) can be used to 
check the model’s adequacy. Suppose we fit the space TGH model 
to a dataset Ds = {y(s1), . . . , y(sN )}, assuming it is collected 
from a space TGH random field T (s), defined in (3), at locations 
s1, . . . , sN . Then, from Theorem 4 in [49], we can estimate the con-
ditional distribution function of T (s0) given Ds as

F̂s0(u|Ds) = �

(
z − μ̃

)
, (12)
σ̃
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where z = τ−1
ĝ ,̂h

{(u − ξ̂ )/ω̂}, �(·) is the distribution function of stan-

dard Gaussian distribution, and μ̃ and σ̃ 2 are defined in (8). If the 
dataset is emulating a space TGH model, then the probability inte-
gral transform of T (s0), i.e., Fs0 {T (s0)} will be an observation from 
a uniform distribution over (0, 1). The validation procedure can 
be performed by dividing the data into training and testing. Sup-
pose the data are coming from a TGH random field. In that case, 
the probability integral transformations of the testing data, trans-
formed by the estimated distribution function with the training 
data, should be approximately uniformly distributed over (0, 1).

In the space-time regime, suppose we fit the space-time TGH 
model to the dataset Dst = {y(s1, t1), . . . , y(sn, tn)}. Then the esti-
mated conditional distribution function of T (s0, t0) given Dst is

F̂s0,t0(u|Dst) = �

(
z − μ̃

σ̃

)
, (13)

where z = τ−1
ĝ ,̂h

{(u − ξ̂ )/ω̂} and μ̃ and σ̃ 2 are defined in (9). Similar 
to the space case, we can check the PIT histogram of the testing 
data and see if it resembles the uniform distribution over (0, 1)

for checking the model adequacy.

3.9. Task-based parallelism

Task-based parallelism is a standard parallel programming 
model that defines a set of predefined tasks with inputs/out-
puts and their respective data directions. The algorithm may then 
translate into a Directed Acyclic Graph (DAG) representing the de-
pendencies between the tasks during the execution. According to 
the DAG, tasks may run on existing processing units when the 
data dependencies are satisfied. Matrix operations are the core of 
the log-likelihood function in Gaussian and non-Gaussian random 
fields, where computing the inversion of the correlation matrix is 
the most time-consuming operation with cubical complexity. In 
the literature, parallel linear algebra solvers have two types of ap-
proaches, block-based and tile-based algorithms. The block-based 
algorithms decompose the target matrix into successive panels and 
update the trailing submatrix. LAPACK [9] and ScaLAPACK [19] are 
state-of-the-art software that provides block-based linear solvers 
for shared and distributed-memory systems. The tile-based algo-
rithms rely on splitting the matrix into a set of tiles and defining 
the underlying algorithms to weaken the artifactual synchroniza-
tion points during the matrix operations. PLASMA [5], DPLASMA 
[15] and Chameleon [17] are examples of state-of-the-art tile-
based linear algebra solvers.

3.10. Dynamic runtime systems

Representing the numerical operation as a set of tasks allows 
better distribution of the individual tasks into available process-
ing units. In this case, a task-based dynamic runtime system such 
as OmpSs [23], OpenMP [20], StarPU [10], and PaRSEC [16] can be 
employed to run tasks on different hardware resources while en-
suring the integrity of data dependencies. In this work, we rely 
on the StarPU runtime system to implement the non-Gaussian log-
likelihood function.

3.11. Tile low-rank approximations

Tile Low-Rank (TLR) approximation [6,8] is a flat algebraic com-
pression approach that splits the dense matrix into tiles of similar 
sizes. Fig. 1 shows an example of compressing an off-diagonal 
tile T 12 to two matrices U 12 and V 12, where the Singular Value 
Decomposition (SVD) is used to compress the dense matrix. The 
most significant k singular values are captured with their asso-
ciated singular vectors, which correspond to the rank of the tile. 
5

Fig. 1. An example of TLR approximation tile: diagonal tiles (in red) are dense. Off-
diagonal tiles (in green) are represented as low-rank approximation.

Once each tile is compressed, the tile-based algorithm is expressed 
in terms of tasks interconnected by their data dependencies. The 
original algorithm can then be translated into a Directed Acyclic 
Graph (DAG), where nodes are fine-grained computational tasks, 
and edges express their data dependencies. As integrated into the 
HiCMA library, the runtime orchestrates the asynchronous schedul-
ing of tasks with their data dependencies onto processing units [3]. 
The task-based programming model creates opportunities for look-
ahead, which enables to maintain high hardware occupancy.

4. Parallel TGH modeling and prediction

This section explains our proposed parallel implementation of 
the TGH likelihoods and predictions in exact and TLR approxima-
tion. We describe in detail the modeling and prediction algorithms. 
We also show the distribution of the ranks in TLR matrices associ-
ated with space and space-time TGH random fields.

4.1. Non-Gaussian space and space-time log-likelihood estimation

Recalling the TGH random field log-likelihood functions for 
space in (6) and for space-time in (7), the log-likelihood estima-
tion process involves generating a covariance matrix Rθ2 where θ2
is the parameters of a given correlation function. Given a set of N
geospace locations (and M time slots), a selected covariance func-
tion can be used to build an N × N (or N M × N M) covariance 
matrix. In this work, we use the parametrizable Matérn correla-
tion function with two parameters: φ, the space range parameter, 
and ν , the random field smoothness parameter. The other input 
parameter vector θ1 = (ξ, ω, g, h)� is used to transform the non-
Gaussian measurement vector Z to a Gaussian vector Z θ1 . 

Algorithm 1 presents the TGH log-likelihood estimation algo-
rithm in space and space-time cases. The Z θ1 vector transforma-
tion step is performed first, as shown in line 4 with a given θ1
parameter vector.

Since the τ−1
g,h(·) has no closed form, we use the Newton-

Raphson method to approximate the function for Z θ1 as follows: 

τ−1
g,h(zθ1,si ) = y(si) − ξ

ω
, (14)

τ−1
g,h(zθ1,si ,ti ) = y(si, ti) − ξ

ω
. (15)

In line 4, the covariance matrix is generated based on Equa-
tion (10) or Equation (11). The most time-consuming step in Al-
gorithm 1 is the Cholesky factorization of the covariance matrix 
Rθ2 in line (3). In line 6 we compute the determinant of the co-
variance matrix based on Cholesky factorization in line 5. In line 
7, the non-Gaussian component S from the log-likelihood function 
in eq (6) and (7) is computed. In line 8, a triangular solve opera-
tion is performed between the factorized matrix and Z θ1 . In line 
11, the final value of the likelihood function is computed based on 
the result of the dot product operation in line 9.
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Fig. 2. Subfigures (a), (b), and (c) represent rank distributions of a 8,100 ×8,100 space covariance TLR matrix using nb = 810 with Matérn parameters θ2 = (0.96, 0.5)� under 
different accuracy levels. Subfigures (d), (e), and (f) represent rank distributions of a 8,100 × 8,100 space-time covariance TLR matrix, i.e., 36 locations and 225 timeslots, 
using nb = 810 with Matérn parameters θ2 = (0.1055, 0.5, 0.0485, 0.1, 0.5)� under different accuracy levels.
Algorithm 1 TGH log-likelihood algorithm for space/space-time 
random fields.

1: Input:
Space Case: a set of locations S = {s1, . . . , sN }, associated measurements 
y(s1), . . . , y(sN ), and current parameter vector θ1 = (ξ, ω, g, h)�
Space-Time Case: a set of space-time locations (S , T ) = {(s1, t1), . . . , (sn, tn)}, 
associated measurements y(s1, t1), . . . , y(sn, tn), and current parameter vector 
θ1 = (ξ, ω, g, h)�

2: Output: the log-likelihood estimation for the current parameter vector θ1

3: Space Case: Inverse TGH transformation for zθ1,si ← τ−1
g,h

{
y(si) − ξ

ω

}
, and 

Z θ1 = (zθ1,s1 , . . . , zθ1,sN )�

Space-time Case: Inverse TGH transformation for zθ1,si ,ti ← τ−1
g,h

{
y(si , ti) − ξ

ω

}
, 

and Z θ1 = (zθ1,s1,t1 , . . . , zθ1,sn ,tn )� .
4: Space Case: Generate covariance matrix Rθ2

Space-time Case: Generate covariance matrix Rθ2 → eq (11)
5: POTRF(Rθ2 ) → Cholesky factorization
6: determinant = Det(Rθ2 )
7: Space Case: S = ∑N

i=1(log[exp(gzθ1,si ) + g−1{exp(gzθ1,si ) −1}hzθ1,si ] +hz2
θ1,si

) +
N logω
Space-time Case: S = ∑n

i=1(log[exp(gzθ1,si ,ti ) + g−1{exp(gzθ1,si ,ti ) −
1}hzθ1,si ,ti ] + hz2

θ1,si ,ti
) + n logω

8: TRSM (Rθ2 , Z θ1 ) → Triangular solve
9: dotproduct = (Zθ1 × Z θ1 )

10: llh = − 1
2 {dotproduct + log(determinant)} − S .

We rely on the state-of-the-art dense task-based libraries, i.e., 
Chameleon, to perform the linear algebra operations that appear 
in Algorithm 1, including the Cholesky factorization of the covari-
ance matrix and the triangular solve in line (6). Furthermore, we 
exploit the data sparsity structure of the covariance matrix and 
apply low-rank approximation methods to reduce the overall com-
plexity of the underlying linear algebra operations. In particular, 
we use TLR matrix approximations to speed up the computation of 
the Cholesky factorization heavyweight operation while preserving 
the accuracy requirement of the application.
6

4.1.1. TLR approximation of Rθ2

The TLR approximation in the HiCMA library compresses the 
individual tiles using the Singular Value Decomposition (SVD) algo-
rithm [47], where the ranks of the tiles represent the most signifi-
cant singular values and vectors in each off-diagonal tile [6]. There-
fore, the effectiveness of the TLR mechanism depends on the ranks 
of the off-diagonal tiles after compression, which in turn depends 
on the application’s accuracy requirements. Thus, we initially val-
idate the potency of the TLR approximation with the space and 
space-time TGH modeling by estimating the ranks corresponding 
to different accuracy levels, namely, TLR-5 (10−5), TLR-7 (10−7), 
and TLR-9 (10−9). The required accuracy level of our application 
and the corresponding performance assessment is shown in detail 
in the performance section. Herein, we validate the effectiveness of 
using TLR with our two models. SubFigs. 2 (a), (b), and (c) depict 
the rank distribution of an 8, 100 × 8, 100 space covariance ma-
trix generated by the Matérn covariance function shown in (10). 
In comparison, SubFigs. 2 (d), (e), and (f) depict the rank distribu-
tion of an 8,100 × 8,100 space-time covariance matrix generated 
by the Matérn covariance function shown in (11). As shown, the 
ranks of the off-diagonal tiles grow as the tiles get closer to the 
diagonal with different TLR accuracy levels, with a monotonic in-
crease of the ranks with tighter tolerance. However, even with 
TLR-9, the ranks are still smaller than the full dense tiles in the 
diagonal. The given two examples are drawn from two synthetic 
sets of non-Gaussian space and space-time Matérn parameters, i.e., 
θ2 = (0.96, 0.5)� and θ2 = (0.1055, 0.5, 0.0485, 0.1, 0.5)� , respec-
tively. We also examine other space and space-time correlation 
strengths, which all show almost the same ranks with different 
accuracy levels. We only observe a change in the ranks with vary-
ing values of smoothness. Another observation from both figures 
is that the space-time covariance function produces higher ranks 
compared to the space covariance function.
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4.2. Non-Gaussian space and space-time prediction

The optimization process of the likelihood function aims at tun-
ing the TGH parameter vectors, i.e., θ̂1 and θ̂2. These parameters 
are used to predict missing measurements at a set of new loca-
tions using Equation (8). Algorithm 2 shows in detail the numerical 
steps to predict missing values using the two tuned parameter vec-
tors. Line 4 accounts for most of the algorithmic complexity as it 
involves the Cholesky-based solver of the covariance matrix. This 
algorithm predicts the missing data at a certain location (i.e., space 
case) or a certain location and a certain time slot (i.e., space-time 
case).

Algorithm 2 TGH prediction algorithm for space and space-time 
random fields.

1: Input:
Space Case: a set of locations S = {s1, . . . , sN } and associated measurements 
y(s1), . . . , y(sN ), and estimated parameter vector ̂θ
Space-Time Case: a set of space-time locations (S, T ) = {(s1, t1), . . . , (sn, tn)} and 
associated measurements y(s1, t1), . . . , y(sn, tn), and estimated parameter vec-
tor ̂θ

2: Output:
Space Case: the predicted values T̂ (s01), . . . , ̂T (s0Nnew ) at new locations 
s01, . . . , s0Nnew

Space-Time Case: the predicted values T̂ (s01, t01), . . . , ̂T (s0nnew , t0nnew ) at new 
space-time locations (s01, t01), . . . , (s0nnew , t0nnew )

3: Space Case: Inverse TGH transformation for ẑθ1,si
← τ−1

g,h

{
y(si) − ξ̂

ω̂

}
and Z θ̂1

=
(ẑθ1,s1

, . . . , ẑθ1,sN
)�

Space-Time Case: Inverse TGH transformation for ẑθ1,si ,ti
← τ−1

g,h

{
y(si , ti) − ξ̂

ω̂

}
and Z θ̂1

= (ẑθ1,s1,t1
, . . . , ẑθ1,sn ,tn

)�
4: Space Case: Generate covariance matrix Rθ2 → eq (10)

Space-Time Case: Generate covariance matrix Rθ2 → eq (11)
5: Space Case: Generate covariance vector rθ̂2

→ eq (8)
Space-Time Case: Generate covariance vector rθ̂2

→ eq (9)
6: POSV (R θ̂2

, Z θ̂1
) → System of linear equations solver

7: CPY (rθ̂2
, rc p yθ̂2

)

8: TRSM (R�̂
θ2

, rθ̂2
) → Triangular solve

9: tmp1 = GEMV(rc p yθ̂2
, Z θ̂1

) → Matrix-vector multiplication
10: tmp2 = GEMM(rc p yθ̂2

, rθ̂2
) → Matrix-matrix multiplication

11: for k = 1 to Nnew (or nnew ) do
12: μ̃ = tmp1[k]
13: σ̃ 2 = 1 − tmp2[k]
14: Space Case: ̂T (s0k) = ξ̂ + ω̂

ĝ
√

1−ĥσ̃ 2
exp{ ĥμ̃2

2(1−ĥσ̃ 2)
} × [exp{ ĝ2 σ̃ 2+2̂gμ̃

2(1−ĥσ̃ 2)
} − 1]

Space-Time Case: T̂ (s0k, t0k) = ξ̂ + ω̂

ĝ
√

1−ĥσ̃ 2
exp{ ĥμ̃2

2(1−ĥσ̃ 2)
} ×

[exp{ ĝ2 σ̃ 2+2̂gμ̃

2(1−ĥσ̃ 2)
} − 1]

15: end for

Using low-rank approximation in the form of TLR for both R θ̂2
and rθ̂2

in Algorithm 2 can help reduce the complexity of the TGH 
prediction algorithm similar to the likelihood estimation operation. 
The following section gives a detailed performance assessment of 
different proposed TGH implementations.

5. Simulation study and performance assessment

This section provides a detailed evaluation of the accuracy of 
the proposed TGH implementation when considering big geospace 
datasets. The evaluation aims to assess the space and space-time 
modeling and prediction accuracy of the TGH model compared to 
the Gaussian model. We also aim to show the accuracy of the TLR 
approximation compared to the exact solution on both synthetic 
and real datasets. Finally, we aim to assess the performance of the 
proposed TGH implementations using Chameleon/StarPU for both 
exact and TLR approximation. The performance assessment covers 
both shared-memory and distributed-memory systems.
7

5.1. Testbed and methodology

The assessment of the exact and approximate implementations 
of TGH modeling and prediction has been conducted on Intel and 
AMD chips to highlight our software portability: a 28-core dual-
socket Intel Xeon IceLake Gold 6330 CPU running at 2.00 GHz, and 
a 64-core dual-socket AMD EPYC Milan 7713 CPU running at 2.00 
GHz. For the distributed-memory experiments, we use KAUST’s 
Shaheen-II, a Cray XC40 system with 6, 174 dual-socket compute 
nodes based on 16-core Intel Haswell processors running at 2.3 
GHz. Each node has 128 GB of DDR4 memory. The system has a 
total of 197, 568 processor cores and 790 TB of aggregate memory.

Our implementation enables performance portability as long as 
an optimized BLAS/LAPACK library is available on the target sys-
tem. We rely on Intel MKL v2020.0.166 as the optimized BLAS/LA-
PACK library to link against the necessary optimized numerical 
routines for our implementations on our testbed systems. We com-
pile the proposed exact and TLR code using Chameleon/StarPU 
and HiCMA linear algebra libraries with GCC V11.1, HWLOC v2.5.0, 
StarPU v1.3.8, GSL v2.7, and NLopt v2.6.2 optimization libraries.

5.2. Modeling and prediction accuracy assessment

In this section, we validate the proposed computational frame-
work for fitting the space TGH model by means of parameter es-
timation accuracy. We perform the validation using Monte Carlo 
simulations for the space and space-time models. The Monte Carlo 
simulations process starts with generating many synthetic datasets 
using a pre-selected set of initial values to the parameter vec-
tor of the selected model. Then, these datasets are modeled using 
the proposed implementation to estimate a set of parameters that 
should be close to the initial ones.

5.2.1. Monte Carlo space TGH modeling simulations
For this simulation experiment, we generate synthetic random 

observations on 20,164 random locations on the [0, 1] × [0, 1]
square, from the space TGH model (one time slot) defined in Equa-
tion (3) with the following parameter settings:

(a) ξ = 0, ω = 2, g = 0.2, h = 0.2, ν = 0.5, and φ = 0.42, with 
effective range 0.3;

(b) ξ = 0, ω = 2, g = 0.2, h = 0.2, ν = 0.5, and φ = 0.70, with 
effective range 0.5;

(c) ξ = 0, ω = 2, g = 0.5, h = 0.3, ν = 0.5, and φ = 0.96, with 
effective range 0.5;

(d) ξ = 0, ω = 2, g = 0.2, h = 0.2, ν = 0.5, and φ = 0.98, with 
effective range 0.7.

The effective range is the distance at which the correlation 
between two points becomes less than 0.05. We evaluate φ for 
different setups by changing the effective range, given the other 
parameters. To find φ in different setups, we use the functional 
form of the correlation function of the TGH random field, as given 
by Xu and Genton [49]. For each of these four setups, we find the 
MLE of the parameters by maximizing the log-likelihood function 
in Equation (6). Moreover, by maximizing the TLR approximated 
log-likelihood for different accuracies we obtain the MLE of the 
parameters. We repeat the procedure 100 times for both exact 
and TLR log-likelihood with different accuracies. We summarize 
our findings in the boxplots of the estimated parameter values 
for different setups and for different computation techniques in 
Fig. 3. We used three accuracy levels for TLR (i.e., TLR-5, TLR-7, 
and TLR-9) compared to the exact estimation (i.e., Exact). From the 
boxplots, we can say that our framework is well able to estimate 
the TGH model parameters under different circumstances. More-
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Fig. 3. Boxplots of parameter estimates of the TGH non-Gaussian space only case (ξ , ω, g , h, φ , ν) under the TLR and exact log-likelihood computation. The true parameters 
are indicated by the red lines.
over, the TLR approximation of the log-likelihood with an accuracy 
of 10−7 is giving us comparable results to the exact log-likelihood.

5.2.2. Evaluation of prediction with the space TGH random fields
Here, we provide a justification of the PIT assessment tool, dis-

cussed in Section 3.8, with a simulation study. In this simulation 
study, we generate 20,164 random observations on random loca-
tions on [0, 1] × [0, 1] square from the space TGH models with 
parameter setup (a) from the previous section. We fit the Gaus-
sian space model and the space TGH model to a 90% subsample 
of the generated data (training data). Using the method discussed 
in Section 3.8 using the remaining data points (10%, testing data), 
we create the PIT histogram using the method mentioned in Sec-
tion 3.8. Separate histograms are obtained based on the exact and 
TLR-7 parameter estimates. Fig. 4 suggests that the PIT histogram 
obtained by fitting the TGH model looks closer to a uniform distri-
bution than the PIT histogram obtained from the Gaussian model. 
This simulation study shows that the model-adequacy judgment 
technique discussed in Section 3.8 is reasonable. 

5.2.3. Monte Carlo space-time TGH modeling simulations
In this simulation experiment, we generate random observa-

tions on 100 space locations ×400 time locations from the space-
time TGH model defined in Equation (5) and estimate the space-
time TGH model parameters by maximizing the log-likelihood 
function, given in Equation (7). We use two parameter settings 
8

(as, at) = (0.105, 0.048) and (0.176, 0.054) for the space-time 
Matérn correlation function in Equation (11), along with ν = 0.5, 
α = 0.1, and β = 0.5 to generate two different space-time correla-
tion matrices. Moreover, we use ξ = 0, ω = 2, g = 0.2, and h = 0.2
to generate the space-time TGH observations for each space-time 
correlation matrix. We use the specific range parameters for cre-
ating weakly and moderately correlated observations in space and 
time, respectively. We find the MLE of the parameters from the 
synthetic dataset for each parameter set using the exact and TLR 
computation under different accuracy levels and repeat the pro-
cess 100 times. The parameter estimates are summarized in the 
boxplots given in Fig. 5. The boxplots show that the estimation is 
accurate under different correlation settings suggesting the com-
putation framework works properly under both the exact and TLR 
cases. Moreover, from the boxplots, we conclude that the TLR with 
an accuracy of 10−7 produces results comparable to the exact com-
putation.

5.2.4. Evaluation of prediction with the space-time TGH random fields
Similar to the space case, we justify the PIT assessment tool, 

discussed in Section 3.8, with a simulation study in the space-time 
setting. In this simulation study, we generate random observations 
on 400 space locations ×100 time locations from the space-time 
TGH model with parameter setup ξ = 0, ω = 2, g = 0.2, h = 0.2, 
as = 0.08, ν = 1, at = 1.08, α = 0.5, and β = 0.5. On 90% of the 
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Fig. 4. PIT histograms for predictive distribution with the same TGH synthetic space dataset with exact and TLR-7 estimates.

Fig. 5. Boxplots of parameter estimates of the TGH non-Gaussian space-time case (ξ , ω, g , h, as , ν , at , α, β) under the TLR and exact log-likelihood computation. The true 
parameters are indicated by the red lines.
9
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Fig. 6. PIT histograms for predictive distribution with the same TGH synthetic space-
time dataset.

Table 1
Parameter estimates for Gaussian and TGH models on 300K space lo-
cations of the precipitation data in January 2021.

Model ξ ω g h φ ν

Gaussian 0.26 1.04 - - 10.36 0.57
TGH −0.37 0.85 −1.69 0.65 10.78 0.64

simulated data, we fit the space-time TGH model and the space-
time Gaussian model. The PIT histogram from both models based 
on the remaining 10% testing dataset is given in Fig. 6. The PIT 
histogram from the space-time TGH model looks closer to a uni-
form distribution over (0, 1) compared to the PIT histogram from 
the Gaussian model. This simulation study shows that the model-
adequacy judgment technique discussed in Section 3.8 can be ex-
tended to the space-time scenario as well. 

5.2.5. Real dataset application
We use the month-wise daily average precipitation of Germany 

in the year 2021. The data is collected by Kaspar et al. [31] and 
covers the whole of Germany with a space resolution of 1 km ×
1 km. The daily average precipitation is given in mm. Because of 
this high space resolution, the total number of locations is n =
358,303. To make the data stationary, we remove the mean of the 
daily average precipitation of each month over the year 2000 to 
2020 from the data. So, the data can be interpreted as the monthly 
excess daily average precipitation of 2021. The space image of the 
data is given in Fig. 7.

5.2.5.1. Monthly-based space modeling We fit the Gaussian model 
and TGH model to a subsample of size 300K locations from the 
data for the month of January. The estimated parameter values are 
presented in Table 1. The estimates of the parameters g and h from 
the space TGH model show that the data for the month of January 
are far from a Gaussian random field. This claim is justified by the 
proposed PIT assessment tool. We compute the PIT based on the 
estimated distribution function for the space Gaussian model and 
the space TGH model on the remaining testing data, i.e., 58,803
samples. The PIT histograms based on both models are given in 
Fig. 8. We can see from Fig. 8 that the PIT histogram obtained 
from the TGH model emulates the uniform distribution better over 
(0, 1) compared to the Gaussian model. This observation leads us 
to conclude that the fitted TGH model is more appropriate to ex-
plain the variability of the data compared to the Gaussian model.

We also analyze the monthly data at 20,000 locations sepa-
rately for each month. The locations have been selected randomly. 
For each month, we use the data on the chosen locations to fit the 
space Gaussian and TGH models. The parameter estimates from 
both models are summarized in Table 2 for all months. The esti-
mates of g and h based on the space TGH model are very far from 
0 for all months, suggesting the TGH model is more appropriate 
for this dataset, compared to the Gaussian model. This claim has 
been validated by the PIT assessment as well. We used 2000 ran-
dom locations (separately drawn from the initial 20,000 locations) 
10
as our testing set, and based on that we draw the PIT for each 
month for two models, given in Fig. 9. The figure shows how the 
PIT histogram from the TGH models emulates the uniform distri-
bution over (0, 1) better than the PIT histogram for the Gaussian 
model for different months. This makes the TGH model more ap-
propriate to this given real dataset than the Gaussian model.

5.2.5.2. Monthly space-time data experiment So far, we have ana-
lyzed only the space data for different months separately. In this 
section, we analyze the same monthly data from the previous sec-
tion, collected over 20,000 locations, with the help of the Gaus-
sian space-time model and the TGH space-time model. Moreover, 
with the month-wise estimates of ξ̂t , ω̂t , ĝt , and ĥt from the 
space TGH model, we transform the data to the Gaussian scale by 
τ−1

ĝt ,̂ht
{ y(s j ,t)−ξ̂t

ω̂t
}, where j ∈ {1, . . . , 20,000} and t ∈ {1, . . . , 12}. This 

transformed data can be interpreted as observations from a zero 
mean unit variance Gaussian space-time random field. We fit the 
space-time TGH model to this transformed data by fixing the pa-
rameters ξ = 0, ω = 1, g = 0, and h = 0. The difference between 
this model and the space TGH model described in Equation (5) is 
that the space TGH model assumes the parameter ξ , ω, g , and 
h are constant over time. However, the space-time TGH model on 
the Gaussian scale assumes the parameter ξ , ω, g , and h are differ-
ent for different times, and their estimation is performed by fitting 
the space TGH model to the space data at each time point. The 
estimated parameters for all three space-time models based on 
this data are given in Table 3. Based on the testing dataset, the 
PIT histogram for all three models is presented in Fig. 10. The PIT 
histograms show that the Gaussian model is not the best option 
for modeling this space-time data. This is because the data has 
non-Gaussian behavior, which requires a non-Gaussian model to 
capture it. Thus, the TGH model outperforms the Gaussian model. 
However, since different months have different estimates for ξ , ω, 
g and h, as reported in Table 2, the Gaussian scale model outper-
forms both modeling techniques.

5.3. Performance assessment

In this section, we aim to assess the performance of our imple-
mentation on shared-memory and distributed memory systems.

5.3.1. TLR matrices performance assessment
We provide the TGH space and space-time modeling and pre-

diction operations in low-rank structures using TLR approxima-
tions. The baseline TLR software is the HiCMA library, which runs 
on shared and distributed-memory architectures with the aid of 
the StarPU runtime system. We compare the TGH model using 
TLR implementation on two different shared-memory architectures 
from two vendors, i.e., Intel and AMD. We assess the performance 
of both implementations of the TGH likelihood function.

Performance on Shared-Memory Systems: Fig. 11 shows the 
performance of the TLR approximation compared to the exact im-
plementation of the TGH likelihood function on our target two 
shared-memory systems and using different data sizes. With dif-
ferent accuracy, TLR outperforms the exact version of the likeli-
hood estimation with a different number of locations. TLR shows 
better performance than the exact implementation, reaching up to 
7.29X and 5.74X on Intel IceLake and AMD Milan, respectively. 
Furthermore, Fig. 12 shows the performance of the prediction op-
eration using exact and TLR. The figure shows the TLR approxima-
tion of accuracy 10−9 outperforms the exact computation with up 
to 4.29X and 4.88X on the given machines. 

Performance on Distributed-Memory Systems: We assess the 
exact and TLR-based approximation performance on the Shaheen-II 
Cray XC40 system. Fig. 13a shows the scalability of the exact non-
Gaussian MLE on 64, 128, 256, and 512 nodes. Furthermore, the 
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Fig. 7. Monthly excess daily average precipitation data over Germany in 2021.

Fig. 8. PIT histograms for both Gaussian and TGH models with the real dataset.
figure shows that the exact MLE implementation scales very well 
with the same matrix size and a different number of nodes. For 
instance, with 562, 500 space locations, the total execution time 
for a single MLE iteration is 629.44, 380.78, 255.97 seconds using 
128, 256, and 512 nodes. We also assess the performance of the 
TLR-based implementation using 512 nodes on Shaheen-II com-
pared to the exact computation. Fig. 13b shows the execution time 
of the exact and TLR approximation for MLE with different accu-
racy levels. As shown, the TLR approximation performs better than 
exact computation with a different number of locations up to 800 
K locations using 512 nodes. The figure shows that the TLR ap-
proximation outperforms the exact calculation by up to 2.96X . We 
believe the performance of TLR MLE can be further improved by 
using a runtime system that provides rank-aware data distribu-
11
tion to mitigate the load imbalance [4]. In the two subfigures of 
Fig. 13b, the exact computation curve shows some performance 
difference with matrix size less than or equal to 455,625. Since the 
workload is small for the given number of nodes, the performance 
with these matrix sizes can vary due to different system loads and 
network congestion. Larger matrix sizes show more stable perfor-
mance with the same number of nodes since all the nodes were 
involved in computation more than data movements.

6. Conclusion

This paper introduced parallel non-Gaussian modeling and pre-
diction implementation based on the Tukey g-and-h (TGH) ran-
dom fields in the context of climate/weather applications. We pro-
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Fig. 9. PIT histograms for both Gaussian and TGH model with the real dataset.

Table 2
Parameter estimates for the Gaussian and the TGH models on 20K space locations of the monthly precipitation 
data of the year 2021.

Month Gaussian Model Estimates TGH Model Estimates

ξ ω g h φ ν ξ ω g h φ ν

Jan 0.69 0.69 - - 28.42 0.49 -0.71 1.78 -2.51 0.48 46.19 0.80
Feb 0.61 0.57 - - 49.98 -0.64 -0.24 0.39 -0.24 0.22 30.13 0.79
Mar 0.65 1.98 - - 43.26 0.23 -6.23 20.90 -3.68 0.11 170.86 0.72
Apr 0.62 0.83 - - 159.81 -0.51 0.49 1.02 1.78 0.52 104.68 0.71
May 0.87 0.59 - - 16.11 0.86 -0.68 1.74 -1.40 0.39 44.22 0.89
Jun 0.90 1.06 - - 16.52 0.54 -2.09 4.12 -2.12 0.33 30.23 0.99
Jul 0.77 1.33 - - 33.49 1.11 0.64 0.95 0.44 0.08 20.80 0.92
Aug 0.86 0.92 - - 21.09 0.69 0.60 0.69 0.30 0.10 17.42 0.99
Sep 0.66 0.74 - - 45.14 -1.13 -0.95 0.47 -0.40 0.13 23.45 0.74
Oct 0.55 1.30 - - 352.91 -1.09 -12.54 58.36 -4.97 0.10 467.64 0.68
Nov 0.62 0.68 - - 75.38 -0.11 -0.25 0.55 -0.29 0.15 60.05 0.70
Dec 0.70 0.45 - - 11.94 -0.15 -0.52 0.65 -1.15 0.33 43.03 0.76

Fig. 10. PIT histograms of different space-time models for the space-time real data.

Table 3
Parameter estimates for the space-time Gaussian, TGH, and the space-time model in the Gaussian scale for the 
monthly precipitation data of the year 2021 over 20K × 12 space-time locations.

Model ξ ω g h as ν at α β

Space-Time Gaussian 0.03 0.92 - - 72.28 0.75 0.34 1 0.71
Space-Time TGH -0.55 0.6 -0.45 0.19 56.26 0.84 0.32 0.73 0.40
Space-Time Gaussian
in Gaussian scale

0 (fixed) 1 (fixed) - - 72.32 0.81 0.13 0.45 0.17
12
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Fig. 11. Performance of a single TGH space MLE iteration on shared-memory architectures using exact and TLR matrices.

Fig. 12. Performance of a single TGH space prediction operation on shared-memory architectures using exact and TLR matrices.

Fig. 13. (a) Scalability of a single non-Gaussian MLE iteration on Shaheen-II with up to 512 nodes using exact matrices. (b) Performance of a single non-Gaussian MLE 
iteration on Shaheen-II nodes using exact and TLR matrices.
posed an exact and approximate parallel solution for modeling 
and prediction operations with the aid of existing dense linear 
algebra libraries to tackle the underlying matrix operations with 
large problem sizes. Furthermore, we rely on the Tile Low-Rank 
(TLR) approximation to alleviate the complexity of the modeling 
process in the TGH modeling. The TLR approximation was per-
formed for modeling and prediction operations. Using up to 800K
geospace locations, it also showed a speedup of up to 7.29X
and 2.96X compared to the exact implementation on shared and 
distributed-memory systems. For future work, we plan to con-
sider mixed-precision arithmetics with GPU hardware accelera-
tors to boost the performance of dense linear algebra kernels. We 
would also like to investigate randomized algorithms to directly 
generate the compressed matrix and improve the matrix assembly 
phase.
13
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