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The data observed in many phenomena have a spatial and a
temporal component. Due to the rapid development of com-
plex, performant technologies, spatio-temporal data can now be
collected on a large scale. However, the statistical modeling of
large sets of spatio-temporal data involves several challenging
problems. For example, it is computationally challenging to deal
with large datasets and spatio-temporal nonstationarity. There-
fore, the development of novel statistical models is necessary.
Here, we present a new methodology to model complex and
large spatio-temporal datasets. In our approach, we estimate a
continuous surface at each time point, and this captures the
spatial dependence, possibly nonstationary. In this way, the
spatio-temporal data result in a sequence of surfaces. Then, we
model this sequence of surfaces using functional time series
techniques. The functional time series approach allows us to ob-
tain a computationally feasible methodology, and also provides
extensive flexibility in terms of time-forecasting. We illustrate
these advantages through a Monte Carlo simulation study. We
also test the performance of our method using a high-resolution
wind speed simulated dataset of over 4 million values. Overall,
our method uses a new paradigm of data analysis in which the
random fields are considered as a single entity, a very valuable
approach in the context of big data.
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1. Introduction

We are in an era where data are important assets in many contexts, including decision making.
ue to the rapid development of complex, performant technologies, data can now be collected on a
arge scale, resulting in high-dimensional and high-frequency data. Statistical methods are expected
o work on these complex and large datasets. However, the statistical analysis of complex and large
atasets involves computational challenges, sometimes necessitating high-performance computing,
hich could be a limiting factor for the practitioner. These challenges have led us to a new paradigm
f data analysis. One approach to overcome these challenges is to assume that observations have
haracteristics that vary along a continuum, e.g., curves or surfaces. That is, a curve or a surface
s considered as a single point observation. Here, we use this continuous approach to propose a
ethodology to model and forecast complex and large spatio-temporal data that are dense in space
nd dense in time.
There has been an increasing amount of interest in space–time modeling. Traditionally, sta-

istical methods for spatio-temporal data focus on modeling the space–time covariance function
(s1, t1, s2, t2), with (si, ti), i = 1, 2, being two space–time locations. Therefore, researchers have put

considerable work and effort into studying valid models for the covariance function (see, e.g., the
recent review by Chen et al., 2021, and references therein). A simple and widely used space–
time covariance function is the product of purely spatial and purely temporal covariance functions,
C(s1, t1, s2, t2) = CS(s1, s2) · CT(t1, t2), where CS and CT are the purely spatial and purely temporal
ovariance functions, respectively. Such a space–time covariance function is known as separable.
Although separability does not allow interaction between space and time, it is often appealing
because it leads to computationally feasible methods in some scenarios (Genton, 2007). However,
the approach of modeling the space–time covariance function can be unfeasible for large datasets.
For example, the computational cost to factorize dense N ×N (covariance) matrices is O(N3), which
is challenging for large N . Some approaches to overcome the computational cost are covariance
tapering (Furrer et al., 2006; Kaufman et al., 2008) and fixed rank kriging (Cressie and Johannesson,
2008; Nguyen et al., 2014); see the reviews by Sun et al. (2012), Heaton et al. (2019), and Huang
et al. (2021). Covariance tapering uses a compactly supported approximation for the covariance
function, and fixed rank kriging aims to reduce the parameter dimensionality. For nonstationary
spatio-temporal data, see Nychka et al. (2018) and Kuusela and Stein (2018).

Another approach to space–time modeling is combining techniques from time series and spatial
statistics. This approach provides statistical models that are spatially descriptive and temporally
dynamic (Wikle and Cressie, 1999; Gelfand et al., 2005; Wikle and Hooten, 2010; Sigrist et al.,
2012). The temporal modeling mostly accounts for the spatio-temporal variation. In other words, the
spatio-temporal data are considered as a multivariate time series whose components are correlated
in space. With this approach, many classes of time series models can be used, but it is not suitable
for spatially rich data. Instead, if the locations where data are observed are dense in space, then, at
each time point, the data can be considered as a continuous surface (a continuous realization of a
random field). Then, the surfaces can be modeled using (functional) time series methodologies. This
continuous approach gains computational advantages by approximating the continuous random
field in a finite-dimensional subspace (dimensional reduction). Here, we use this second approach;
namely, we combine techniques from functional data analysis (FDA) and spatial statistics.

FDA assumes that observations have characteristics that vary along a continuum, e.g., curves or
surfaces (Ramsay and Silverman, 2005; Kokoszka and Reimherr, 2017). Thus, FDA deals with data
that are defined in an intrinsically infinite-dimensional space. Usually, FDA focuses on data that
are curves. Due to its capability to model large and complex data, the methodology of FDA has
been extended to spatio-temporal data. One possible extension assumes that a curve is observed at
each spatial location (Giraldo et al., 2011; Menafoglio et al., 2016). Another extension assumes that
the spatial data are a realization of a deterministic continuous random field (Sangalli et al., 2013;
Bernardi et al., 2017). Here, we use a similar idea to the latter approach. Furthermore, we combine
techniques from functional time series and continuous random field models. Expressly, at each time,
we assume that a random field’s realization is a single point observation (called surface data), so

that the spatio-temporal data result in a sequence of surfaces; we call them surface time series.
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Fig. 1. Left: Locations in Saudi Arabia where wind speed is observed. In total, we have 1500 locations. Center: Snapshot
f the square-root of wind speed measurements at time t . Right: The estimated continuous random field xt (s) in terms

of basis functions.

With this approach, spatial dependence is captured through the continuity of the surface, while
temporal dependence is modeled with time series methods (see, e.g., the recent review by Martínez-
Hernández and Genton, 2020). In practice, the continuous surface data need to be estimated. This
continuous surface estimate can be related to kriging in classical spatial data analysis. Here, we
use similar ideas to those utilized for one-dimensional functional data to estimate the continuous
surface. Specifically, we represent the continuous random field with finite basis functions.

The estimation of continuous surfaces via finite basis function representation is a common
approach. An example of a basis function can be the tensor product of univariate B-splines (Wood,
2006; Xiao et al., 2013). Then, the estimation can be formulated as the minimization of the
sum of squared errors with a penalization term. The latter method is known as basis-penalty
smoother (Wood, 2017). Another choice of basis function is the finite element method, see, e.g., San-
galli et al. (2013). An alternative estimation procedure considers a stochastic partial differential
equation (SPDE). In Lindgren et al. (2011), the link between Gaussian random fields and a specific
SPDE was studied. In that paper, a Gaussian Markov random field (GMRF) was used to approximate
the solution to the SPDE. We detail this approximation in Section 2.1. Its advantage is the sparse
structure of the precision matrix of the GMRF, which has computational benefits, especially in
large datasets. Then, we use the SPDE approach and the Finite Element Method (FEM) to estimate
the continuous representation of the surface. Note that in principle, we can use any of the above
methods to estimate the continuous surface since our methodology is not limited to the specific
case of the SPDE approach.

Our aim in this paper is to propose a new methodology for analyzing and forecasting complex
and large spatio-temporal data that is computationally feasible and implementable with existing
R packages (R Core Team, 2022). We assume that the data are realizations of a time series taking
values in a continuous space. Specifically, for each discrete time, we estimate the continuous random
field. Thus, the (nonstationary) spatial dependence is considered in the continuous estimation of
the random field. Then, we model the temporal dependence assuming that the data are surface
time series data. Finally, we use time series techniques to describe temporal dependence and then
forecast the spatio-temporal data. An advantage of our proposed methodology is that it can handle
spatio-temporal data with different numbers of spatial locations and different locations for each
time t since we estimate the continuous random field at each discrete time.

Our proposal is motivated by high-resolution simulated wind data from the Weather Research
and Forecasting (WRF) model. Fig. 1 illustrates our proposal. In the left panel, 1500 locations si
over Saudi Arabia are shown at which the wind speed data are assumed to be observed. Let yt (si)
be the observed data displayed in Fig. 1 (center) at locations si and a fixed time t , t = 1, . . . , T .
For each time t and using the observed data yt (si), we estimate the continuous random field
xt (s) =

∑
k bk,tψk(s) in terms of finite basis functions {ψk}. Fig. 1 (right) shows the resulting

continuous random field. Then, we model the temporal-dependence through the coefficients {bk,t}
of the basis functions using multivariate functional time series methodology. The latter uses past
information, including neighbors, for each location; this is detailed in Section 2.2. Thus, we allow
interaction between space and time through the coefficients. Because of the latter, our approach is
3
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computationally more feasible than the covariance modeling approach. Furthermore, our approach
can model data with spatial locations changing from time to time since xt is considered continuous
or each time point t . Hence, this paper provides practitioners with an alternative method of
modeling large spatio-temporal data without necessitating high-performance computing.

The remainder of our paper is organized as follows: In Section 2, we present our proposed
methodology. This section describes the estimation of the continuous surfaces and the modeling
of the surface time series. In Section 3, we describe how to estimate the parameters involved in
our proposed methodology. Also, we describe how to obtain forecasts. In Section 4, we conduct
a simulation study to evaluate the performance of the proposed methodology under different
simulation settings. In Section 5, we analyze a dataset of hourly wind speed from the Weather
Research and Forecasting (WRF) model. In Section 6, we present some discussion.

2. Surface time series models

We consider the analysis of complex and large spatio-temporal datasets, where the spatial
component is assumed to be continuous and the temporal component is assumed to be discrete.
Specifically, we assume that the observed data have the form {y1(s), y2(s), . . . , yT (s)}, where for
ach t ∈ {1, . . . , T }, yt : D ⊂ R2

→ R is a continuous function, s ∈ D represents the location, and
represents the study area (e.g., a country). In practice, data are observed on a finite set of points

n D, i.e., for each t = 1, . . . , T , we observe mt points yt = {yt (s1), . . . , yt (smt )}
⊤. Additionally, data

ay be observed with measurement errors. Therefore, we assume that the observed data are such
hat

yt (si) = xt (si) + εt (si),
xt (si) = µt (si) + zt (si),

(1)

here µt (si) is the mean representing large scale variation, and εt = {εt (s1), . . . , εt (smt )}
⊤

∼

mt (0, τ
−1
ε,t Imt ) is the i.i.d. random noise that accounts for the measurement error (the nugget).

ere, we assume zt (si) is a realization of an unknown continuous Gaussian random field (GRF),
he most common choice for modeling spatial (and spatial–temporal) dependencies (Cressie and
ikle, 2011).
Our goal is to model and forecast the continuous surface time series {xt; t = 1, . . . , T }. For that,

e use the two-step methodology that is widely used in functional time series; see, e.g., Hyndman
nd Ullah (2007) and Aue et al. (2015). Explicitly, we propose extending this methodology to
urface time series: 1) estimate the continuous function xt ; and 2) model the surface time series
xt; t = 1, . . . , T }. In the following, we detail these two steps.

.1. Estimating the continuous random field

The first step in our methodology is to estimate the continuous random field. To simplify
otation, we assume a constant mean at each time, i.e., µt (si) = µt ; thus, we focus on zt . For each
= 1, . . . , T , the continuous random field zt (s) accounts for the spatial dependence. Therefore, we
stimate zt (s) using the Matérn covariance function (Matérn, 1986; Stein, 1999, p. 31), which is
efined for two locations s1 and s2 as

cov{zt (s1), zt (s2)} =
σ 2
z,t

Γ (νt )2νt−1 (κt∥s1 − s2∥)νtKνt (κt∥s1 − s2∥),

where ∥ · ∥ is the Euclidean distance, Kνt is the modified Bessel function of the second kind of
order νt , and σ 2

z,t = 1/τz,t is the marginal variance. The parameter νt controls the mean-square
ifferentiability of the underlying process. The parameter κt > 0 is a scaling parameter related to

the range ρt . The empirically derived definition of the range is ρt =
√
8νt/κt with ρt corresponding

to the distance where the spatial correlation for each νt is close to 0.1. In practice, the smoothness
parameter νt is often fixed based on our a priori belief of the smoothness of the underlying process.
Here, we fix νt = 1 for all t , similarly to Lindgren et al. (2011) and Cameletti et al. (2013). The
choice of ν is flexible enough to cover a large class of spatial variations (see Rue et al., 2009).
t

4
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From model (1), we have yt |xt , τε,t ∼ Nmt (xt , τ
−1
ε,t Imt ), where xt = {xt (s1), . . . , xt (smt )}

⊤.
Usually, the inference of GRF is performed using the covariance matrix Σt of zt . However, for large
datasets, this is not computationally feasible because the covariance matrix is completely dense
and, therefore, difficult to work with. To reduce the computational cost, we notice that a Gaussian
spatial process with Matérn covariance is the solution to the SPDE model

τt (κ2
t −∆)αt/2zt (s) = Wt (s), (2)

where ∆ =
∑2

j=1 ∂
2/∂s2j is the Laplacian operator, αt = νt + 1 controls the smoothness of the

spatial process, and τt > 0 controls the variance. The process Wt is a spatial Gaussian white noise.
Following this SPDE approach, Lindgren et al. (2011) used an FEM to build the Gaussian Markov
random field (GMRF) that best approximates the solution of (2). Given a triangulation of the domain
D, the solution to Eq. (2) is expressed as

zt (s) =

K∑
k=1

bk,tψk(s), (3)

where {ψk} are piecewise linear basis functions defined on the triangular mesh, and {bk,t} are
Gaussian-distributed random weights. The solution (3) is found based on equality in distribution
criterion, resulting in a GMRF. The selection of K depends on each data application, and should
be specified by the user; for more details, see Lindgren et al. (2011). Thus, we approximate the
continuous random field zt in (1) with a finite element representation (3).

As mentioned above, our methodology is not limited to the specific case of the SPDE approach in
the sense that we can use other methods to estimate the coefficients {bk,t} in (3). In the following,
we assume that data are a sequence of continuous surfaces with representations as in (3) regardless
of how these surfaces are estimated.

2.2. Modeling temporal dependence

The second step in our methodology is to model temporal dependence taking into account the
spatial dependence. In this section, without loss of generality, we assume that observations are
continuous random fields observed over time with the form (3) (i.e., the mean component µt is
zero). Thus, bt = (b1,t , . . . , bK ,t )⊤ is a K -dimensional vector coefficient that serves as a time-
dependent weight on the basis functions that are spatially correlated. The time series {bt}t can result
in a high-dimensional and nonstationary time series. The dimension K will depend on how fine the
mesh of the region D is. In our data analysis (Section 5), we use K = 364. The corresponding mesh
of D is illustrated in Fig. 3. In this paper, we assume that the time series {bt}t is high-dimensional
and includes regions D that may be large or have complex shapes.

We model bt with a multivariate functional time series model. To that end, we assume that, for
each k = 1, . . . , K , {bk,t}t is a realization of a functional time series {f (k)n (u); u ∈ T , n = 1, . . . ,N},
where

f (k)n (u) = bk,u1{u ∈ [(n − 1)δ, nδ], n ∈ N}, (4)

with 1(·) being the indicator function, and δ representing the period of time that encompasses the
continuous function f (k)n (·). For example, δ can represent days, months, or years, and is defined by
the user depending on the data and on the problem being addressed. In Section 5, we define δ to
represent days, so, for each k, {f (k)n (u)}n is a daily functional time series in which n represents the
indices of the days and u represents the time within a day. Then, with representation (4), we have
{fn}n as a K -dimensional functional time series, where fn = {f (1)n (u), . . . , f (K )n (u)}⊤. This approach
allows us to forecast different time horizons, e.g., hours, days, weeks, months, or years.

Because of the high dimensionality, we propose modeling {fn}n with a functional dynamic factor
model (Hays et al., 2012; Gao et al., 2019; Martínez-Hernández et al., 2022). This model uses
eigenfunctions of the long-run covariance of {f } . Specifically, we approximate the functional time
n n
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series with a dynamic Functional Principal Component (FPC) model (Hörmann et al., 2015), and then
we model the multivariate time series of scores using a factor model:

fn(u) = Λ(u)βn + ηn(u),
βp,n = Apθp,n + ep,n,

θp,n −

q1∑
i=1

Giθp,n−i = ϵn +

q2∑
j=1

Mjϵp,n−j,

(5)

here Λ(u) is the K×p0K block matrix with 1×p0 diagonal blocks λ(k)(u) = {λ
(k)
1 (u), . . . , λ(k)p0 (u)}

⊤ of
igenfunctions of the long-run covariance of {f (k)n }, where k = 1, . . . , K , p0 is the number of principal
omponents, and zero elsewhere; βn = (β (1)

1,n, . . . , β
(1)
p0,n, β

(2)
1,n, . . . , β

(K )
p0,n)

⊤ is the p0K -dimensional
ector containing the FPC scores of all K functional time series; and ηn(u) represents the remaining
rincipal components terms from p0 + 1 to infinity. Unlike the classical FPC analysis, the dynamic
PC analysis takes into account the temporal dependence of the functional time series fn.
For each principal component p = 1, . . . , p0, βp,n = (β (1)

p,n, β
(2)
p,n, . . . , β

(K )
p,n )⊤ is the vector of the

th FPC score of all K functional time series; Ap is the K × L constant matrix of factor loadings;
p,n is the L-dimensional vector of the factor time series; the error term ep,n represents what is
ot explained by the factor time series; Gi and Mj are the L × L coefficient matrices representing
he temporal evolution of the factor time series; and ϵp,n is a white noise vector. The dynamic FPC
nalysis reduces the functional time series to vector time series consisting of FPC scores. It also
akes into account the temporal dependence, unlike the classical FPC analysis.

Models (3) and (5) provide extensive flexibility in the predictions, which is attractive for several
pplications. For example, the time scales of predictions from wind speed data range from minutes
o days (short, medium, and long-term predictions). Most research focuses on short, medium, or
ong-term forecasts, but none predicts each of these different time scales using only one model. A
odel that can forecast different time scales is computationally convenient. It provides flexibility

n the interpretation with no need to estimate multiple models. With our models (5), short and
edium-term predictions are obtained with a one-step-ahead prediction f̂N+1. The long-term

orecast is obtained with an h-step ahead prediction f̂N+h, where h > 1 (see details in Section 5).

emark 1. If the mean values µt are not zero, then {µt} can be modeled together with the
oefficient bt . That is, instead of using bk,u in (4), we can use µu +bk,u. Alternatively, one can model
nd predict {µt} separately from bt , e.g., using a univariate functional time series if µt (s) = µt ,

where the univariate functional time series is constructed similarly as in (4).

3. Inference and forecasting

3.1. Inference

To estimate the continuous random field xt , we need to estimate the coefficients bk,t in (3) and
the mean µt (possibly dependent on s). For this estimation, we use the R-INLA framework (Rue
et al., 2009), which requires that we set priors on the hyperparameters τε,t , σx,t , and ρt . The choice
of priors depends on the characteristics of the data. We assign a joint prior on σx,t and ρt in the
same way as described in Fuglstad et al. (2019). That is, the joint prior is specified indirectly using
the concept of penalized complexity (PC) (see Simpson et al., 2017). We only need to specify the
tail probabilities P(ρt < ρ0) = pρt and P(σx,t > σ0) = pσx,t . In other words, we only need to set the
lower tail quantile ρ0 and probability pρt for the range, and the upper tail quantile σ0 and probability
pσx,t for the standard deviation. For τε,t , we assume a vague Gamma prior with parameters 1 and
0.00005.

For the model (5), we need to estimate Λ(u), Ap, Gi, andMj. To estimate Λ(u), we use the dynamic
FPC analysis. Once Λ(u) is estimated, we obtain βn, and then we estimate the components of the
factor model. A common assumption in factor models is that the factors are independent. Here,
we also make this assumption. Therefore, we model each factor time series {θ

(l)
} , l = 1, . . . , L,
p,n n

6
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separately. Consequently, the matrices Gi and Mj are diagonal matrices in model (5). For this
stimation, we use the ftsa package (Hyndman and Shang, 2020). In the following, we detail the
stimation procedures for model (5).
Let c(k)(u, v) =

∑
∞

h=−∞
c(k)h (u, v) be the long-run covariance of the functional time series {f (k)n },

ith c(k)h (u, v) = cov{f (k)n (u), f (k)n+h(v)} being the auto-covariance function at lag h. We define the long-
un covariance operator as C (k)(f )(u) =

∫
T c(k)(u, v)f (v)dv. An estimator λ̂(k)p for λ(k)p is defined as the

igenfunction of the empirical long-run covariance operator. That is, λ̂(k)p is such that Ĉ (k) (̂λ(k)p )(u) =
(k)
p λ̂

(k)
p (u), where ζ̂ (k)p is the corresponding eigenvalue in descending order. The estimated operator

(k) is obtained using a bandwidth selection method described in Rice and Shang (2017). Explicitly,
(k)(u, v) :=

∑
|h|≤h W (h/q)̂c(k)h (u, v), where ĉ(k)h (u, v) is the empirical auto-covariance function at

ag h, and W is a symmetric weight function. Then, the components of βn in (5) are obtained as
˜ (k)
p,n =

∫
T f (k)n (u)̂λ(k)p (u)du.

We use the estimated β̃p,n vector to estimate Ap, Gi, and Mj. A common approach is to
stimate Ap and θp,n by the eigendecomposition of a matrix involving the covariance and cross-
ovariance of βp,n, θp,n, and ep,n, at different lags h (see, e.g., Lam et al., 2011; Gao et al., 2019).
et Σ

(p)
β (h) = cov(βp,n+h,βp,n), Σ

(p)
θ (h) = cov(θp,n+h, θp,n), and Σ

(p)
e (h) = cov(ep,n+h, ep,n) be the

ovariance matrices. Similarly, let Σ
(p)
θ,e(h) be the cross-covariance matrix between θp,n and ep,n at

ag h. From model (5), we have L(p) = L(p)∗ + E(p), where L(p) =
∑h0

h=1 Σ
(p)
β (h)Σ(p)

β (h)⊤, L(p)∗ =

p{
∑h0

h=1 B(h)B(h)
⊤
}A⊤

p , and E(p)
= ApB(h)Σ

(p)
e (h)⊤ + Σ

(p)
e (h)B(h)A⊤

p + Σ
(p)
e (h)Σ(p)

e (h)⊤, with B(h) =
(p)
θ (h)A⊤

p + Σ
(p)
θ,e(h) + Σ

(p)
e,θ(h). Then, a natural estimator for Ap is defined as Âp = (̂ap,1, . . . , âp,L),

where âp,l is the lth eigenvector of L̂(p), and L̂(p) =
∑h0

h=1 Σ̂
(p)
β (h)Σ̂(p)

β (h)⊤, with Σ̂
(p)
β (h) being the

mpirical covariance matrix of β̃p,n at lag h. Finally, the estimated factor time series θ̂p,n is obtained
as θ̂p,n = Â⊤

p β̃p,n. Then, we fit Autoregressive Moving Average (ARMA) models to each component of
θp,n using a maximum likelihood approach. We use the Akaike information criterion (AIC) to select
the orders of the ARMA model.

3.2. Forecasting

Here, we describe how to forecast the continuous surface time series xt (s) at time T +h1, h1 > 0.
nce again, without loss of generality, let us assume µt (s) = 0. Thus, we need to forecast f̂ (k)N+h2

,
where h2 = ⌈h1/δ⌉. From model (5), we have that the temporal dependence is contained in the
factor process {θp,n}n. Since the factors are mutually uncorrelated, we model each component of
{θp,n}n separately for p = 1, . . . , p0. This implies estimating Lp0 ARMA models. With the ARMA
models, we obtain the forecasted factors θ̂p,N+h2 ; thus, we obtain ˆ̃

βp,N+h2 . Then, we obtain the h2-

step-ahead forecast at time N of the functional time series: f̂ (k)N+h2
(u) = λ̂

(k)(u)⊤ˆ̃
β
(k)

N+h2 . The forecasted
K functional time series {̂f (k)N+h2

(u); k = 1, . . . , K } contain the coefficient values bk,T+h1 , which are
needed to obtain x̂T+h1 (s). Expressly, the forecasted coefficients are defined as

b̂k,T+h1 = f̂ (k)N+⌈h1/δ⌉
(h1 − δ⌊h1/δ⌋), k = 1, . . . , K . (6)

Finally, the mean prediction of the continuous random field is

x̂T+h1 (s) =

K∑
k=1

b̂k,T+h1ψk(s). (7)

It is possible to construct a prediction interval of the surface x̂T+h1 . This can be obtained from
the prediction intervals of the curve f̂ (k)N+h2

. Let f̂ (k)N+h2,α
and f̂ (k)N+h2,1−α

be the prediction bounds for
f (k)N+h2

, where α is the level of significance. Then, x̂αT+h1
(s) =

∑K
k=1 f̂

(k)
N+⌈h1/δ⌉,α

(h1 − δ⌊h1/δ⌋)ψk(s)
and x̂1−α (s) =

∑K f̂ (k) (h − δ⌊h /δ⌋)ψ (s) are the lower and upper prediction bounds,
T+h1 k=1 N+⌈h1/δ⌉,1−α 1 1 k

7
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respectively, with level of significance α. To obtain f̂ (k)N+h2,α
and f̂ (k)N+h2,1−α

, we use the bootstrapping
pproach described in Gao et al. (2019).

emark 2. If µt (s) ̸= 0 and varies across time t , then the forecasting of µt (s) is similar to the
orecasting of zt (s). If, in addition, µt (s) is constant in D, then µ̂T+h1 can be obtained using a
nivariate functional time series forecasting method (Martínez-Hernández and Genton, 2021).

The procedure described above is implementable with the R-INLA and ftsa packages.

. Simulation study

Here, we illustrate the advantage of our method. We present two simulation studies and compare
ur method with a separable space–time model that is often used in practice (e.g., Lenzi and Genton,
020). The separable space–time model is defined as an SPDE model for the spatial domain and an
R(1) model for the time dimension. Explicitly, this model is defined as follows:

yt (s) = µ+ ξt (s) + εt (s)
ξt (s) = aξt−1(s) + Wt (s),

(8)

here εt (s) is the measurement error, ξt (s) is a latent process following a first-order autoregressive
ynamic model, and Wt (s) is a temporally independent realization of a Gaussian random field with
ean zero. The spatially correlated innovations Wt (s) are characterized by the spatial covariance

unction, and this covariance function is defined by the Matérn function. We use the R-INLA
mplementation to fit model (8). In practice, model (8) is widely used for its computational
dvantages; see Cameletti et al. (2013) for more details.
In each simulation study, we compare our proposed methodology with model (8) in terms of

heir forecasting accuracy. For each study, we simulated 1000 Monte Carlo datasets.

.1. Simulation setting

We simulate spatio-temporal data {yt (s); s ∈ D, t = 1, . . . , T } from model (1). For that, we
specify the mean µt and simulate zt (s) from (3), for which we must specify the domain D and
he triangulation of D. We define D as the country of Saudi Arabia (see Fig. 1). Then, we obtain
1, . . . , ψK=78, which are the basis functions defined on the triangular mesh of D. We simulate the
easurement error such that εt (si) ∼ i.i.d.N (0, 0.25). We consider T = 960 time points. To fit the

model, we evaluate yt (s) at 100 locations, s1, . . . , s100, for t = 1, . . . , T . These 100 locations are
uniformly distributed over D. We have chosen these values to be able to compare our model and
model (8). Although our model can deal with a larger dataset, we could not estimate model (8) for
larger values of T .

To evaluate the ability of the model to correctly forecast, we split the data into a training set
of 912 time points and a testing set with the remaining 48 time points. That is, we forecast the
remaining 48 time points. Then, we quantify the mean squared error (MSE) forecasting at the 100
locations:

∑100
i=1{xt (si) − x̂t (si)}2/100, t = 913, . . . , 960.

4.2. Simulation 1

First, we simulate the coefficients of zt (s) using model (5) and set δ = 24, which results in
N = T/δ = 40 curves. That is, we simulate multivariate functional time series {fn(u); u ∈ [0, 1], n =

1, . . . ,N = 40}, with components f (k)n (u) =
∑3

p=1 β
(k)
p,nλ

(k)
p (u). The eigenfunctions are defined as

λ
(k)
1 (u) = sin(2πu + πk/2), λ(k)2 (u) = cos(2πu + πk/2), and λ(k)3 (u) = sin(4πu + πk/2). The

coefficients βp,n = (β (1)
p,n, . . . , β

(K )
p,n )⊤ are simulated as βp,n = Apθp,n, where Ap = (a(p)ij )1≤i,j≤K with

a(p)ij = K−1/4b(p)ij , b(p)ij ∼ i.i.d.N (2, 4) for p = 1, 2, and b(3)ij ∼ i.i.d.N (0, 0.04). The factor time series
θp,n are simulated from an autoregressive model of order 1 and order 2, i.e, AR(1) and AR(2). Each

(l) (1) (1) (1)
component θp,n of the factor time series θp,n is simulated as follows: θp,n = 0.5θp,n−1+0.2θp,n−2+ϵn.

8
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Fig. 2. Boxplots of MSE forecasting values from simulations 1 and 2. The MSE values correspond to 48 time points
forecasted with Model 1 (our proposal) and Model 2. The index N + 1 represents the first 24 time points and N + 2
epresents the rest. In simulation 1, Model 1 presents the lowest MSE values; in simulation 2, both models perform
imilarly.

or l = 2, . . . , K , θ (l)p,n = K−1z(l)n , with z(l)n = 0.2z(l)n−1 + ϵn and ϵn representing Gaussian white noise
ith unit variance in both cases. Second, we define the mean component µt as evaluations of the
ean function µ(u) = 3u cos(uπ ) + 3.6u + 12, u ∈ [0, 1]. Finally, the random field is obtained as

t (s) = µt +
∑K

k=1 bk,tψk(s), where bk,t are evaluations of f (k)n (u).
Notice that we simulate factors as many as the number of bases, L = K , where the kth-factor

ontribution is down-weighted by 1/K , except for l = 1. This simulation provides a more complex
tructure mimicking real datasets. However, when estimating model (5), we estimate only three
actors, L = 3.

.3. Simulation 2

For this scenario, we simulate xt (s) from model (8). That is, we define xt (s) = µ + ξt (s),
here µ = 10. The process ξt (s) is simulated as ξt (s) = 0.8ξt−1(s) +

√
1 − 0.82 Wt (s), where

ξ1(s) = W1(s). We generate the T independent realizations of the spatial model Wt (s) using a
hittle covariance function with variance 1 and scaling parameter 0.1. This corresponds to a range
f 28.2, approximately. We add the term

√
1 − 0.82 to make the process stationary in time. Although

ur method does not require stationarity in time, model (8) does.
9
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4.4. Simulation results

Here, we present the simulation results from the two models in the two scenarios described
bove. Fig. 2 shows the MSE forecasting values for the 48 time points forecasted. In each panel
scenario), we present the performance of both models side-by-side. Overall, our methodology
labeled Model 1) has a good performance compared with model (8) (labeled Model 2).

In simulation 1 (first row of Fig. 2), we observe that Model 1 (our proposal) presents lower MSE
orecasting values in all periods (N + 1 and N + 2). These periods correspond to the 48 time points
orecasted. The average of the MSE values for Model 1 in periods N + 1 and N + 2 are 0.915 and
.012, respectively. For Model 2, the average of the MSE values in periods N + 1 and N + 2 are 1.24
nd 1.228, respectively. Therefore, we conclude that Model 1 outperforms Model 2. This conclusion
omes as no surprise since the data-generating process is Model 1.
In the scenario of simulation 2 (second row of Fig. 2), both models perform similarly in all periods

N+1 and N+2), i.e., across all 48 time points. The average of the MSE values for Model 1 in periods
+1 and N+2 are 0.26 and 0.259, respectively. For Model 2, we obtain the same average values as
odel 1. In this case, the data-generating process is Model 2. Thus, the fact that our methodology
erforms as well as Model 2 can be seen as an advantage of our model.
In conclusion, based on the two simulations, our methodology outperforms the spatio-temporal

odel most commonly used in practice. Furthermore, our methodology provides extensive flexibil-
ty to model nonstationary, complex, and large datasets.

. Wind data analysis

.1. Data description

We use wind data simulated by Yip (2018) from the Weather Research and Forecasting (WRF)
odel. Each measurement corresponds to hourly wind speed (m/s) from the year 2010 over Saudi
rabia. Originally, the wind speeds were simulated on a regular grid of points in space, namely at
-km resolution. For our aim, we select 1500 locations randomly over Saudi Arabia and analyze
our months of data: May, June, July, and August. Thus, our dataset contains 1500 locations and
952 time points, so a total of 4, 428, 000 values. The 1500 locations are shown in the left panel of
ig. 1. Let wst (si) denote the wind speed at location si and time t . Then, for each si, i = 1, . . . , 1500,
wst (si)}t is an hourly time series of length T = 2952. To use models (2) and (3), we consider
he square-root transformation of the wind speed. The transformed wind speed resembles the
aussian distribution (Haslett and Raftery, 1989). We denote by yt (si) =

√
wst (si) the square-root

ransformed wind speed.
The understanding of wind speed behavior is important for renewable energy. Wind energy is

ne of the most efficient renewable energy sources available, but the availability of this resource
epends on location. To ensure reliability and quality of a power system, it is important to develop
ighly accurate wind speed prediction methods. Wind speed forecasting is classified depending on
he time-scale horizons to be forecasted. These can be grouped into short-term (30 min to 6 h
head), medium-term (6 h to 1 day ahead), and long-term (1 day to 1 week ahead) forecasting.
everal approaches to wind speed prediction models have been proposed in the literature, such as
odels with time series techniques, spatial statistics techniques, or both that focus on predicting a
pecific time-scale horizon. A few attempts to propose a model for forecasting short and medium-
erm time scales can be found in the literature (see, e.g., Lenzi and Genton, 2020, and references
herein). In contrast, our model can forecast short, medium, and long-term time scales without any
dditional modification. Our goal is to accurately forecast wind speed data for short, medium, and
ong-term time scale horizons.

The wind speed dataset that we consider here is large and complex in space and time. Thus,
hese data fit into our proposed methodology described in Section 2. The advantage of our method
or a statistical model) over the WRF model is mainly the computational cost. We define the time
eriod δ in (4) such that n represents days, i.e., δ = 24 (hours). This choice of δ adapts to the diurnal
cycle, an external factor, which is desirable in the model (Weisser and Foxon, 2003). To evaluate

10
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Fig. 3. A mesh for Saudi Arabia with 364 nodes: ψ1, . . . , ψ364 (top left), and eight consecutive continuous random fields,
orresponding to June 22, 2010, estimated with the basis representation (3). Each continuous random field has the form
t (s) = µt +

∑364
k=1 bk,tψk(s), with t = 1251, . . . , 1258 representing hours.

the performance of the forecast, we use the four months of data to fit the model, and then we
forecast the first three days of September, i.e., we forecast 72 h ahead. The first step is to define a
triangulation of the domain, which is the country of Saudi Arabia. The triangulation used in the data
analysis is displayed in the first panel of Fig. 3. Once we have defined a triangulation of our domain,
we proceed to estimate the continuous random field. We detail this estimation in the following.

5.2. Model specifications

To estimate the continuous wind speed random field, we use 364 basis functions, ψ1, . . . , ψ364,
etermined by the triangulation. We set the range prior such that P(ρt < 500) = 0.5, and the
tandard deviation such that P(σx,t > 10) = 0.01. The range prior is based on the characteristics
f Saudi Arabia’s landscape. Fig. 3 shows the result of eight consecutive continuous random fields:
(s) = µ +

∑364 b ψ (s), with t representing hours and corresponding to June 22, 2010, at 03:00,
t t k=1 k,t k

11
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Fig. 4. A functional time series and its forecasts. Top left: Functional time series {f (20)n }n that corresponds to the basis
unction ψ20 , and n = 1, . . . ,N = 123 (days). Top right and second row: The forecasted curves corresponding to September
, 2, and 3, 2010, for the basis component k = 20. These forecasted curves are obtained from model (5). The dashed
urves represent the lower and upper prediction bounds.

4:00, . . . , 10:00 am. After estimating the continuous random fields, we transform the coefficients
bk,t} into a functional time series f kn . As mentioned above, we define the time period as δ = 24
hours) to account for the diurnal cycle. Thus, the sample size of the functional time series is

= 123. Fig. 4 shows one resulting functional time series corresponding to the basis component
= 20, i.e., the functional time series {f (20)n (u); u ∈ T , n = 1, . . . , 123}. In the top left panel, we

observe that this functional time series shows a repeated pattern over many days that fluctuates
throughout the day. This time (day)-dependent behavior is observed across all functional time
series {f (k)n }n, k = 1, . . . , K = 364. Then, we proceed to describe the temporal dependence with
a functional time series model, and then we forecast the next three days: September 1, 2, and 3,
2010.

We use the functional time series fn = {f (1)n (u), . . . , f (364)n (u)}⊤ to model the temporal depen-
ence. In the dynamic FPC representation, model (5), we set p0 = 3 and the number of factors
= 3. The selection of p0 is based on the proportion of the variability of the functional time series
xplained. In general, it is common to have values of p0 smaller than five in real data applications.
s mentioned above, the ARMA model is estimated using likelihood and the orders are selected via
IC. Using the forecasted values ˆ̃

βp,N+1,
ˆ̃
βp,N+2, and

ˆ̃
βp,N+3, we obtain the forecasted curves f̂N+1,

f̂N+2, and f̂N+3 corresponding to September 1, 2, and 3, 2010.

5.3. Results

Fig. 4 shows the forecasted curves of the functional time series f (20)n . For each forecasted curve,
we also plot the ‘‘true’’ coefficient curves. These true curves are the curves obtained from the
coefficients of the estimated surfaces xT+h(s) for September 1, 2, and 3, 2010. The forecasted curves
are expected to be close to the true curves. Thus, we can evaluate the performance of our model.
From Fig. 4, we observe that the forecasted curves mimic the main behavior of the true curves.
This means that the forecasted surfaces are expected to be accurate in representing the spatial
dependence and temporal dependence.
12
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c
t

Fig. 5. Results of the forecasted values at three different times. The first row shows the square-root of the observed wind
speed values at 1500 locations. The second row shows the forecasted values which preserve the same spatial pattern as
the observed values. The third and fourth rows show the 5% and 95% quantiles of the forecast values, respectively.

We can now evaluate the forecasted curves at any value of the domain T to obtain the forecasted
ontinuous wind speed field. We present three forecasted continuous wind speed fields at different
imes: September 1 at 05:00, September 1 at 16:00, and September 3 at 19:00. This means that
we evaluate f̂N+1 at u = 5 and u = 16, and f̂N+3 at u = 19. These three time horizons
correspond to short, medium, and long-term predictions, respectively. Fig. 5 shows an evaluation
of the three surfaces forecasted at the 1500 locations where data are observed. Also, Fig. 5 shows
the corresponding real wind speed data (which was not used to fit the model). We observe that the
forecasted values present the same variation as the original data. For example, the observed wind
speed values for September 1 at 16:00 (second column) are high in the northwest of the country
(area of Medina). These high values extend along the coast of the Red Sea; whereas in the center of
13



I. Martínez-Hernández and M.G. Genton Spatial Statistics 53 (2023) 100718

t

t
v
S

e
w

ˆ
i
s

Fig. 6. Error values from the forecasted values. At each hour on September 1, 2, and 3, 2010, we present a boxplot of
he values {yt (si) − x̂t (si)}2i , where x̂t is the forecasted surface.

he country, the wind speed values are low. We obtain this same variation on the forecasted mean
alues. We see that the highest values forecasted are in the northwest region and along the Red
ea coast. This conclusion holds for all 72 forecasted hours.
To gain a better perspective on our method’s performance, we compute the squared forecast

rror at each hour on September 1, 2, and 3, 2010. That is, we compute {yt (si) − x̂t (si)}2i for each t ,
here i is the location’s index where data are observed, and x̂t is the forecasted surface. Fig. 6 shows

the boxplots of the squared forecast error values at each hour for one, two, and three days ahead,
corresponding to September 1, 2, and 3, 2010, respectively. We observe that, for September 1 and
3, the highest error values are obtained from these boxplots around noon, whereas for September
2, the highest error values are obtained between 6:00 am and 9:00 am. This could be due to high
wind speed when the sun’s heat creates convection currents causing the observed and forecasted
values to differ more. Despite these error values, the general behavior of the data is recovered, as
illustrated in Fig. 5. Thus, we conclude that our methodology has a good performance.

6. Discussion

An important limitation of many spatio-temporal models is their inability to work with large
datasets. Because of this inability, among other things, a new paradigm of data analysis is required.
Along this line, we have proposed a new approach to model large and complex spatio-temporal
data. This approach assumes that at each time point, the observation is a continuous random
field. The continuous random fields are estimated using a finite basis representation, where the
coefficients of the basis functions are estimated assuming that the random fields have a Matérn
covariance structure. Then, we model the sequence of surfaces using multivariate functional time
series methodology.

Our methodology can be applied to a large class of data and is not limited to the specific case
of wind speed data. Furthermore, it can model data that are nonstationary in space and time. This
is because the continuous surface estimation does not necessarily require stationarity in space, and
the coefficients of the basis functions are modeled with a functional time series methodology (the
stationarity condition is across the index n and not across t). Additionally, our methodology can
handle changes in locations and number of locations over time.

A limitation of our methodology is the uncertainty quantification. For example, with our method-
ology, we cannot obtain a closed-form expression of the variance of the error prediction xT+h1 (s)−
xT+h1 (s); this is in contrast to kriging, where we have a closed-form expression. One possible and
logical solution is to use a bootstrap method to obtain the uncertainty quantification. Another
limitation of our methodology is the estimation of the number of factors L to be used. Although
t is common in practice to set L = 2 or 3, which usually works well, it is necessary to have a
tatistical method to select L.
We conclude that our methodology presents a valuable alternative to model large spatio-
temporal data.

14
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