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Abstract
The advent of data science has provided an increasing number of challenges with high data complexity. This 
paper addresses the challenge of space-time data where the spatial domain is not a planar surface, a sphere, or 
a linear network, but a generalised network (termed a graph with Euclidean edges). Additionally, data are 
repeatedly measured over different temporal instants. We provide new classes of stationary nonseparable 
space-time covariance functions where space can be a generalised network, a Euclidean tree, or a linear 
network, and where time can be linear or circular (seasonal). Because the construction principles are 
technical, we focus on illustrations that guide the reader through the construction of statistically 
interpretable examples. A simulation study demonstrates that the correct model can be recovered when 
compared to misspecified models. In addition, our simulation studies show that we effectively recover 
simulation parameters. In our data analysis, we consider a traffic accident dataset that shows improved 
model performance based on covariance specifications and network-based metrics.
Keywords: circular time, covariance function, dynamical support, generalised network, linear time, spatio-temporal 
statistics

1 Introduction
1.1 Context and state of the art
The data science revolution has introduced many challenges with data complexity. Amongst many, 
challenges related to domain complexity in georeferenced data and point pattern data are an im-
portant part of the literature, and the reader is referred to Anderes et al. (2020), Moradi and 
Mateu (2020), Baddeley et al. (2021), and Rakshit et al. (2017) for recent contributions.

This paper focuses on the development of covariance functions for space-time Gaussian random 
fields, where space is represented either as a generalised (or linear) network or a Euclidean tree, 
and time is modelled as either a linear (the real line) or circular (the unit circle) process. The use 
of stochastic processes defined over generalised networks has become increasingly important in 
spatial statistics, as evidenced by a growing number of applications in this field. Therefore, this 
paper aims to provide insights into the development of appropriate covariance functions for these 
types of spatial data (Cressie et al., 2006; Gardner et al., 2003; Montembeault et al., 2012; 
Peterson et al., 2007, 2013; Ver Hoef et al., 2006), point processes (Baddeley et al., 2017; Deng 
et al., 2014; Perry and Wolfe, 2013; Xiao et al., 2017), and machine learning (Alsheikh et al., 
2014; Borovitskiy et al., 2022; Georgopoulos and Hasler, 2014; Hamilton et al., 2017; Pinder 
et al., 2021).

Covariance functions are positive definite, and this requirement is nontrivial to verify. Building 
positive definite functions is even more challenging for stochastic processes defined over networks, 
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and we refer the reader to Ver Hoef et al. (2006) and Peterson et al. (2007) for efforts in this 
direction.

Spectral techniques are often used to check a candidate function for positive definiteness. 
Unfortunately, no spectral representations are available for the cases studied in this paper, making 
the problem more challenging. Even the definition of stationarity over networks is controversial 
(Baddeley et al., 2017). These facts motivated Anderes et al. (2020) to consider isotropic covari-
ance functions over generalised networks. Hence, the covariance function depends on the distance 
between any two points located over the network.

To generalise a linear network, Anderes et al. (2020) proposed graphs with Euclidean edges: 
graphs where each edge is associated with an abstract set in bijective correspondence with a seg-
ment of the real line. This provides each edge with a Cartesian coordinate system to measure dis-
tances between any two points on that edge.

The connections between Gaussian processes and covariance functions allow complete deter-
mination of finite-dimensional distributions (Stein, 1999). Hence, the likelihood (or a related ap-
proximation) becomes analytically tractable. Alternatively, one can pursue approaches based on 
conditional distributions through the construction of Gaussian Markov random fields (Lindgren 
et al., 2011).

Recent approaches have addressed the challenge of covariance functions over networks through 
the perspective of Gaussian Markov random fields. Bolin et al. (2022) consider fractional stochas-
tic partial differential equations on a compact metric graph. Their approach is the analogue of the 
approach taken by Lindgren et al. (2011) when working on Euclidean spaces or on manifolds. 
Processes constructed using these approaches are once differentiable over metric graphs, while 
the processes constructed by Ver Hoef and Peterson (2010) are not. A subclass of the processes 
considered by Bolin et al. (2022) has Markov properties, and, thus, the evaluation of the finite- 
dimensional distributions of the process can be done exactly and in a computationally efficient 
manner. We are not aware of any attempt to extend the work of Bolin et al. (2022) to space-time, 
and such an extension seems nontrivial.

It is difficult to compare approaches based on direct construction (i.e. on the covariance func-
tion) with those based on Gaussian Markov random fields. A large role is played by the graph top-
ology. Over a linear network, it is possible to build a wealth of covariance models that allow for 
arbitrary level of mean square differentiability of the associated process. Further, over a linear net-
work, it is possible to build models that parameterise the fractal dimension in a continuous fash-
ion. We doubt this is so for the case of graphs with Euclidean edges, for which Anderes et al. (2020)
provide models that are continuous but not differentiable at the origin. For the specific choice of a 
Matérn one-time differentiable model, the strategy provided by Bolin et al. (2022) is very success-
ful. Our paper pursues the alternative path of building parametric classes of space-time covariance 
functions for the topology of graphs with Euclidean edges cross time.

1.2 The problems and our contributions
Anderes et al. (2020) constructed generalised networks using two alternative metrics for graphs 
with Euclidean edges. Further, they provided sufficient conditions for function classes to be posi-
tive definite when composed with these metrics.

Generalisations to the setting where generalised networks are considered as topological struc-
tures that do not evolve over time are provided by Tang and Zimmerman (2020). In particular, 
Tang and Zimmerman (2020) adapted a version of the Gneiting class (Gneiting, 2002b) to gener-
alised networks cross linear time. In their formulation, the temporal distance is rescaled by spatial 
component, while Gneiting’s original class proposed the opposite (rescaling spatial distance with 
temporal variables). Hence, further investigations are needed.

The existing literature on space-time covariance functions that incorporate a network as a spa-
tial component is limited. Currently available options for covariance functions are insufficient in 
capturing the diverse range of interactions between space and time. This paper aims to address this 
gap by presenting a very general class of stationary nonseparable space-time covariance functions. 
Our proposed class of covariance functions accommodates a range of network structures, includ-
ing generalised and linear networks, as well as Euclidean trees. This new class of covariance 
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functions allows for either the geodesic or resistance metrics in space (details given subsequently). 
We further allow for compactly supported covariance functions when working on Euclidean trees. 
While our primary focus is on linear time, we also provide a contribution that extends to circular 
(seasonal) time, subject to mild regularity conditions. Further, the proposed structure is general 
enough to describe several types of interactions between space and time.

Specifically, we provide the following contributions: 

(a) We describe a procedure to compose two parametric classes of functions describing, respect-
ively, spatial and temporal dependence. This combination provides a new class of stationary 
nonseparable space-time covariance functions.

(b) A special case of this class results in an adaptation of the Gneiting class of covariance func-
tions, that had been originally proposed over planar surfaces (Gneiting, 2002b; Porcu and 
Zastavnyi, 2011).

(c) We consider covariance functions that are dynamically compactly supported over general-
ised networks with linear or circular time. This means that for every fixed temporal lag 
the covariance functions are compactly supported over balls with given radii. This allows 
for important computational gains.

(d) A simulation study addresses three aspects. We work on a generalised network and compare 
correctly specified and misspecified models. First, we show the impact of using the incorrect 
distance metric or covariance function in terms of likelihood estimation and predictive per-
formance. Second, we assess parameter estimation error. Lastly, identifiability problems are 
inspected under a correct choice of the spatial metric and correct covariance function.

(e) We analyse a traffic accident point pattern dataset. We compare various models that differ in 
terms of distance metric and probability mass function. We find that the best model uses the 
network distance. Using this model, we explore posterior summaries, the space-time correl-
ation function of random effects, and the posterior mean and standard deviation over space 
and time.

We further clarify how our contributions integrate or diverge with respect to previous literature: 

1. Generality of the approach. Our approach is general concerning both the topology (graphs 
with Euclidean edges) and models (a wealth of covariance functions available). The contribu-
tion by Bolin et al. (2022) provides a more general topology (metric graphs) but time is not 
considered, and the method is pursued for the case of the Matérn covariance only.

2. Dynamical embedding of compact supports on trees. Tang and Zimmerman (2020) provide 
covariance functions that are compactly supported over a Euclidean tree in Rn embedded in 
Rn+1. Our manuscript provides a constructive criticism of this construction and proposes co-
variance functions that are dynamically supported on the Euclidean tree cross time. 
Specifically, for every fixed temporal lag u0 there exists a positive function ψ such that the spa-
tial margin on the tree is compactly supported over a ball embedded in Rn (for n being linked 
to the number of leaves) with radius ψ(u0).

3. Special topologies involving flows. Ver Hoef and Peterson (2010) developed covariance mod-
els for stream flows, by invoking the moving average representation (in a continuous fashion) 
of a given random field. Such a representation is a shifted integral of a deterministic function, 
g, against a white noise, W. The resulting covariance function is the auto-convolution of the 
function g. The stream network topology is additionally complicated by the flow (which in-
duces the so-called tail up or tail down models). The last fact is especially relevant because the 
resulting models are not, in general, isotropic, while our modelling strategy attains isotropic 
models. At the same time, the models provided in our paper can be used as building blocks for 
more sophisticated scenarios, such as nonisotropy and nonstationarity. What makes the mod-
elling strategy in Ver Hoef and Peterson (2010) challenging is that one must know the root g 
that allows for an explicit algebraically closed form of the resulting covariance. A technical 
approach to this problem is taken by Ehm et al. (2004). On the other hand, Tang and 
Zimmerman (2020) note that the topology provided by Ver Hoef and Peterson (2010)
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corresponds to a directed Euclidean tree. Accordingly, they take a scale-mixture approach on 
directed Euclidean trees and prove that an exponential tail-down model as presented in Ver 
Hoef and Peterson (2010) is the one and only one that is directionless (i.e. isotropic) and is 
thereby a bridge between models presented in our paper as well as those in Tang and 
Zimmerman (2020). To generalise the approach in Ver Hoef and Peterson (2010) to space- 
time, Tang and Zimmerman (2020) use the analogue of the product-sum model (De Cesare 
et al., 2001) with space represented by a directed Euclidean tree.

The results obtained in this paper are technical and require substantial background on quasi- 
metric spaces, isometric embeddings, graphs with Euclidean edges, and harmonic analysis. 
Hence, the exposition focuses on describing the main ideas and illustrating their implications 
through practical examples, while keeping a statistical language and deferring the technical part 
to the Online Supplementary Material. The plan of the paper is the following. Section 2 contains 
a succinct statistical background and an illustration about graphs with Euclidean edges. Section 3
describes the main idea and construction for the new class of space-time covariance functions. 
Section 3.1 guides the reader through practical examples. We also discuss previously proposed ex-
amples in concert with models that are not valid. A simulation study in Section 4 illustrates the 
practical implementation of our model, explores the effects of model misspecification on estima-
tion and prediction, and studies the identifiability of model parameters under the correctly speci-
fied model. Section 5 analyses a traffic accident point pattern dataset and compares various models 
that differ in terms of distance metric and probability mass function. A short discussion concludes 
the paper.

The Supplemental Material contains the following. All theorems referenced are stated and 
proved in the Supplemental Material. All Supplemental Material sections have an ‘S’ prefix, while 
tables and equations are given number labels as if they followed subsequently in the manuscript. 
Online Supplementary Material, Section S1 presents a mathematical background needed to under-
stand the proofs. Online Supplementary Material, Section S2 provides formal statements and their 
proofs to justify the general ideas illustrated in Section 3. Online Supplementary Material, Section 
S3 reports tables for constructing a wealth of practical examples of new covariance functions.

2 Background and notation
A linear network is commonly understood as the union of finitely many line segments in the plane, 
where different edges only possibly intersect with each other at one of their vertices. The upper-left 
part of Figure 1 depicts an abstract drawing for a linear network. More sophisticated pictures are 
available in the literature, but a simplified version is provided here. Both random fields and point 
processes over linear networks have been considered in the literature. For continuously indexed 
random fields (not evolving over time) the reader is referred to Anderes et al. (2020). For point 
processes over networks, a standard reference is Baddeley et al. (2021).

A network (or equivalently, a graph), G, is comprised of two components: a set of nodes (or ver-
tices) denoted by V, and a set of edges denoted by E. Clearly, a linear network as defined above is a 
special case of network. Generalised networks as defined by Anderes et al. (2020) allow for non-
linear edges. The problem with nonlinear edges stands mainly in how to measure distances be-
tween any pair of points belonging either to the set of vertices or to the edges. The problem is 
solved by Anderes et al. (2020) who propose graphs with Euclidean edges: those are sophisticated 
topological structures that allow distances in the following way. Each graph has a collection of 
bijection mappings, such that each edge in the graph is mapped into an open interval (see bottom- 
right of Figure 1), and every pair of vertices connected by the edge is mapped into two points at the 
extremes of the same interval. This creates a Euclidean system with an orientation and a suitable 
way to measure distances. Rigorous definitions of these topological structures are given in Online 
Supplementary Material, Section S1. The bottom-right part of Figure 1 depicts a typical graph 
with Euclidean edges. We note that the edge e is mapped into an open interval and that the two 
vertices (u, v) are mapped into the endpoints of the interval, denoted (e, e). The path merging 
e and e is highlighted in orange in the picture. The geodesic distance is the length of such a path 
and is denoted dG throughout the manuscript. More accurately, the geodesic distance, dG, is 
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the length of the shortest path merging any pair of points belonging to G. Another example of 
graph with Euclidean edges is provided in the bottom-left part of the same figure.

Figure 2 further illustrates how distances are computed over a graph. We note that to each edge, 
e and e′, are associated two (possibly) different mappings, φe and φe′ . To calculate the geodesic dis-
tance between a vertex, v2 being one extreme of the edge e′, and a point v0 lying somewhere on the 
edge e, we sum the length of two paths. The first path is highlighted in green from the purple curve. 
Note: (a) the purple curve is a Euclidean coordinate system, with an orientation; (b) for each edge, 
e′, a bijection φe′ is assigned; (c) to the vertices v2 and v1 we assign respectively the points e′ = 
φe′ (v1) and e′ = φe′ (v2); the length of the path is measured through |φe′ (v1) − φe′ (v2)|; as a result, 
we have that dG(v0, v2) = |φe(v0) − φe(v1)| + |φe′ (v1) − φe′ (v2)|.

Anderes et al. (2020) provided an accurate description of the technical conditions on a graph to have 
Euclidean edges. Distance consistency is one of those, and we refer the reader to Figure 1 in Anderes 
et al. (2020) for an illustration. Some graphs are forbidden with respect to the geodesic distance. 
Examples are provided by Anderes et al. (2020), and Figure 3 shows on the left side an example of a 
forbidden graph. Distance is inconsistent because the geodesic distance (length of the green arc) is dif-
ferent than the within-edge distance (length of the orange arc), which is calculated through 
|φe(v1) − φe(v2)|. On the other hand, the right-hand side shows an example where the geodesic and 
the within-edge distances coincide. Such a graph is indeed consistent with respect to the geodesic metric.

The upper-right part of Figure 1 depicts a Euclidean tree, a special case of a graph with 
Euclidean edges. It is a tree-like graph (which is planar). Vertices of a Euclidean tree that are con-
nected to one edge only are called leaves. As noted by Tang and Zimmerman (2020), an arbitrary 
point x belongs to G when x ∈ V ∪


e∈E. As in their paper, we assume that the topological struc-

ture of G does not evolve over time.
Our paper considers weakly stationary random fields {Z(x, t), (x, t) ∈ G × T }, with G being a 

graph (with Euclidean edges, an Euclidean tree, or a linear network) and T describing time, 

u

v

e

e

Figure 1. Upper-Left: an example of linear network; Upper-Right: A Euclidean tree with seven leaves (blue dots), 
which may represent a stream network; Bottom-Left: A graph with Euclidean edges that may represent a road traffic 
network; crosses between edges with no vertices represent bridges or tunnels. Bottom-Right: another graph with 
Euclidean edges; the bijection mapping the vertices u and v into e and e and the edge e into the open interval (e, e) 
gives a Euclidean system with orientation and a way to measure distances.
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that can be either linear (time is the whole real line, R), or circular (seasonal time on the circle, 
denoted S). This work focuses on the second-order properties of Z, with special emphasis on 
the covariance function, being a linear measure of association between the random variable 
Z(x, t) at point x ∈ G and time t ∈ T , and the random variable Z(x′, t′) at point x′ ∈ G and time 
t′ ∈ T . We assume that

cov{Z(x, t), Z(x′, t′)} = G(distanceG(x, x′), separationT (t, t′)), (2.1) 

for some suitable function, G. Covariance functions are positive definite, that is 
N

i,j=1 aicov{Z(xi, ti), Z(xj, tj)}aj ≥ 0 for any arbitrary system {ai}
N
i=1 of real constants and any ar-

bitrary choice of points {(xi, ti)}
N
i=1. For a random field defined over G and not evolving over time, 

we define the variogram (denoted γ throughout) as the variance of the increments of Z(x) with re-
spect to Z(x′), for x, x′ ∈ G: γ(x, x′) = var{Z(x) − Z(x′)}. The variogram can also be used as an al-
ternative metric, termed resistance metric in Anderes et al. (2020), and denoted dR throughout. 
The resistance metric is actually the variogram of a special class of random fields (see Anderes 
et al., 2020, for details). The function G will be equipped with either the geodesic or the resistance 
distance, and with the difference (if linear time) or the geodesic over the circle (if circular time).

3 Main results
We discuss general construction here. We consider two parametric classes of functions. Let p and k 
be two positive integers. Then, we define

Dθ := {φ(x ∣ θ), x ≥ 0, θ ∈ Rp} and Hϑ := {ψ(t ∣ ϑ), t ≥ 0, ϑ ∈ Rk}, (3.1) 

 e'

 e

v0

v1

v2

e

e

e

e
e'

e'

Figure 2. An illustration on how to compute the geodesic distance over a graph with Euclidean edges, namely 
dG(v0, v2) = |φe(v0) − φe(v1)| + |φe′ (v1) − φe′ (v2)|.

v1 v1

v2 v2

Figure 3. An example of a forbidden (left) and allowed (right) Euclidean cycle.
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where θ and ϑ are parameter vectors. Our purpose is to use elements of the classes Dθ and Hϑ to 
create a new class of space-time covariance functions with a wealth of practical examples and in-
teractions between space and time. Specifically, we propose the following construction. For two 
given functions φ and ψ belonging to the class Dθ and Hϑ, respectively, we define the function 
Gα,β(·, · ∣ θ, ϑ) : [0, ∞)2 → R:

Gα,β(x, t ∣ θ, ϑ) =
1

ψ(t ∣ ϑ)α φ
x

ψ(t ∣ ϑ)β ∣ θ
 

, x, t ≥ 0. (3.2) 

The parameters α and β have been left intentionally outside the vectors θ and ϑ because of their 
physical interpretation, clarified subsequently. Hence, the problem is to find conditions on the 
functions φ, ψ, and on the values of α and β such that

cov{Z(x, t), Z(x′, t′)} = Gα,β(d·(x, x′), |t − t′| ∣ θ, ϑ), x, x′ ∈ G, t, t′ ∈ R (3.3) 

is a positive definite function. Here, we use d· whenever we do not wish to specify any choice be-
tween dG and dR. We now clarify the role of the parameters α and β. When α and β are both posi-
tive, Gα,β corresponds to a functional form that was originally proposed by Gneiting (2002b) for 
space being the d-dimensional Euclidean space. Several generalisations of this class are summar-
ised in Porcu, Furrer, et al. (2020). When β is positive, the spatial distance is rescaled by temporal 
dependence. When β is negative, then the function acting on temporal dependence multiplies the 
spatial distance.

The functional and parametric conditions ensuring Gα,β to become a covariance function are 
carefully explored and justified in Online Supplementary Material, Section S2. As an example, 
the function φ(x ∣ θ) = σ2e−x/a is suitable, with θ = (σ2, a)⊤ ∈ R2

+ ⊂ R2, and with ⊤ denoting the 
transpose operator. A simple choice from the class Hϑ is the function

ψ(t ∣ ϑ) = (1 + ta)b, t ≥ 0, (3.4) 

with ϑ = (a, b)⊤. Here, a ∈ (0, 2] and b belongs to the interval (0, 1]. We provide a simplified ex-
position here. For the sake of simplicity, we only report one of the results that can be found in the 
Online Supplementary Material. The relevant classes of functions that are used in the result below 
are carefully described in Online Supplementary Material, Section S1.

Theorem 1 Let G be a graph with Euclidean edges. Let Gα,β be the mapping defined 
through equation (3.2). Let φ(· ∣ θ) be a parametric family of Stieltjes func-
tions. Let α ≥ 1 and β ∈ (0, 1]. Then, 

(a) if time is linear (T = R) then Gα,β(dR(·, ·), |·|2) is positive definite provided 
ψ(· ∣ ϑ) is a parametric family of Bernstein functions;

(b) if time is circular (T = S) then Gα,β(dR(·, ·), dG(·, ·)) is positive definite 
provided ψ(· ∣ ϑ) is the restriction to the interval [0, π] of a parametric 
family of Bernstein functions;

(c) if G is a graph with Euclidean edges that forms a finite sequential 1-sum of 
Euclidean cycles and trees, then for both cases above the resistance met-
ric, dR, can be replaced by the geodesic distance, dG.

3.1 Examples from the new class of space-time covariance functions
We show here how the class of space-time covariance functions proposed in (3.3) can be adapted 
for a wealth of practical situations and different interactions between space and time. To select any 
example from this class, the practitioner should take into account: 

• The reference space: a linear network, Euclidean tree, or graph with Euclidean edges;
• The temporal component: linear or circular time;
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• The type of spatial distance: the geodesic, dG, or the resistance metric, dR. In turn, this choice 
depends on the reference space and on the function φ used for the construction (3.2). Details 
are in Theorem 1 and Online Supplementary Material, Theorem 2(S);

• The fact that the function φ from the class Dθ is strictly positive on the positive real line, or 
compactly supported.

Some examples follow.

Example 1 We consider a graph with Euclidean edges, G, equipped with the resistance 
metric, dR. We consider the function x 7! φ(x ∣ θ) = σ2{1 + (x/cS)bS }−δS , for 
x ≥ 0. Here, the positive parameter cS rescales spatial distance, while the pa-
rameters bS ∈ (0, 1] and δS > 0 are related to fractal dimension and long mem-
ory of the associated random process. We can use a rescaled version of the 
function ψ(·/cT), for cT > 0 a temporal scale with parameter vector ϑ = 
(aT, bT)⊤ as defined through (3.4). Throughout, we fix bT = 1 with no loss 
of generality. Hence, a direct application of Theorem 1 ensures that

Gα,β(dR(x, x′), |t − t′| ∣ θ, ϑ)

=
σ2

1+
|t − t′|

cT

 aT
 α 1+

dR(x, x′)

cS 1+
|t − t′|

cT

 aT
 β

⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

bS
⎛

⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎠

−δS

,

(3.5) 

for x, x′ ∈G and t, t′ ∈ R, is a valid covariance function provided α > 0 and 
β ∈ (0, 1]. A similar example can be created by replacing the function φ above 
with the function φ(x ∣ θ) = σ2{1− xbSδS (1 + xbS )−δS }, x ≥ 0. Using the function 
ψ(t ∣ ϑ) = (η + taT ), η >0, and after appropriate rescaling over space and time, 
we get

Gα,β(dR(x, x′), |t − t′| ∣ θ, ϑ) =
σ2

η +
|t − t′|

cT

 aT
 α

× 1 −
dR(x, x′)

cS η +
|t − t′|

cT

 aT
 β

⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

bSδS

1 +
dR(x, x′)

cS η +
|t − t′|

cT

 aT
 β

⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

bS
⎛

⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎠

−δS
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

(3.6) 

for x, x′ ∈ G and t, t′ ∈ R, is a valid covariance function provided α > 0 
and β ∈ (0, 1]. For both examples, the resistance metric might be replaced 
with the geodesic, and the reader is referred to point 3 in Theorem 1 for 
details.

Example 2 Covariance functions with compact support play an important role when the 
graph is a Euclidean tree with a given number of leaves. Details are provided 
through Online Supplementary Material, Theorem 2(S) in Section S2. An il-
lustration is provided below. We consider the function

φ(x ∣ θ) = σ2 1 −
x
cS

 νS

+
, x ≥ 0, 
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where cS > 0, ν is positive and has a lower bound that is specified through 
Online Supplementary Material, Theorem 2(S). Here, (x)+ stands for the posi-
tive part of the real number x. The parameter cS determines the support of the 
function, because φ is identically equal to zero whenever x ≥ cS. Specifically, 
we have for example that

Gα,β(d·(x, x′), |t − t′| ∣ θ, ϑ)

=
σ2

1 +
|t − t′|

cT

 aT
 α 1 −

d·(x, x′)

cS 1 +
|t − t′|

cT

 aT
 β

⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

νs

+

(3.7) 

is a valid construction. Indeed, this is possible if the graph G is a Euclidean tree 
with a given number of leaves, m. The parameters νS and α depend linearly on 
m (see Online Supplementary Material, Theorem 2(S)), and β belongs to the inter-
val [0, 1). Also, the geodesic distance can be replaced by the resistance metric 
with no harm (see Online Supplementary Material, Theorem 2(S)). An important 
feature of the covariance function in equation (3.7) is that it is dynamically com-
pactly supported. That is, for every fixed time t, t′, the function Gα,β is compactly 
supported over a ball embedded in G with radius ψ(|t − t′| ∣ ϑ). This feature has 
been well studied in spatial statistics, and the reader is referred to Porcu, 
Bevilacqua, et al. (2020) for a modelling perspective, as well as to Bevilacqua 
et al. (2019) for the implications of using compact support for modelling, estima-
tion and prediction under the so-called infill asymptotic framework (Stein, 1999).

Example 3 When the parameter β in the covariance Gα,β is negative, the spatial distance d·
is multiplied (no longer rescaled) by temporal dependence. For instance, the 
function

Gα,−1(d·(x, x′), |t − t′| ∣ θ, ϑ)

=
σ2

ψ(|t − t′| ∣ ϑ)α exp −
d·(x, x′)

cS
ψ(|t − t′| ∣ ϑ)

 

(3.8) 

is a valid covariance function if α ≥ 1 and provided ψ satisfies the conditions in 
Online Supplementary Material, Theorem 3(S). Many other examples of this 
kind can be obtained using Online Supplementary Material, Theorem 3(S) in 
concert with suitable choices from Online Supplementary Material, Tables 
1(S) and 2(S).

3.2 When time is circular
If we assume time to be circular (as in Mastrantonio et al., 2019; Shirota and Gelfand, 2017; White 
and Porcu, 2019), then the Euclidean distance needs to be replaced by the geodesic distance over 
the circle. Theorem 1, Online Supplementary Material, Theorems 2(S) and 3(S) provide technical 
conditions for when the geodesic distance can be used in the function ψ(· ∣ ϑ). It is worth mention-
ing that the geodesic distance over the circle has range [0, π], so that the function ψ is restricted to 
this interval. This is stated accurately in the relevant propositions.

Online Supplementary Material, Theorem 4(S) provides a different construction that is based on 
half-spectral inversion. We do not enter mathematical details, but note here that such a construc-
tion allows for examples that cannot be covered through Theorem 1, Online Supplementary 
Material, Theorems 2(S) and 3(S). In particular, all the examples that have been previously intro-
duced do not allow for negative spatial dependencies. The function
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G1,1(dR(x, x′), dG(t, t′) ∣ θ, ϑ) = σ2 1 − ε
1 − εψ(dR(x, x′) ∣ ϑ) cos dG(t, t′)

 τ

, 

for x, x′ ∈ G, t, t′ ∈ S, is a valid covariance function for any graph with Euclidean edges cross cir-
cular time. Here, ψ needs to be a positive definite function over the circle with the additional re-
quirement that ψ(0 ∣ ϑ) = 1. The parameter ε belongs to the open interval (0, 1). More examples 
are reported in Online Supplementary Material, Table 3(S).

3.3 Previously proposed models
Menegatto et al. (2020) considered the more general setting of quasi-metric spaces and provided 
sufficient conditions for the structure Gα,β(|·|, σ(·, ·)) (notice that the arguments are exchanged 
here) to be positive definite. Here, σ is an arbitrary quasi-metric. Tang and Zimmerman (2020)
noticed this fact and considered the pair (G, dR) as a quasi-metric space. As a result, the 
Menegatto-Porcu-Oliveira construction can be adapted to a covariance function 
Gα,β(|·|, dR(·, ·)) where the temporal separation is rescaled by spatial dependence. This is unusual 
in spatial statistics, and for a constructive criticism the reader is referred to Porcu et al. (2018), 
with the references therein.

For the case of Euclidean trees with a given number of leaves, Tang and Zimmerman (2020) pro-
posed what they term metric models. Let ρ1,n be the ℓ1 distance in Rn. For a function C such that 
C(ρ1,n+1(·, ·)) is positive definite, arguments in Theorem 4 of Anderes et al. (2020) show that 
C(d·(·, ·) + |·|) is positive definite over a Euclidean tree cross the real line. The construction is clear-
ly reminiscent of zonal anisotropy in geostatistics, whose adaptation to the space-time setting has 
received constructive criticism, and we refer the reader to Chilès and Delfiner (2012), Gneiting 
(2002a), Stein (2005) and Porcu and Zastavnyi (2011) amongst others.

3.4 Related constructions and forbidden models
A partially forbidden model. The Matérn class of functions has been the cornerstone of spatial 
statistics for a long time. We refer the reader to Stein (1999) and more recently to Bevilacqua 
et al. (2022) for a thorough account. For a very recent review that embraces several disciplines, 
the reader is referred to Porcu et al. (2023). We define it here through

Mν(x) =
21−ν

Γ(ν)
xνKν(x), x ≥ 0, (3.9) 

where Kν is a modified Bessel function of the second kind of order ν > 0. The parameter ν serves as 
an index of mean square differentiability for the associated random process. Given the massive use 
of the Matérn family in spatial statistics, one might be tempted to choose

φ(x ∣ θ) = σ2MνS

x
cS

 

, x ≥ 0, 

with θ = (σ2, cS, νS)⊤, where the three parameters index the variance, the spatial scale, and the 
smoothness, respectively. A similar calculation as in Example 1 yields

Gα,β(dR(x, x′), |t − t′| ∣ θ, ϑ) =
σ2

1 +
|t − t′|

cT

 aT
 αMνS

dR(x, x′)

cS 1 +
|t − t′|

cT

 aT
 β

⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠
. (3.10) 

Unfortunately, arguments in Theorem 1 in Anderes et al. (2020) in concert with Theorem 1 show 
that the parameter νS is restricted to the interval (0, 1/2] to ensure positive definiteness. For such 
an interval, the associated process is continuous but not mean square differentiable. Hence, this 
covariance is not suitable to index spatial smoothness.
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Forbidden models and unclear cases. For G being any general graph with Euclidean edges, 
Online Supplementary Material, Section S2 shows that the functions φ and ψ involved in the com-
position Gα,β as in equation (3.2) are both strictly positive. While Online Supplementary Material, 
Theorem 2(S) shows that covariance functions can attain negative values for a relatively small 
number of leaves, Corollary 3 in Anderes et al. (2020) proves that covariance functions on trees 
with any number of leaves must be strictly positive, or identically equal to zero after a given 
lag. Further, the condition of non-negativity is only necessary. Sufficient conditions based on iso-
metric embeddings from the metric space (Rn, ρ1,n) into the quasi-metric space (G, d·), where the 
number of leaves is related to the dimension n where the original space is defined can be inferred 
from Zastavnyi (2000).

An important implication for data analysis is that the model in equation (3.7) is definitely not 
suitable for Euclidean trees with a large number of leaves. In fact, the condition ν ≥ 2n − 1 
from Online Supplementary Material, Theorem 2(S), with n = ⌈m/2⌉ and m being the number 
of leaves, implies that for m large enough the kernel almost vanishes except at the origin. Such 
an inconvenience is clearly shared by the metric models that have been introduced by Tang and 
Zimmerman (2020) to analyse data over a tree with a given number of leaves. Example (3.8) over-
comes this inconvenience, as the function φ in the composition is not related to the number of 
leaves. Hence, the example in equation (3.8) is more recommendable to deal with Euclidean trees 
with a large number of leaves.

Finding covariances with negative values on a general graph with Euclidean edges is elusive. 
Theorem 1 in Anderes et al. (2020) provides a sufficient condition, and all the functions satisfying 
such a condition are strictly positive. It is unclear whether any choice of function φ attaining nega-
tive values can preserve positive definiteness. Emery and Porcu (2022) show that this is doable 
when space is the metric space (Rn, ρ2,n), with ρ2,n denoting the Euclidean distance in Rn. 
Apparently, the elegant isometric argument in Anderes et al. (2020) cannot be used in this case, 
and this remains an open problem.

New models commuted from old literature. The proofs of Theorem 1, Online Supplementary 
Material, Theorems 2(S) and 3(S) show that typical scale mixtures arguments can be used to adapt 
space-time covariance functions that have been proposed for the setting of the metric space 
(Rn × R, ρ2

2,n, ρ1,n). Here we list the most prominent constructions: 

1. The quasi-arithmetic class (Porcu et al., 2010);
2. The scale mixtures as in Fonseca and Steel (2011), Apanasovich and Genton (2010), and 

Schlather (2010);
3. Other scale-mixture-based constructions as in Porcu et al. (2006), Porcu et al. (2007), Porcu 

and Mateu (2007), and Alegría et al. (2019).

Other popular constructions can be adapted from earlier literature. For instance, Peron et al. 
(2018) proposed linear combinations of products of covariance functions defined over graphs 
with temporal covariance functions. They provided conditions for at least one weight in the linear 
combination to be negative.

4 Simulation study
Our simulation study considers data simulated over a river network to analyse the effects of model 
misspecification in terms of both distance metric and covariance function, as well as the estimation 
and identifiability of model parameters used to generate data. Specifically, we use a subset of ns = 
50 sites on the Clearwater River Basin in Idaho, USA (see Figure 4). These locations are derived 
from data used by Isaak et al. (2018), available at https://www.researchgate.net/publication/ 
325933910_Principal_components_of_thermal_regimes_in_mountain_river_networks. To em-
phasise the importance of how distance is defined in such settings, we calculate the Euclidean dis-
tance and plot it against the distance over the river network in Figure 4. Because river networks 
generally present unique challenges with flow direction and river connections (Ver Hoef et al., 
2006), we emphasise that we only use this network structure as an illustration. For each location, 
we simulate 10 random time points, distributed uniformly between 0 and 1, yielding 500 data 
points.
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We consider four experiments in this study, and, for each experiment, we simulate nsim = 1000 
datasets through

y ∼ Normal 0, Σ + τ2I
( 

. (4.1) 

Here Σ is a covariance matrix with elements determined by equation (3.5) which we subsequently 
denote by T for the true covariance model. Specifically, we use the network geodesic distance dG 

and fix α = 2, aT = 1, δS = 2. In the simulation experiments, we treat cT, cS, σ2, and τ2 as unknown 
parameters to be estimated. The four simulation experiments differ by varying the spatial range 
parameter, cS = 20, 50, 100, 200 km, depending on the simulation experiment. For all simula-
tions, we use cT = 0.2, σ2 = 0.9, and τ2 = 0.1. For every simulated dataset, we fit models using 
the true model, as well as two competitors, Ci, i = 1, 2, defined as 

(C1) The same covariance model T, but replacing the network geodesic metric, dG, with the 
Euclidean distance;

(C2) The covariance model in equation (3.6), with α = 2, aT = 1/4, δS = 1/2, η = 1/2, and using 
the geodesic distance dG. As with T, τ2, σ2, cS, and cT are unknown.

All models are fit using maximum likelihood estimation. Because τ2, σ2, cS, and cT are strictly posi-
tive, we maximise the likelihood as a function of the parameters on the log-scale.

We examine the results of this simulation study in several ways. To verify that model perform-
ance is best for T, in Section 4.1, we present the proportion of times each covariance example had 
the highest likelihood. In addition, we compare models in terms of out-of-sample predictive per-
formance. To verify that using the correct distance metrics improves parameter estimation, in 
Section 4.2, we compare the parameter estimates under T and C1 (these models only differ by 
the distance metric used for the spatial component). To determine whether we can recapture 
the true parameters under the correctly specified model, we further compare the estimated model 
parameters for T to the true parameters in Section 4.2. The code for these simulations is available 
at https://github.com/philawhite/network-time.

4.1 Model comparison
For every simulated dataset, we fit the models that differ in terms of covariance function (T, C1 or 
C2) but have the same model form (4.1). Using maximum likelihood estimates, we calculate the 
log-likelihood for each model to identify the covariance example with the highest likelihood. In 
Table 1, we present the proportion of simulations where each example had the highest likelihood, 
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Figure 4. (Left) Locations of sites (black points) on the river network (blue colour) used for the simulation study. 
(Right) Comparison of Euclidean distance and network (stream) distance for the sites used in the simulation study. 
The red dashed line has a slope of one and marks equality.
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calculated for each experiment (cS = 20, 50, 100, 200 km). Even for relatively short spatial range 
parameters, the model T was chosen 92% of the time; however, T was chosen more frequently as 
the range parameter cS increased. Thus, we find that as the range parameter increases (i.e. the per-
sistence of spatial correlation increases), it was more important to use the correctly specified net-
work metric.

To compare the predictive performance of T, C1, and C2, we randomly select 20% of every si-
mulated dataset to use as a test set. Using the remaining (training) data, we estimate parameters 
using maximum likelihood estimation. Based on the maximum likelihood estimates, we predict 
the values of the test data, conditioned on the training data. For every simulation, we calculate pre-
dictive mean squared error (PMSE). We also use the average of continuous ranked probability 
scores (CRPS), CRPS(F, yi) = EF|Y − yi| − 1

2 EF|Y − Y′|, a strictly proper scoring rule that consid-
ers the fit of the whole predictive distribution F to an observed value yi (Epstein, 1969; Gneiting 
and Raftery, 2007; Matheson and Winkler, 1976). Lastly, we average the performance over all 
simulations. These results are presented in Table 2.

In all cases, the correct model T was the best predictive model in terms of CRPS and PMSE. For 
the smallest spatial range parameter, the correct model T was only marginally better than the best 
of the misspecified models. However, for larger spatial range parameters, the relative advantage of 
the true model was larger. As in the likelihood comparison in Tables 1, 2 shows that as the per-
sistence of spatial correlation increases, it was more important to use network geodesic.

4.2 Parameter estimation
In this section, we assess the estimation differences depending on the distance metric used, as well 
as parameter recovery. As discussed, the data were simulated using T, and we compare the max-
imum likelihood estimates for T and C1 to the true value using distance measures, histograms of 
estimated parameters, and empirical confidence interval coverage.

For every simulation experiment, we obtain nsim sets of estimated parameters. To assess the es-
timation error between an estimated set of parameters λ̂ and true values λ, we use mean absolute 

Table 1. The proportion of times each covariance example had the highest likelihood for the simulated datasets

cS T C1 C2

20 km 0.917 0.083 0.000

50 km 0.969 0.031 0.000

100 km 0.988 0.012 0.000

200 km 0.997 0.003 0.000

Note. Best in bold font.

Table 2. The average predictive mean squared error (PMSE) and the average continuous ranked probability score 
(CRPS), averaged over all simulations

cS Criterion T C1 C2

20 km PMSE 0.567 0.578 0.651

CRPS 0.415 0.419 0.448

50 km PMSE 0.447 0.465 0.535

CRPS 0.369 0.376 0.406

100 km PMSE 0.361 0.384 0.441

CRPS 0.332 0.342 0.369

200 km PMSE 0.288 0.313 0.353

CRPS 0.297 0.309 0.330

Note. Best in bold font.
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error MAE(λ, λ̂) = 1
nsim

nsim
i=1 |λ̂i − λ| and root mean squared error RMSE(λ, λ̂) = { 1

nsim

nsim
i=1 

(λ̂i − λ)2}1/2. We present the simulation errors for T and C1 in Table 3.

In all simulation settings (i.e. for all values of cS), MAE and RMSE for all parameters were lower 
or equal under T, compared to C1. Unsurprisingly, the largest discrepancies between T and C1 are 
for cS, where the estimation errors for C1 are nearly twice those for T. The difference in estimation 
errors for σ2 is small compared to those for cS, while the estimation errors for τ2 and cT are very 
small or negligible.

As a simple visualisation of our estimates under the correctly specified model, we plot histo-
grams of estimated parameters under T against the true values to confirm that the correct param-
eters can be identified (see Figure 5). The true value used to generate the data is well centred in the 
span of estimated parameters, suggesting that we are effectively able to recover parameters.

For the true model T, we use the inverse of the Fisher information matrix to obtain standard 
errors for the maximum likelihood estimates of the natural logs of τ2, σ2, cS, and cT. We construct 
95% confidence intervals for our parameters (on the log scale) using these standard errors and by 
relying on the asymptotic normality of maximum likelihood estimators. For each simulation i, we 
obtain lower and upper 95% confidence bounds l(λ)

i and u(λ)
i for each parameter λ by exponentiat-

ing the confidence intervals on the log-scale. We calculate the average 95% confidence interval 
width CIW(l(λ), u(λ)) = 1

nsim

nsim
i=1 (u(λ)

i − l(λ)
i ) and the empirical 95% interval coverage 

EIC(l(λ), u(λ)) = 1
nsim

nsim
i=1 1[l(λ)

i ,u(λ)
i ](λ), where 1A(·) is an indicator function over the set A. These quan-

tities for each simulation experiment are given in Table 4.
Although there is slightly worse coverage for σ2 for more persistent spatial correlations (larger cS), 

the coverage rates in Table 4 are close to the expected level given by a 95% confidence interval for all 
parameters in all experiments. The interval widths for cT and τ2 are essentially the same in all experi-
ments (i.e. different values of cS). However, as cS increases, so does the interval width for σ2, even 
though σ2 does not change. This result may suggest similar identifiability challenges common for 
scale and range parameters for spatial covariance functions (H. Zhang, 2004). However, overall, 
these simulation results suggest that, under the configurations considered, model parameters are 
well identified. Nevertheless, there may still be identifiability challenges that warrant future studies.

5 Data illustration
In this data illustration, we consider traffic accident data from the (approximately) 29-mile I-215 
beltway around Salt Lake City, Utah, USA from 2015 to 2020. Crashes are indexed by time and 
location (mile post, starting at 0 in the west and terminating near 29 in the north). The mile post 
variable maps the locations to a one-dimensional linear space, making network models 

Table 3. Average distances between estimated and true parameters under all four covariance functions from the four 
simulation experiments

Covariance MAE RMSE

cS Model σ̂2 ĉS ĉT τ̂2 σ̂2 ĉS ĉT τ̂2

20 km T 0.100 3.778 0.014 0.009 0.128 4.737 0.018 0.012

C1 0.103 7.643 0.015 0.009 0.133 8.137 0.019 0.012

50 km T 0.131 10.350 0.016 0.009 0.165 12.905 0.020 0.011

C1 0.138 23.360 0.016 0.009 0.174 24.272 0.021 0.011

100 km T 0.162 22.856 0.016 0.008 0.20 29.535 0.021 0.010

C1 0.172 53.747 0.017 0.008 0.218 55.321 0.022 0.011

200 km T 0.197 53.537 0.018 0.007 0.251 68.228 0.023 0.009

C1 0.213 121.569 0.020 0.008 0.269 124.212 0.025 0.010

Note. Bolded numbers indicate the smallest distance (best performance). MAE and RMSE refer to the absolute and root 
mean squared error between the estimated and true parameter values
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appropriate. In total, we observe 5,027 traffic accidents over these six years. Although we are not 
licensed to share these data publicly, the data can be requested at https://data-uplan.opendata. 
arcgis.com/. We have, however, shared relevant code and representative data at https://github. 
com/philawhite/network-time. To enable simple use of these models and more computationally 
efficient model fitting, we analyse the data binning over road lengths of 0.5 miles and time win-
dows of approximately one month (30.44 days), giving us counts yi over n = 4,176 space-time 
bins. On average, there are about 1.2 crashes per space-time bin, measured in units of months 
multiplied by half a mile. Each count yi is associated with a spatial location si and a time ti, and 
every location is associated with a milepoint, denoted as m(si). We emphasise, however, that 
our goal is estimating a continuous space-time intensity surface.

In Figure 6, we plot jittered locations of these accidents, a histogram of their occurrence date, 
and comparison of the Euclidean distance and network geodesic distance between these crashes. 
These show spatial and temporal heterogeneity, and significant differences between the network 
geodesic and Euclidean distances. We also point out the drop in accident counts following 
March 2020 shutdowns due to the COVID-19 pandemic.

In traffic accident modelling, Poisson process models are common (see Jones et al., 1991; Miaou 
and Lum, 1993, for early examples); however, traffic accident patterns often show overdispersion 
relative to Poisson processes (see, e.g. Hauer, 2001). In addition, traffic accident patterns often 
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Figure 5. Histogram of model parameters for all simulation experiments. Vertical red dashed lines represent the 
simulation true values.

Table 4. 95% empirical interval coverage (EIC) and average 95% confidence interval width (CIW) under the correctly 
specified model

cS Criterion σ2 cS cT τ2

20 km EIC 0.941 0.958 0.945 0.944

CIW 0.509 19.5 0.070 0.045

50 km EIC 0.929 0.944 0.936 0.951

CIW 0.649 52.7 0.075 0.042

100 km EIC 0.931 0.937 0.944 0.945

CIW 0.802 120.6 0.080 0.040

200 km EIC 0.915 0.94 0.936 0.947

CIW 0.976 279.9 0.084 0.037
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have higher rates of zeros than Poisson process models support (Shankar et al., 1997). Thus, in 
addition to Poisson models, we also consider Negative Binomial models and Zero-Inflated 
Poisson models.1 We outline these models in Table 5.

For all models, we have a location parameter μi which is specified as log (μi) = β0 + wi, where β0 
is an intercept for the log mean of counts and (w1, . . . , wn)⊤ ∼ Normal(0, Σ) are zero-mean space- 
time random effects with covariance Σ specified using either T or C1 from Section 4. For simplicity 
in expressing the model, we write T and C1 as functions of both distance and time, as well as pa-
rameters σ2, cS, and cT. T uses the network geodesic, while C1 uses Euclidean distances calculated 
using Eastings and Northings. Thus, cov(wi, wj) = T(|m(si) − m(sj)|, |ti − tj|; σ2, cS, cT) or 
cov(wi, wj) = C1(‖si − sj‖, |ti − tj|; σ2, cS, cT), depending on the specification. We clarify that we 
do not include a nugget effect τ2 (as in Section 4.1) because this parameter is equivalent to a log- 
normal overdispersion parameter within the generalised model framework. In this case, we prefer 
to address potential overdispersion directly through the probability mass function (PMF) specifi-
cation. In total, using three PMFs and two covariance functions, we consider six different models.

We fit all models in a Bayesian framework. We use the following prior distributions for our 
model parameters (when applicable):

β0 ∼ Normal(0, 100),
(w1, . . . , wn)⊤ ∼ Normal(0, Σ),

log ((σ2, cS, cT)⊤) ∼ Normal(0, 10 I),
r ∼ Uniform(0, 50),
ω ∼ Uniform(0, 1).

(5.1) 

These prior distributions are weakly informative, but they provide flexibility given the number of 
crashes, the spatial range of the dataset (in miles), and the time differences in weeks. For the over-
dispersion parameter (r, normally defined as a number of failures) in the Negative Binomial models, 
we assume that r ∼ Unif(0, 50) because the Negative Binomial resembles the Poisson distribution 

Table 5. Probability mass functions (PMF) used in our analysis of traffic accident counts

PMF P(Yi = yi), yi ∈ {0, 1, 2, 3, . . . }

Poisson μi
yi e−μi

yi!

Negative Binomial Γ(r+yi)
Γ(r)yi!

μi
yi rrμi

yi

(r+μi)
r+yi

Zero-Inflated Poisson
ω + (1 − ω)e−μi yi = 0

(1 − ω)
μi

yi e−μi

yi!
yi > 0

⎧
⎨

⎩

Figure 6. (Left) Jittered accident locations, (Center) a histogram of accident occurrence date, and (Right) a 
comparison of network and Euclidean distance in miles. The red dashed line has a slope of one and marks equality.

1 We also considered Zero-Inflated Negative Binomial models; however, these models performed poorly.
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for large r. For the Zero-Inflated Poisson distribution, we assume that the zero-inflation probability 
ω is Uniform(0, 1) and is constant over space as used by Pew et al. (2020) on a similar dataset.

We fit the models using NIMBLE (de Valpine et al., 2017). We sample the log covariance param-
eters, the intercept, the overdispersion parameter, and zero-inflation parameter using a Normal 
random walk. We sample the space-time random effects using elliptical slice sampling (Murray 
et al., 2010). We run this MCMC for 50 000 iterations, discard a burn-in of 20 000 iterations, 
and, for memory reasons, thin the remaining samples to 5 000 samples.

To compare models, we use the Watanabe-Akaike information criteria (WAIC) (Watanabe 
2010). The WAIC approximates cross-validation and is calculated using the computed log point-
wise predictive density

lppd =
n

i=1

log
1
M

M

m=1

p(yi ∣ θm)

 

, 

as well as a complexity penalty pWAIC =
n

i=1 var[ log {p(yi ∣ θ)}] (see Gelman et al., 2014, for more 
discussion). With these components, WAIC is defined as −2lppd + 2pWAIC, and a smaller WAIC 
represents a better model. In addition, we also consider the out-of-sample predictive performance 
by carrying out 10-fold cross-validation, where each data point is held out at random exactly one 
time. We compare competing models using two strictly proper scoring rules for count data (Czado 
et al., 2009): the ranked probability score (RPS) (Czado et al., 2009; Gneiting and Raftery, 2007), 
a discrete version of CRPS, and the Dawid-Sebastiani score (DSS) (Dawid and Sebastiani, 1999),

DSS(F, y) =
y − μF

σF

 2

+ 2 log σF.

We estimate the RPS using the empirical CDF approach discussed in Krüger et al. (2021), 
while the DSS only relies on the first two moments (μF and σ2

F) of the predictive distribution 

Table 6. Model comparison results. ‘Pois’ is the Poisson distribution, ‘NB’ is the Negative Binomial distribution, and 
‘ZIP’ is the Zero-Inflated Poisson distribution

Covariance PMF WAIC lppd pWAIC RPS DSS MAE

1 T Pois 10730.4 −4675.3 689.9 0.750 1.947 1.162

2 T NB 10680.4 −4639.8 700.4 0.724 1.832 1.108

3 T ZIP 10521.9 −4609.8 651.2 0.699 1.910 1.050

4 C1 Pois 10633.7 −4626.1 690.8 0.754 2.007 1.170

5 C1 NB 10799.0 −4694.9 704.5 0.746 1.892 1.154

6 C1 ZIP 10809.9 −4690.0 715.0 0.783 2.322 1.221

Note. The best performance for each quantity is indicated using bold text, excluding the model complexity.

Table 7. Posterior mean, standard deviation, and 95% central credible intervals (2.5% and 97.5%) for ω, 
(1 − ω)eβ0+σ2/2, σ2, cS , and cT

Mean Std. Dev. 2.5% 97.5%

ω 0.0020 0.0022 0.0001 0.0075

(1 − ω)eβ0+σ2/2 1.1724 0.0200 1.1334 1.2129

σ2 0.6276 0.0538 0.5715 0.7646

cS 1.1749 0.1257 0.9402 1.3273

cT 5.8003 0.4444 5.0740 6.3762
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F. Lastly, we include the mean absolute error (MAE). The results of these comparisons are 
listed in Table 6.

The results in Table 6 show that the models using the network geodesic are better in terms of 
out-of-sample prediction; however, they are not always better in terms of WAIC. The PMF was 
also important in model performance, but the best PMF differed depending on the distance metric 
and model comparison metric used. Although the negative binomial model using T was best in 
terms of DSS, the best model in terms of fit (lppd), WAIC, RPS, and MAE is the zero-inflated 
Poisson model with random effects using T. We highlight that this covariance function uses the 
network geodesic to specify space-time random effects and outperforms all models that use the 
Euclidean distance. We interpret the results based on this model.

For the zero-inflated Poisson model using T, we present posterior summaries for ω, 
(1 − ω)eβ0+σ2/2, σ2, cS, and cT in Table 7. We use (1 − ω)eβ0+σ2/2 because this represents the 
mean of the model, accounting for the mean-zero Gaussian random effects on the log-scale and 
the zero-inflation.

Considering the improvement of the zero-inflated Poisson model relative to the Poisson model, 
the low posterior mean for ω is surprising and suggests that zero-inflation plays a very small role in 
the model. Nonetheless, the improved prediction under this model was substantial. The 95% cred-
ible interval for (1 − ω)eβ0+σ2/2 suggests that the baseline or average number of crashes is between 
(1.0330, 1.1903), in units of months multiplied by half a mile. To visualise the effect of cS and cT , 
we plot the posterior mean of the correlation function for the random effects as a function of net-
work distance and time difference (in weeks) in Figure 7. In this plot, we include a contour line 
marking the effective range (the distance/time difference where the correlation reaches 0.05). 
Although the correlation decays quickly as a function of distance over the network, correlation 
persists for many weeks over short distances. On the other hand, for short time differences (e.g. 
around five weeks) the posterior mean correlation remains above 0.05 for just over 4 miles. On 
the whole, the posterior mean correlation function suggests rapid spatial changes but more persist-
ent spatial patterns.

Figure 8 displays the posterior mean and standard deviation of the intensity surface, which rep-
resents the expected number of crashes per mile and per week. This plot allows us to explore the 
spatio-temporal patterns in the data, which reveal high variability in the expected number of ac-
cidents across space and time. The plot also demonstrates a clear relationship between the mean 
and standard deviation that we would expect under a zero-inflated Poisson model.
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Figure 7. Posterior mean for the correlation function over network distance and difference in time, where the colour 
scale varies logarithmically.
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One of the most interesting external factors during the time span of these data was the 
COVID-19-related shutdowns in March 2020 in the United States. To visualise the impact of these 
shutdowns, we have added a dashed line in the figure to indicate when the lockdowns went into 
effect. The before-and-after pattern is clearly visible along the entire belt route, with the accident 
intensity dropping rapidly beyond the dashed line, coinciding with decreases in daily commuting. 
The largest difference in the space-time random effect is near mile post 12, which is the junction 
between I-215 and I-15, the primary highway in Utah. Overall, these results show strong spatio- 
temporal patterns in the data.

6 Conclusions
We have provided flexible classes of space-time covariance functions that can be used over linear 
or nonlinear networks. Our exposition strategy has been devoted to simple illustrations that avoid 
mathematical details (provided in the Online Supplementary Material). This allows the practition-
er to understand how to use the new models. We have also focused on how to practically calculate 
distances over networks. Our simulation study highlighted that if the network geodesic is used to 
generate the data, then model fit, predictive performance, and parameter estimation are better us-
ing the network geodesic distance than Euclidean distance. In addition, we found that we can ef-
fectively recover the parameters of the true covariance function; however, we found increased 
uncertainty in the covariance scale parameter as the spatial range parameter increased. From 
our analysis of traffic accident patterns on a simple road network, we found that our best model 
used the network geodesic distance and outperformed all models that failed to account for net-
work structure. Using this model, we explored posterior summaries, the correlation structure of 
space-time random effects, and the model’s posterior mean and standard deviation over space 
and time. This work lays the foundation for many challenges from both theoretical and applied 
standpoints, among which are: 

1. The problem of multivariate covariance functions over networks has, to our knowledge, not 
been addressed so far by earlier literature. Modern datasets are often characterised by several 
georeferenced variables that are observed over time. For them, addressing the cross- 
correlation is of fundamental importance for modelling, estimation, and prediction 
(Genton and Kleiber, 2015).

2. Datasets over linear networks often exhibit nonstationarities over space and time, so that us-
ing a covariance function that solely depends on distances might result in unrealistic assump-
tions. The literature on this subject is elusive so far, and it is unclear how to adapt existing 
approaches to nonstationarity (Paciorek and Schervish, 2006; Porcu et al., 2010) that have 
been proposed in Euclidean spaces. In turn, nonstationary models would be the key to a fertile 
literature on reducibility approaches that allow to interpret a nonstationary random field as a 
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crashes per mile×week, where the colour scale varies logarithmically. Solid horizontal lines indicate new years, 
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stationary one if commuted into some suitable manifold (Porcu, Senoussi, et al., 2020). An 
attempt to provide nonstationary models on networks was done by Song and Zimmerman 
(2021), who have recently challenged the problem through two alternative approaches. 
The first, called the elastic approach, is based on a parameter that allows for either deform-
ation or condensation of the local coordinates (see also Zimmerman and Núñez-Antón, 
1997). The second is based on spatially varying moving average models, which represent 
the nonstationary counterpart of the approach provided by Ver Hoef and Peterson (2010).

3. Graphs with Euclidean edges might be a good alternative to parameterised curves represent-
ing special domains in spatial statistics. Abdalla et al. (2018) consider the problem of geostat-
istical modelling over a coastline. Their strategy is to parameterise the coastline coordinates 
through parametric curves that can be piecewise approximated through lines for segments of 
the real line. The approach includes the exponential covariance function on the real line, 
where the coordinates of the real line depend on the parametric curve indexing any point lo-
cated over the coastline. An alternative approach might be to split the coastline into a collec-
tion of sub-coastlines with endpoints given by the sampling point. This would allow us to 
retrieve the machinery provided by this paper for the case of graphs with Euclidean edges. 
Another alternative is achieved by noting that, given the topology considered by Abdalla 
et al. (2018), nonstationarities of the second order are plausible. Hence, one might adopt re-
duction approaches as much as Porcu, Senoussi, et al. (2020): for a given nonstationary co-
variance K on the coastline, find a pair (Φ, ρ), with ρ a correlation function and Φ a 
bijection, such that K(t, t′) = ρ(Φ(t) − Φ(t′)). Similarly, a reduction approach might be taken 
on the basis of dynamical systems driven by partial differential equations as in Senoussi and 
Porcu (2022).

4. The proposed methodology might be of substantial help to research activity in public health 
pertaining to data collected from wearable devices as subjects move around (walk, run or 
carry out their daily physical activities). The use of wearable devices, such as wrist-worn sen-
sors that monitor gross motor activity (actigraphy), have become ubiquitous. Through acti-
graphs, every individual is recorded continuously over time. Hence, one has a huge amount of 
data at hand. Alaimo Di Loro et al. (2021) adopt a hierarchical Bayesian approach to this 
problem. Given the frameworks adopted here and the related solutions, it would be tempting 
to consider the data as functions (given that they are almost continuous over time) for every 
spatial location. Hence, one would need to extend our approach to functional covariances for 
Gaussian processes that are defined over some function spaces.

5. Understanding the smoothness of processes defined over graphs with Euclidean edges (pos-
sibly evolving over time) is still elusive. For Gaussian fields, this might be challenged from 
the perspective of smoothness of covariance functions. In this direction, one promising avenue 
might be to adapt the approaches based on Bayesian wombling (Banerjee and Gelfand, 2006; 
Gelfand and Banerjee, 2015). The effort by Anderes et al. (2020) to build Brownian bridges 
over these topologies suggest that such an extension is not incremental, but requires substan-
tial work.

6. Some comments are in order regarding computational scalability. When working on a linear 
network, the examples provided in our paper show that substantial computational gains can 
be achieved through the covariance functions with dynamical support, which allow for sparse 
spatial matrices for every fixed temporal lag. Such a feature is not present over more general 
graphs with Euclidean edges, where our examples, as well as those provided by Tang and 
Zimmerman (2020), refer to covariance functions that are globally supported. At the same 
time, the approach based on covariance functions allows likelihood approximation ap-
proaches that have been introduced in the last 20 years in spatial statistics, and the reader 
is referred to Sun et al. (2012) for a comprehensive overview about likelihood approximations 
and covariance tapering. An alternative is represented by the approach discussed by Bolin 
et al. (2022) over graphs (no time is considered there). Extending such an approach to space- 
time is a major open challenge.

7. Covariance functions are highly in demand in several branches of statistics and machine 
learning, where they are called kernels. Reproducing kernel Hilbert space (RKHS) methods 
have been extremely popular. Our work has a direct impact on RKHS methods on graphs. 
To mention, Muandet et al. (2017) invoke several connections between kernel mean 
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embeddings and kernels on graphs; applications in Artificial Intelligence for reducing dimen-
sionality on graphs rely on kernels (Riesen and Bunke, 2009b); kernels on graphs allow for 
generative models for return probabilities on graphs (Z. Zhang et al., 2018); kernels on 
graphs are crucial to graph classification through manifold embeddings (Riesen and Bunke, 
2009a).
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