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a b s t r a c t

The Matérn family of covariance functions is currently the most
popularly used model in spatial statistics, geostatistics, and ma-
chine learning to specify the correlation between two geograph-
ical locations based on spatial distance. Compared to existing
covariance functions, the Matérn family has more flexibility in
data fitting because it allows the control of the field smoothness
through a dedicated parameter. Moreover, it generalizes other
popular covariance functions. However, fitting the smoothness
parameter is computationally challenging since it complicates
the optimization process. As a result, some practitioners set the
smoothness parameter at an arbitrary value to reduce the opti-
mization convergence time. In the literature, studies have used
various parameterizations of the Matérn covariance function,
assuming they are equivalent. This work aims at studying the
effectiveness of different parameterizations under various set-
tings. We demonstrate the feasibility of inferring all parameters
simultaneously and quantifying their uncertainties on large-scale
data using the ExaGeoStat parallel software. We also highlight
the importance of the smoothness parameter by analyzing the
Fisher information of the statistical parameters. We show that
the various parameterizations have different properties and dif-
fer from several perspectives. In particular, we study the three
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most popular parameterizations in terms of parameter esti-
mation accuracy, modeling accuracy and efficiency, prediction
efficiency, uncertainty quantification, and asymptotic proper-
ties. We further demonstrate their differing performances under
nugget effects and approximated covariance. Lastly, we give
recommendations for parameterization selection based on our
experimental results.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The Matérn covariance function has been a longstanding tool for statisticians in spatial data
nalysis; see Porcu et al. (2023) for a comprehensive review of its application in spatial statis-
ics, machine learning, physics, and numerous other relevant fields. Its purpose is to model the
orrelation between measurements at geospatial locations, allowing for predictions of unobserved
alues at new locations within the study region. Originally proposed by Matérn (1960) and later
opularized by Handcock and Stein (1993), the Matérn covariance is stationary and isotropic, that
s, distance-dependent and invariant under translations and rotations. It characterizes the spatial
orrelation between two random variables at locations si and sj, separated by a distance h = ∥h∥,
here h = si − sj:

Cor(∥h∥; θ) =
1

2ν−1Γ (ν)
(κ∥h∥)νKν(κ∥h∥) ∝

∫
Rd

eih
⊤z(∥z∥2 + κ2)−(2ν+d)/2dz, θ = (κ, ν)⊤,

here d is the dimension of the spatial field, κ > 0 denotes the scale parameter, ν > 0 represents
the smoothness parameter, and Kν(·) denotes the modified Bessel function of the second kind with
order ν. The Matérn correlation function is independent of the field dimension d, which is integrated
out from the spectral density (∥z∥2 + κ2)−(2ν+d)/2. In addition, Cor(h; θ) is standardized so that
Cor(0; θ) = 1. To make it a legitimate covariance function, statisticians often scale Cor(h; θ) by a
constant factor to account for non-unit variance. The Matérn covariance function is well-known for
its flexibility which includes numerous covariance functions as special cases such as the exponential
(ν = 1/2), Whittle (ν = 1), and squared-exponential (ν = ∞) covariances. In the literature, variants
of the Matérn covariance have been developed for different purposes and motivations. There are
currently three ubiquitous parameterizations of the Matérn covariance function in the literature:

M1(h; θ1) =
σ 2

2ν−1Γ (ν)

(
h
β

)ν

Kν

(
h
β

)
+ 1h=0 · τ

2, θ1 = (σ 2, β, ν, τ 2)⊤, (1)

M2(h; θ2) =
√

πφ

2ν−1Γ (ν + 1
2 )α

2ν
(αh)νKν(αh)+ 1h=0 · τ

2, θ2 = (φ, α, ν, τ 2)⊤, (2)

M3(h; θ3) =
σ 2

2ν−1Γ (ν)

(
2
√

νh
ρ

)ν

Kν

(
2
√

νh
ρ

)
+ 1h=0 · τ

2, θ3 = (σ 2, ρ, ν, τ 2)⊤. (3)

n variant M1, σ 2, β , and ν are the variance, range, and smoothness parameters, respectively. As
or variant M2, α partially functions like an inverse range parameter and primarily affects low-
requency behaviors (Stein, 1999). Additionally, φ is the overall scale parameter that pertains to the
igh-frequency behavior of the spatial process. In variant M3, σ 2 plays the same role as in variant
1, and ρ resembles the functionality of β as the range parameter. The roles of the parameter

, which controls the decay rate at high frequencies or, correspondingly, the field smoothness, is
mmutable in all three variants. Although these variants may seem quite different, their essence
emains unchanged. There are scale or range parameters (which can be easily transformed from one
o another as presented in Table 1) that measure the dependence range and smoothness parameters
hat govern the decay rate of the dependence. When h = 0, the three variants result in Var{Z(s)},
2
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Table 1
Link functions for transformations in the M1 , M2 , and M3 parameterizations of the Matérn covariance function.
↗ M1 M2 M3

M1 σ 2 , β , ν, τ 2 φ =
σ2Γ (ν+ 1

2 )
π1/2Γ (ν)β2ν , α = 1

β
, τ 2 σ 2 , ρ = 2ν1/2β , ν, τ 2

M2 σ 2
=

π1/2φΓ (ν)
Γ (ν+ 1

2 )α2ν , β = 1
α
, ν, τ 2 φ, α, ν, τ 2 σ 2

=
π1/2φΓ (ν)
Γ (ν+ 1

2 )α2ν , ρ = 2ν1/2
α

, ν, τ 2

M3 σ 2 , β =
ρ

2ν1/2
, ν, τ 2 φ =

σ2Γ (ν+ 1
2 )(2ν1/2)2ν

π1/2Γ (ν)ρ2ν , α = 2ν1/2
ρ

, ν, τ 2 σ 2 , ρ, ν, τ 2

where Z(s) represents a Gaussian random field (GRF) with locations s, in differing forms. For
nstance, Var{Z(s)} = σ 2

+ τ 2 in M1 and M3 but has a much more complicated expression in M2,
s specified in the links to σ 2. Moreover, τ 2 represents the nugget effect due to the measurement
rror.
Regarding the associated applications, for instance, the correlation form of variant M1 was

ntroduced and applied by Handcock and Stein (1993) to illustrate the idea of kriging in the Bayesian
ontext. Abdulah et al. (2018b, 2023) have applied variant M1 to model large-scale geospatial data.
It is also applied in the commonly used R package for spatial statistics fields (Nychka et al., 2021) and
geoR (Ribeiro and Diggle, 2001) as the Matérn model. Hong et al. (2021) used variant M1 to assess
prediction efficiency for large spatial datasets with approximated covariance functions. Variant M2
was employed in Stein (1999) to define the Matérn class, avoiding the problematic spectral density
concentration at the origin happening in M4(h; θ2) = φ(αh)νKν(αh)+1h=0 · τ

2. In addition, variant
M2 was also applied by Stein (1999) and Loh (2005) to study domain asymptotics for Matérn
GRFs. Variant M3 was recommended by Handcock and Wallis (1994) and Stein (1999) for a more
independent interpretation of ρ from ν compared to their counterparts in M2. Geoga et al. (2020)
applied M3 for the log-likelihood optimization. Geoga et al. (2023) also used M3 to compute the
Fisher information matrix. Furthermore, De Oliveira and Han (2022) studied the Fisher information
pattern of ν with M3. In addition, M3 is employed in the R package RandomFields (Schlather et al.,
2019), another popularly-used spatial statistics package, as one of the Matérn models.

As mentioned above, practitioners seem to use the three parameterizations rather arbitrarily
and interchangeably with the assumption that they are identical. For instance, these variants can
be easily transformed from one to another according to the link functions provided in Table 1.
Thus, the three parameterizations can characterize the same field if the relationships provided
in Table 1 are applied. In addition, the various parameterizations are redundant in the maximum
likelihood estimation. Indeed, by the invariance property of maximum likelihood estimators (MLEs),
we can transform the MLEs of one parameterization to those of another without losing optimality.
However, the general interchangeability assumption of the three parameterizations is not quite
right because numerous aspects require further consideration. First, the MLE is also a statistic that
may have different statistical properties, such as asymptotic variance and correlation in various
parameterizations for different domains and fields. Second, the differing parameter space of the
three variants results in different shapes of the log-likelihood function (shown in Fig. 1 and in Figure
S5 in the Supplementary Material) and, therefore, in differences in optimization performance. In
particular, although the parameterizations M1 and M3 are mathematically similar, shapes of their
log-likelihood functions are quite different near the optimal values (log-likelihood functions of M3
tend to be much flatter). In addition, the log-likelihood functions parameterized in M2 are quite
different from those of M1 and M3. Therefore, a possible difference exists in the modeling and
prediction efficiency for the three variants.

In this work, we examine the parameterizations M1, M2, and M3 from the perspective of
increasing-domain asymptotics and numerical optimization performance with the assessment tools
implemented in ExaGeoStat, a high-performance parallel software for large-scale spatial statis-
tics (Abdulah et al., 2018a). Among these benchmark functions, we rely on the Fisher information
matrix to investigate the increasing-domain asymptotics of all parameter estimates, including the
smoothness parameter, mean square prediction error (MSPE) for prediction performance, the mean

loss of efficiency (MLOE) and the mean misspecification of the mean square error (MMOM) criteria

3
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Fig. 1. Contour plots of the log-likelihood function of 1600 samples simulated from a strong exponential Gaussian field
parameterized in M1 , M2 , and M3 with ν = 0.5. Contours of the log-likelihood functions for ν = 1 tell a similar story
nd, thus, are omitted for concision. Contour plots for the 1600 samples simulated from weak and mediums exponential
aussian fields are shown in Figure S5 in the Supplementary Material. The black dot in each figure represents the MLEs
nd the blue cross represents the true parameter values.

or modeling accuracy (Hong et al., 2021) and the total number of optimization iterations for
odeling speed. Finally, we adopt the tile low-rank (TLR) covariance matrix approximation method,

mplemented by Abdulah et al. (2018b), to study the estimation accuracy of the three variants under
n approximated covariance. Experiments under TLR settings are only conducted for M1 and M3
ecause M2 encounters numerical issues when compressing the covariance matrix in low-rank. All
f the experiments are also repeated and jointly analyzed with nugget effects.
The paper is organized as follows. Section 2 presents a brief background of the ExaGeoStat

software, and Section 3 introduces the embedded benchmarking functions of ExaGeoStat. Next,
Section 4 analyzes the experimental results obtained from the benchmarking functions. Section 5
summarizes and studies the TLR covariance approximation method for the three variants. Lastly,
Section 6 applies the three variants to a Saudi wind speed spatial dataset.

2. Large-scale spatial modeling and prediction

A significant challenge of handling large-scale spatial data is operating on the large covariance
matrix of size n × n, where n is the number of spatial locations. Computations involving matrices
of large dimensions are usually of considerable complexity and become intractable as n becomes
large. Specifically, evaluating the Gaussian log-likelihood function requires O(n2) memory space
nd O(n3) operations. Abdulah et al. (2018a) developed the geostatistical software ExaGeoStat to
ddress this issue. It is a unified multicore high-performance computing software for large-scale
eospatial data modeling and predictions on large-scale systems, including graphical processing
nits (GPUs) (Abdulah et al., 2018b). ExaGeoStat is a powerful tool for researchers working in geo-
tatistics, providing advanced capabilities for large-scale spatial modeling and simulation that are
ot available in traditional software packages. ExaGeoStat adopts a three-layer software structure
hat includes a dynamic runtime system library, task-based parallel linear algebra solvers, and
eospatial operations from bottom to top (Abdulah et al., 2023).
Upon its initial release, the developers implemented a stationary GRF data generator on a

nit square based on M1. The data generator randomly selects a specific number of irregularly
istributed locations within the unit square to calculate the distance matrix. Then it generates
ynthetic GRFs using the covariance matrix computed by applying M1 on the distance matrix.
he synthetic data generator adopts parallel computing to split the large covariance matrix, which
ight be cumbersome, into smaller tiles and employs a column-wise filling procedure for each tile.
he column-wise filling process operates in parallel on the tiles. In addition, ExaGeoStat performs
ll matrix operations in parallel by relying on state-of-the-art parallel linear algebra libraries
o enhance computation efficiency significantly. The ExaGeoStat software also supports several
approximation techniques in the covariance matrix, including independent block approximation
4
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(IND), TLR (Abdulah et al., 2018b), and mixed-precision (Abdulah et al., 2021; Cao et al., 2022). The
IND algorithm is based on the covariance approximation method discussed by Stein (2014), which
attempts to decompose the large covariance matrix into blocks and annihilate off-diagonal blocks
up to a prespecified bandwidth of the diagonal blocks. With TLR approximations, the authors aim
to exploit the sparsity of the covariance matrix to reduce the memory footprint and decrease the
execution time. With mixed-precision approximations, they aim to have more refined reduction
techniques for the complexity of handling the covariance matrix by supporting lower-precision
computation on the off-diagonal tiles.

3. Benchmarking functions

The objective of this study is to evaluate various variants of the Matérn covariance function using
everal metrics. In the subsequent subsections, we outline the specific metrics used in this study.

.1. Maximum likelihood estimation

Using the Matérn form M1, θ1 can be estimated by maximizing the log-likelihood function:

l(θ1) = −
1
2
log |Σ (θ1)| −

1
2
Z⊤Σ (θ1)−1Z−

n
2
log(2π ), (4)

here Z is a realization of a zero-mean GRF with covariance matrix Σ (θ1). As presented by Abdulah
t al. (2018b), ExaGeoStat, the main software platform in this study, applies M1 on the distance
atrix to generate Σ (θ1) in a column-wise block parallel fashion. Analogously, in this work, we

mplement the generation function ofΣ (θ2) andΣ (θ3) by applying the Matérn covariance functions
2 and M3 on the distance matrix. The synthetic data generator subsequently receives Σ (θ2) or
(θ3) to simulate realizations from the GRFs based on M2 or M3. Finally, the optimization function

n ExaGeoStat maximizes l(θ2) and l(θ3) with the embedded model-based optimization algorithm
OBYQA presented by Powell (2009) to obtain MLEs of θ2 and θ3, respectively. Using BOBYQA in
xaGeoStat avoids explicitly computing the first derivatives of the log-likelihood function, which
an be cumbersome, especially when the sample size is large. To demonstrate this statement, we
ompute the first derivative of l(θ) based on the properties of matrix derivatives derived by Petersen
t al. (2008) as follows:

∂ l(θ)
∂θk
= −

1
2
tr

{
Σ (θ)−1

∂Σ (θ)
∂θk

}
+

1
2
tr

{
Σ (θ)−1ZZ⊤Σ (θ)−1

∂Σ (θ)
∂θk

}
.

The expression above involves one call of matrix inversion and five calls of matrix multiplication.
Matrix inversion and multiplication have high computational time complexity, which can take
up to O(n2 log n) and O(n3) operations, respectively, rendering gradient-based algorithms non-
scalable on large spatial datasets. Furthermore, the generation of ∂Σ (θ)

∂θk
relies on equations S1–S10

n the Supplementary Material, which can be slow when involving numerous calls of the modified
essel function of the second kind especially in the computation of the derivative with respect
o ν. Moreover, ∂ l(θ)

∂θk
is frequently unstable during the optimization, leading to problematic MLEs.

Although gradient-based methods can take fewer iterations to converge given a reasonable starting
point, they are overshadowed by the amount of time consumed for the gradient computation.

In addition, BOBYQA is an iterative local optimization approach subject to bounded constraints.
he main rationale behind the mechanism of BOBYQA is to approximate a function F (x), x ∈ Rn,
hrough a quadratic form Q that satisfies Q (yi) = F (yi), i = 1, . . . ,m, where yi denotes an
nterpolation point. Then, each model update is realized by minimizing the Frobenius norm of the
ifference between the second-derivative matrices of Q , in symbols ∥∇2Qk+1 − ∇

2Qk∥F. Updating
rom Qk to Qk+1 only requires O(n2) operations if the number of interpolation points is m = 2n+ 1
and calculating the change Qk+1 − Qk is limited to O(m2) operations. Therefore, BOBYQA is more
omputationally efficient than gradient-based algorithms consuming at least O(n3) operations, and

ore scalable on large datasets.

5
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3.2. Fisher information matrix

The Fisher information matrix measures the amount of information on unknown parameters
stimated from an observed sample and provides practical statistical insights into the uncertainty
nalysis of MLEs. Mardia and Marshall (1984) demonstrated that the Fisher information matrix
ould accurately approximate the covariance matrix of the MLEs even if the sample sizes are
mall. Abt and Welch (1998) illustrated that the covariance matrix of the limiting distribution of
he MLEs for Gaussian processes is equal to the limit of the inverse Fisher information matrix,
nd it accurately approximates the variability and correlation between MLEs even in singularity
onditions. To calculate the Fisher information matrix, we define a random variable X characterized
y the m-dimensional parameter vector θ with density function f (x; θ). The associated Fisher
nformation matrix, I(θ) = {Iij(θ)}i,j=1,...,m, of X can be computed as follows:

Iij(θ) = −E
[{

∂

∂θi
log f (X; θ)

}{
log

∂

∂θj
f (X; θ)

}]
.

Geoga et al. (2020) recalled the asymptotic theory of MLEs, which states that if the smallest
eigenvalue of I(θ) tends to infinity as the sample size increases, then I(θ̂)1/2(θ̂ − θ)→Nm(0, Im),
where θ̂ is the estimated parameter vector of the MLE. The asymptotic distribution of MLEs enables
calculations of confidence intervals, which provide statistical tools to assess the estimation accuracy
and quantify uncertainty. The Fisher information matrix of a GRF depends entirely on the covariance
matrix and its first-order derivatives with respect to the parameters. Moreover, in a GRF, the mean
µ is either assumed to be zero in common practice, as we typically model the residuals, or is
empirically removed from the observations by subtracting the sample mean. Therefore, a sensible
option is to exclude µ from the Fisher information matrix. Consequently, we can express the Fisher
information matrix of a Matérn GRF, I(θ) = {Iij(θ)}i,j=1,2,3,4, in the form of taking the trace of a
sequence of matrix multiplications (Mardia and Marshall, 1984):

Iij(θ) =
1
2
tr

{
Σ (θ)−1Σ iΣ (θ)−1Σ j

}
, (5)

where Σ i =
∂Σ (θ)

∂θi
denotes the derivative of Σ (θ) with respect to θi for i = 1, 2, 3, 4.

The computation of the Fisher information matrix, involving one call of matrix inversion and
three calls of matrix multiplication, is usually costly when the sample size is large. To reduce
complexity, Geoga et al. (2020) approximated the Fisher information matrix using hierarchical
matrices, allowing for quasi-linear time complexity and memory space. The results from Geoga et al.
(2020) revealed that the proposed hierarchical matrices accelerate the computing process while
maintaining decent accuracy. However, this technique excessively relies on matrix approximations.
Therefore, this work presents a parallel computing technique that computes the Fisher information
precisely and controls the computational complexity.

To compute the Fisher information matrix of Matérn GRFs in parallel, we have to compute the
first-order derivatives ofM1,M2, andM3 so that we can generateΣ i in the same tile-based parallel
fashion as we generateΣ (θ) as presented by Abdulah et al. (2018a). Section S1 in the Supplementary
Material contains all the required first-order derivatives associated with M1, M2, and M3. In these
equations, Ψ (·) = Γ ′(·)/Γ (·) represents the digamma function. In addition, K′ν(x) denotes the
derivative of the modified Bessel function of the second kind with respect to its argument x, and
Kν′ (x) denotes the first-order derivative taken with respect to its order ν. ExaGeoStat calculates Kν(x)
using the GNU scientific library (Gough, 2009) and first-order derivatives of the modified Bessel
function of the second kind with self-implemented functions based on the following identities:

K′ν(x) = −
1
2
{Kν−1(x)+ Kν+1(x)},

Kν′ (x) =
∂Kν(x)

∂ν
= lim

∆→0

Kν+∆(x)− Kν(x)
∆

.

he first-order (and even higher-order) derivative of the modified Bessel function of the second
ind with respect to ν does have closed-form expressions (González-Santander, 2018), and there
6
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are series approximations that attempt to ease their numerical computation (Olver et al., 2010).
However, we have found no existing well-compatible algorithms that perform this task. In Geoga
et al. (2023), the authors provided an automatic differentiation method to compute ∂Kν (x)

∂ν
by splitting

he smoothness parameter ν into different categories and using the most efficient differentiation
ethodology for each. Nonetheless, the proposed software is currently only compatible with Julia.
he lack of computational tools led us to implement a simple finite difference (FD) approach with
n increment of ∆ = 10−9, and we choose such a small tolerance because Kν(x), in most cases, is
smooth function of its order ν:

∂Kν(x)
∂ν
|ν=n =

n!
2

n−1∑
i=0

( x2 )
i−n

i!(n− i)
Ki(x), n ∈ Z+, Exact Integer Form (EXACT)

∂Kν(x)
∂ν

=

∫
∞

0
te−xcosh(t)sinh(νt)dt, Integral Form (INTG)

∂Kν(x)
∂ν

≈ Kν(x)
{
1−

1
2ν
− log

( e · x
2ν

)}
, ν →∞. Asymptotic Form (ASYM)

e aim to analyze GRFs on the unit square [0, 1]2; thus, distances between observations are
ontinuous on the interval [0, 1]. Then, we attempt to draw comparisons by discretizing the
rgument x as (0.01, 0.3, 0.6, 0.9) and obtaining results across a range of values of the smoothness
arameter ν based on the four approaches. Fig. 2 illustrates the comparison results. Fig. 2 precisely
ndicates that the finite difference approach is an accurate estimation of ∂Kν (x)

∂ν
because the integral

form and the exact integer form precisely overlap with the finite difference approach for all x.
The asymptotic approximation converges to the finite difference approach reasonably rapidly. An
additional observation is that asymptotic approximations converge slower when the argument x
increases to the actual values. As presented in Fig. 2, the asymptotic approximation curves overlap
with the finite difference and integral form curves at increasingly large values of ν.

Algorithm 1 Fisher Information Matrix Algorithm

Input: Set of locations (s) and Matérn parameter vector (θm)
utput: Fisher information matrix I(θm)
Generate the covariance matrix Σ (θm) ▷ using M1, M2, or M3
POTRF (Σ(θm)) ▷ Cholesky factorization — LL⊤ = Σ(θm)
for i = 1 : len(θm) do

Generate the derivative covariance matrix Σ i ▷ using M1, M2, or M3
Σ i ← TRSM (L−1, Σ i) ▷ Triangular solve
Σ i ← TRSM (L−⊤, Σ i) ▷ Triangular solve
for j = i : len(θm) do

Generate the derivative covariance matrix Σ j ▷ using M1, M2, or M3

Σ j ← TRSM (L−1, Σ j) ▷ Triangular solve
Σ j ← TRSM (L−⊤, Σ j) ▷ Triangular solve
Σ temp ← GEMM (Σ i, Σ j) ▷ Matrix multiplication
Iij(θm) and Iji(θm)← 1

2 TRACE (Σ temp)

Algorithm 1 illustrates in detail the task-based parallel implementation of the Fisher information
atrix. We rely on M1 to establish a basic algorithm architecture for the other parameterizations.
he algorithm has two inputs, the set of locations (s) and the Matérn parameter vector (θm). The
lgorithm begins with generating the covariance matrix Σ (θ1) using M1 in parallel and performs a

Cholesky factorization based on the tile-based matrices to obtain Σ (θ1)−1. To estimate each Fisher
matrix element, the parallel generation function fills in the entries for Σ i or Σ j with Equations
(S1), (S2), and (S3) in the Supplementary Material. Next, the algorithm computes the full Fisher
information matrix using a set of parallel linear algebra operations as shown by Eq. (5). We
7
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Fig. 2. Transformed log2 values of ∂Kν (x)
∂ν

returned from the finite difference approach (FD, red), exact integer form (EXACT,
lack), asymptotic approximation (ASYM, blue), and integral form (INTG, green). (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)

mplemented two versions of Algorithm 1 for the other two parameterizationsM2 andM3, together
ith their first-order derivative functions (S4)–(S9) to the existing implementation to compute their
ssociated Fisher information matrices. The MLEs are obtained using the invariance property and
he link functions provided in Table 1. Myung et al. (2005) illustrated that transformations of the
isher information matrix are linear operations based on the Jacobian matrix; thus,

I(θm) = J⊤k→mI(θk)Jk→m, (6)

here k,m = 1, 2, 3 and (Jk→m)i,j =
∂(θm)i
∂(θk)j

represents the Jacobian matrix for i, j = 1, 2, 3, 4.
Then, we compute all the Jacobian matrices that enable transformations between M1, M2, and
M3 (see the Supplementary Material). The reverse transformations can be established by inverting
the relationship presented in (6) and the computed Jacobian matrices.

The tile-based Fisher information matrix generation algorithm is adaptive to the parameter
space. Thus, I(θ) will be a 3 × 3 or 4 × 4 matrix, depending on the inclusion or exclusion of the
nugget effect.
8
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3.3. Mean squared prediction error

The given statistical model can predict missing measurements at new spatial locations through
riging using the posterior distribution of the missing observations based on the following:(

Z1
Z2

)
∼ Nm+n(0,Σ (θ)),where Σ (θ) =

(
Σ 11 Σ 12
Σ 21 Σ 22

)
.

The posterior mean, E(Z1|Z2 = z2) = Σ 12Σ
−1
22 z2, can be used for the predictions of Z1, where Z1

and Z2 represent the missing and observed values, respectively. The MSPE is:

MSPE =
1
m

m∑
i=1

{Ẑ(s0i)− Z(s0i)}2, (7)

here Ẑ(s0i) is the predicted value at location s0i and Z(s0i) is the observed value at location s0i.
he MSPE directly accounts for the degree of deviation between the predicted and true values,
frequently used and standard cross-validation-based criterion to measure prediction errors and,

herefore, quantify the prediction performance.

.4. Data modeling accuracy

The concepts of loss of efficiency (LOE) and misspecification of the mean square error (MOM)
ere introduced by Stein (1999) to evaluate the impact of approximating the covariance on
rediction error. LOE measures spatial prediction efficiency, while MOM quantifies the difference in
SPEs between a single prediction value calculated using the exact and approximated covariance
alues. Hong et al. (2021) extended these concepts to mean LOE (MLOE) and mean MOM (MMOM),
hich average LOE and MOM, respectively, across all locations with missing values. MLOE and
MOM provide a comprehensive assessment of the overall prediction accuracy and modeling
rror associated with the approximated covariance, and they are sensitive to inaccurate estimates
nd misspecified models. MLOE and MMOM are explicitly defined as MLOE = 1

m

∑m
i=1 LOE(s0i)

nd MMOM = 1
m

∑m
i=1 MOM(s0i), where LOE(s0i) = Et{e2a(s0i)}/Et{e2t (s0i)} − 1 and MOM(s0i) =

a{e2a(s0i)}/Et{e2a(s0i)}−1. Here, s0i represents the locations of the missing values, ea(s0) denotes the
esiduals computed using an approximated covariance, and et (s0) represents the residuals computed
ith the true covariance. MLOE is non-negative since Et{e2t (s0i)} ≤ Et{e2a(s0i)} (Stein, 1999). MMOM

s zero if parameter estimation is perfect; otherwise, it takes positive or negative values (Hong et al.,
021). Finally, Ea{e2a(s0)} is easy to compute, but evaluating Et{e2a(s0)} is challenging.
Two methods were proposed by Stein (1999) for evaluating Et{e2a(s0)}. The first method involves

stimating it by the conditional distribution of the estimate given the observations, which can be

pproximated as Et{e2a(s0)} ≈ Eθ

{
e2
θ̂(Z)

(s0)|Z = z
}
= Eθ{e2θ (s0)} +

{
e
θ̂(Z)(s0)− eθ(s0)

}2
. Here, θ̂(Z)

efers to the estimate, and θ represents the true parameter value. The second method involves a
esampling mechanism that repeatedly uses subsamples of Z to estimate θ, computes the prediction
rror for each subsample, averages these prediction errors, and adds them to Et{e2t (s0)} to estimate
t{e2a(s0)}.
We utilized the covariance-based plug-in method proposed by Hong et al. (2021), which is

ased on Stein’s approaches, to calculate both the true mean square prediction error (MSPE),
t{e2a(s0)}, and the approximated MSPE, Ea{e2a(s0)}. To compute these, we employed the covariance
atrix Kθ = Covθ{Z, Z⊤}, the covariance vector kθ = Covθ{Z, Z(s0)}, and the scalar variance

0,θ = Varθ{Z(s0)}. Specifically, we estimated Et{e2a(s0)} as Eθ

{
e2
θ̂
(s0)

}
≈ k0,θ − 2k⊤θ K

−1
θ̂

k
θ̂
+

⊤

θ̂
K−1

θ̂
KθK−1

θ̂
k

θ̂
, and estimated Ea{e2a(s0)} as k0,θ̂ − k⊤

θ̂
K−1

θ̂
k

θ̂
, where θ̂ is the estimated parameter

alue. This matrix-based method allows for parallel computation, making it well-suited for large-
cale datasets. We implemented this method in ExaGeoStat, which automatically considers the
mplemented covariance functions (M1,M2, andM3) in the synthetic data generator and maximum
ikelihood estimators (MLEs) to construct true and approximated covariance matrices. The resulting

LOE and MMOM values are computed using the mloe-mmom command.

9



K. Wang, S. Abdulah, Y. Sun et al. Spatial Statistics 58 (2023) 100787

σ

p
f
A
M
o
b

4

i
M
e
r
i
v
r

s
s
h
i
t
r
t
d
o
c

4

c
M
1
s
w
i
o
o

Table 2
Parameters specification in M1 , M2 , and M3 for different correlation strengths for ν = 0.5 and ν = 1, and all with

2
= 1.

Dependence ν = 0.5 ν = 1

β ρ φ α β ρ φ α

Weak 0.0330 0.0467 9.6458 30.3030 0.0250 0.0500 800.0000 40.0000
Medium 0.1000 0.1414 3.1831 10.0000 0.0750 0.1500 88.8889 13.3333
Strong 0.2340 0.3309 1.3603 4.2735 0.1750 0.3500 16.3265 5.7143

4. Experimental results

In this section, we conduct a thorough evaluation of the Matérn covariance function’s three
arameterizations: M1, M2, M3. Our objective is to assess the accuracy of parameter estimation
or each variant, under exact and TLR approximate representations of the covariance matrix.
dditionally, we evaluate the predictive performance of each covariance function by employing the
SPE, MLOE, and MMOM criteria. We also investigate the uncertainty quantification capabilities
f each parameterization using the Fisher information matrix. Finally, we present our observations
ased on several experiments.

.1. Experimental testbed

For the experimentation, we exploited the concept of weak, medium, and strong dependencies
n GRF to discretize the field correlation strength to evaluate the three parametrizations of the
atérn covariance function. First, we specified the weak, medium, and strong dependence, using the
ffective range, which is the spatial lag for the correlation to drop to 5% (Stein, 1999). The effective
ange accounts for varying decay rates in the Matérn covariance function. The covariance function
s expected to decrease at an increasingly slower rate as the correlation strengthens, addressing
arious scopes of dependence. Simulations in Abdulah et al. (2018b) revealed that the dependence
ange of GRFs affects the parameter estimation even in large-scale problems.

We applied the concept of effective range to determine the parameters in M1, M2, and M3. To
pecify the parameters, σ 2 is set to 1, and ν is set as 0.5 and 1, respectively, to address rough and
mooth fields. Then, we computed β by numerically solving the equations, M1(h; θ1) = 0.05 for
= 0.1, 0.3, 0.7. With all of the parameters specified in M1, we applied the link functions provided

n Table 1 to specify parameters in M2 and M3. The nugget effect τ 2 is set to 0.1. Table 2 illustrates
he parameters that describe identical Matérn GRFs parameterized in M1, M2, and M3. Table 2
eveals that the range and scale parameters (β, ρ) and α pertain to the correlation strength and,
herefore, the decay rate of the covariance function. Moreover, β and ρ are direct measures of the
ependence range. Increases in (β, ρ) can independently strengthen field correlation. In contrast, α,
n the other hand, decreases as correlation strengthens. In addition, α cannot autonomously govern
orrelation strength. Decreasing values of φ are also imperative to increase the correlation strength.

.2. Efficiency assessment

This section assesses the efficiency of the M1, M2, and M3 covariance function variants
oncerning MLEs, the number of iterations to convergence, MLOE and MMOM criteria, and lastly
SPEs. We employed the synthetic data generator to simulate 300 replicates of GRFs of size
600 in weak, medium, and strong fields with M1, M2, and M3 to explore these measures. The
ynthetic data generator uses [{i − 0.5 × unif(−0.4, 0.4)i}/

√
n, {j − 0.5 × unif(−0.4, 0.4)i}/

√
n]

ith i, j = 1, . . . ,
√
n for the random locations, where unif denotes the uniform distribution and n

s the sample size. Efficiency assessments are conducted on irregular grids because the behaviors
f the metrics, such as MSPE, MLOE, MMOM, and MLEs, are similar on regular grids with dense
bservations. We used a 40-core Intel Cascade Lake machine with four V100 GPUs.
10



K. Wang, S. Abdulah, Y. Sun et al. Spatial Statistics 58 (2023) 100787

t
i
t

4.2.1. Parameter estimation accuracy
Fig. 3 presents the empirical description of the probabilistic distributions for the MLEs. We set

he optimization tolerance to 10−5 and the tile size (NB) to be 50 for parallel execution. Tile size (NB)
s tuned for the execution time performance. We adjusted the parameter search space by scaling
he default optimization boundary in ExaGeoStat, (0.01, 5), by a constant factor to cover the MLEs
adequately. For instance, we used the default boundaries if the true parameter was less than 2. For
true parameter values between 2 and 20, we scaled the boundaries by 10. For the values within
(20, 50) and (50, 500), we scaled the boundaries by 20 and 200, respectively. Lastly, for values
greater than 500, we scaled the boundaries by 1000. The optimization boundaries are selected
to properly contain the true parameter values and their respective MLEs. Because BOBYQA is a
local optimization algorithm, each step will seek to find a more desirable position in the search
space. As a result, BOBYQA will not end up on the boundaries if the MLEs are well-contained in the
search space. Notice that in practice, we have no prior information on the true parameter values,
but BOBYQA will always get stuck on the upper bounds (lower bounds can always be set to small
values, like 0.01) if the MLEs are jointly or marginally larger than the upper bounds. Therefore, we
recommend redoing the optimization with increased upper bounds under such circumstances until
the MLEs are well-contained in the search space. In addition, we computed the difference ratios
(DRs), |Mean− True Value|/True Value, and the approximated effective range (AER), Mi(h; θ̂i) for
h = 0.1, 0.3, 0.7 and i = 1, 2, 3. In the Supplementary Material, parameter estimates on the
Whittle Gaussian fields are plotted in Figure S1. The DRs calibrate differing parameter scales for
fair comparisons and refer to the performance of point estimations. The AER measures the overall
accuracy of the mean estimates.

For the non-nugget effect models, Fig. 3 (No-Nug) and Table S1 (first and third horizontal blocks
separated by double horizontal lines in the Supplementary Material) demonstrate that estimates of
M3 are the least accurate compared with their counterparts in M1 and M2. In particular, σ̂ 2 in M3
appears more biased than σ̂ 2 in M1. Also ρ̂ is more variable and biased than β̂ . Although parameters
in M2 are on different scales, Table S1 illustrates that (σ̂ 2, ρ̂) are more biased than (φ̂, α̂). The
biases of (σ̂ 2, ρ̂) are due to flatter shapes of the associated log-likelihood functions near the maxima
(leading the optimization algorithm to stop at non-optimal values) as shown in Figs. 1 and S5 in
the Supplementary Material, which a more stringent convergence condition can resolve (i.e., 10−9)
at the expense of modeling speed. Table S3 (vertical block on the left separated by double vertical
lines) also reveals that M3 provides undesirable AERs compared with M1 and M2, reflecting its less
ideal overall estimation efficiency. M2 provides more refined AERs than M1 but performs poorly on
point estimations of (φ̂, ν̂) in many cases. Furthermore, (φ̂, α̂) exhibits considerably higher volatility
than (σ̂ 2, β̂, ρ̂), which can be observed through their large interquartile ranges (IQRs) shown in
Figs. 3(d)–3(f) and S1d–S1f.

For the nugget effect models, the nugget effect significantly influences the estimates, but the
effect varies in terms of M1, M2, and M3. From the experiments, the influence of the nugget
effect is more crucial on M1 and M2. Fig. 3 (Nug) and Tables S1 (second and fourth horizontal
blocks separated by double horizontal lines in the Supplementary Material), S3 (vertical block on
the right separated by double vertical lines in the Supplementary Material) demonstrate that the
nugget effect models of M1 and M2 both suffer from biased point estimates for (σ̂ 2, β̂, φ̂, α̂), and
undesirable AERs. In addition, (σ̂ 2, β̂, φ̂) also becomes more variable in the presence of the nugget
effect for M1 and M2. In contrast, parameter estimates in M3 maintain more robustness. In the
nugget effect models, σ̂ 2 is less biased and less variable. ρ̂ is less biased and about equally variable
under the nugget effect. Impact of the nugget effect on ν̂ is similar across all parameterizations; ν̂
in all parameterizations tends to be more variable and biased under the nugget effect.

Fig. 4 confirms the conclusion of the nugget effect proposed by Stein (1999), stating that τ 2

should be easier to estimate in a smooth process. Fig. 4 also indicates that the IQRs of τ 2 decrease
from an exponential Gaussian field to a Whittle Gaussian field. In addition, within the same field, the
IQRs decline as the field correlation strengthens. The decrease in IQRs implies that τ 2 has a lower
uncertainty and, therefore, more information in a smooth process, agreeing with the decreasing
Lτ/τ 2 along with increasing ν calculated on p. 186–187 in work by Stein (1999). Moreover, the
estimations of τ 2 are less accurate in M compared with M and M , which tends to have more
2 1 3
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Fig. 3. Boxplots of MLEs on the exponential Gaussian fields (ν = 0.5) using 300 replicates. Red lines represent the
ample means; blue lines denote the true values. No-Nug denotes non-nugget effect models and Nug denotes nugget
ffect models. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

ignificant deviations between the sample means and the true value. Lastly, IQRs decrease for
φ̂, α̂, ν̂) but increase for (σ̂ 2, β̂, ρ̂) as the field strengthens, indicating opposite behaviors of their
ncertainties. Therefore, the estimation is more challenging for (σ̂ 2, β̂, ρ̂) but easier for (φ̂, α̂, ν̂)
hen the observations are correlated. Such differing behaviors of the estimates are due to variations

n the data efficiency of their estimations, which we detail in Section 4.3.1 through their Fisher
nformation.

The MLOE, which is small (i.e., <10−3), does not differ among the three parameterizations for
ll the non-nugget effect models, indicating qualified prediction efficiency for all three parame-
erizations. Nugget effects increase the MLOE for all three parameterizations, incurring prediction
fficiency loss, and they are comparable around 5×10−2. We also calculated the MMOM criteria to
crutinize the modeling accuracy of M1, M2, and M3. Fig. 5 presents boxplots of MMOM obtained
rom the 300 replicates. For each replicate, we randomly single out 320 locations (20%) as missing
12



K. Wang, S. Abdulah, Y. Sun et al. Spatial Statistics 58 (2023) 100787

W
l
r

v
f
f

a
t
p
a
b
e
i
f
t
e
t
e
f
m
a

4

o
t

M

Fig. 4. Boxplots of MLEs for the nugget effect τ 2 on the exponential Gaussian fields (ν = 0.5) (left three subfigures) and
hittle Gaussian fields (ν = 1) (right three subfigures) using 300 replicates. Red lines represent the sample means; blue

ines denote the true parameter values. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

alues to calculate Et{e2a(s0i)} and Ea{e2a(s0i)}, i = 1, . . . , 320. The MMOM on the Whittle Gaussian
ields displays similar patterns. Hence, we only provide the MMOM on the exponential Gaussian
ields.

Fig. 5 indicates that the MMOM of M2 has numerous outliers and the largest IQRs across
ll field strengths, signifying frequent appearances of biased estimates. This result agrees with
he high volatility issue of θ̂2 presented in Figs. 3(d)–3(f). Large variability of the MMOM can
otentially diminish the reliability of the MSPE as a measure of prediction performance because the
pproximated MSPE is likely to differ from the true MSPE. Therefore, cross-validation approaches
ased on mean squared errors may fail to capture the actual performance of θ̂2 in practice. Nugget
ffects influence MMOMs, and the effects are more critical on M2. First, nugget effects generally
ncrease the IQRs of MMOMs, increasing the possibility for the approximated MSPE to deviate
rom the true MSPE. Wider IQRs of MMOMs can be ascribed to the higher volatility of θ̂ in
he presence of nugget effects, as presented in Fig. 3. Second, the MMOMs of M2 with nugget
ffects are more inclined to significant IQR increases and are more likely to be nonzero, implying
hat the approximated MSPE can frequently overestimate or underestimate the true prediction
rror. In contrast, MMOMs of M1 and M3 are zero-centered with milder IQRs’ increases for all
ield strengths, indicating more stable estimates and a reliable approximated MSPE. Consequently,
odeling M2 with nugget effects is more likely to result in misspecified models, especially for weak
nd strong fields.

.2.2. Prediction
In this part of the experiment, we calculate the MSPEs to quantify the prediction performance

f M1, M2, and M3 under various scenarios. We visualize empirical distributions of the MSPEs of
he 300 replicates in Figs. 6 and S2 in the Supplementary Material.

Figs. 6 and S2 demonstrate that the prediction performance is stable and comparable for M1,
2, and M3 for all settings. The MSPEs have approximately identical distributions with relatively

narrow IQRs and few outliers. Complicated parameterizations, such as M2 and M3, do not produce
improved prediction errors. However, as mentioned above, the MSPE of M2 is not as representative
of the prediction performance as the MSPEs of M1 and M3. Although the three parameterizations
have varying behaviors of the MMOM, identical MSPE values are possible because the MSPE is only
a superficial measure. Hong et al. (2021) demonstrated similar results. In addition, within the same
field, there is a downward trend of the MSPE regarding the field strength. In different fields, the
13
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Fig. 5. Boxplots of MMOM criteria using 300 replicates on the exponential Gaussian fields (ν = 0.5). For all subfigures
above, M1 is in the first block, and M2 and M3 fill in the second and third blocks, respectively. Vertical lines separate
the blocks. Red lines represent the expected MMOM value when true parameter values are used. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Boxplots of the MSPEs using 300 replicates for non-nugget effect models (τ 2
= 0) and nugget effect models

(τ 2
= 0.1) under weak (First block), medium (second block), and strong (third block) correlations, separated by vertical

lines in each sub-figure, on the exponential Gaussian fields (ν = 0.5).

MSPE decreases as the spatial process becomes smoother (exponential to Whittle Gaussian field).
These results are consistent with the property of the MSPE of best linear unbiased predictor (BLUP)
reported in Zimmerman and Cressie (1992), which stated that the BLUP is the most efficient (lowest
MSPE) when the spatial correlation is strong. Nugget effects increase prediction errors due to the
addition of noise in the spatial process.

The estimation accuracy of (σ 2, φ) does not affect the MSPE. In Section 3.3, spatial predictions
are calculated as Σ 12Σ

−1
22 z2, which can be rewritten as Σ̃ 12Σ̃

−1
22 z2, where Σ = σ 2Σ̃ in M1 and

M3 or Σ = φΣ̃ in M2. Nonetheless, variations of their values do crucially influence the MSPE. For
instance, if the rest of the parameters are fixed, increases in σ 2 or φ yield a larger MSPE. In contrast,
neither variations of α nor its estimation accuracy can have significant effects on the MSPE, which
has been accounted for by Stein (1999), stating that high-frequency parameters primarily affect
spatial interpolations. As for the range parameters, the MSPE is more sensitive to β than ρ. It takes
a sharper increase in ρ for the field parameterized in M to attain the same strength as in M . In
3 1
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Fig. 7. Boxplots of the convergent iterations obtained using the 300 replicates for non-nugget effect models (τ 2
= 0) and

nugget effect models (τ 2
= 0.1) under weak (first block), medium (second block), and strong (third block) correlations,

separated by vertical lines in each sub-figure, on the exponential Gaussian fields (ν = 0.5).

other words, the same amount of MSPE variation requires a more dramatic change in ρ than β . A
higher sensitivity of β should always hold except for extremely rough fields where ν < 0.25. The
0.25 bound comes from the link function between β and ρ provided in Table 1, ρ = 2ν1/2β .

4.2.3. Evaluating convergence rate
We visualized the number of iterations the optimization algorithm requires to converge and

found the optimal values of the underlying parameters with a given tolerance. We henceforth refer
to the number of iterations to converge as the convergent iterations for concision. Moreover, we
only display the convergent iterations on the exponential Gaussian field because they exhibit the
same patterns on the Whittle Gaussian field.

Figs. 7 and S3, in the Supplementary Material, indicate that M2 has the most significant conver-
gent iterations. This low convergence rate can be anticipated from its ample parameter search space.
Nevertheless, the large parameter space is inevitable for decent convergence of (φ̂, α̂). According
to the theory of asymptotic normality, we have for some settings that φ̂ ∼ N (800, 596200) and
α̂ ∼ N (40, 27.5) as calculated in Table S6. It is possible to accelerate the modeling process by
reducing the search space at the risk of losing optimal values because the variances of θ̂2 are quite
extraordinary. The other crucial factor that contributes to the slow convergence of M2 is its high
parameter correlation (Cox and Reid, 1987), indicated by the parameter asymptotics in Section 4.3.1.
The evidence of parameter correlation-induced slow convergence is that sharp decreases in the
search space for (φ̂, α̂) do not lead to improved convergence rates. The convergence rate of M1 is
superior in non-nugget effect models on the exponential Gaussian fields and identical to M3 on
the Whittle Gaussian fields. Nonetheless, the convergence rate for M1 becomes more variable and
exceeds that of M3 with nugget effects, which is further evidence of the vulnerability of M1 to
nugget effects. Nugget effect models significantly decrease the convergence rate because there is
one additional parameter τ 2 to estimate.

4.3. Increasing-domain asymptotics

We aim to investigate the asymptotic distributions of θ̂. According to the asymptotic normality
theory, we anticipate these estimates to follow a Gaussian distribution, with the covariance matrix
being closely approximated by the inverse of the Fisher information matrix once the sample size n

surpasses a certain threshold. Moreover, the off-diagonal elements of the inverse Fisher information
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matrix indicate the explicit correlation between estimates. In their research, Stein (1999) examined
the Fisher information of θ̂2 with sample sizes of 40 and 80 on both regular and irregular grids with
arious spacing factors.
The current experiment follows a similar procedure, but the contrast between regular and

rregular grids is less noticeable due to the high density of observations (n = 1600). Irregular
rids tend to create clusters of observations that provide more informative insights into the roles of
ν, β, ρ) in governing the spatial process’ local behaviors (Stein, 1999). On the other hand, regular
rids provide more information on α, consistent with the results in Stein (1999). Following Stein
1999), Iφ is fixed as n/(2φ2), where Iφ denotes the corresponding diagonal element of the Fisher
nformation matrix. Similarly, Iσ2 is also fixed across grid types and field smoothness at n/(2σ 4).
e observe that the Fisher information patterns do not vary with smoothness and nugget effects.
herefore, we provide Fisher information visualizations for the exponential Gaussian field on an
rregular grid without nugget effects using 1600 samples. We use a spacing factor δ that varies
rom (0.02, 0.05, 0.1, 0.2, 0.5, 1), multiplied by the two coordinates to obtain grids with different
pacings. Moreover, we evaluate the uncertainty quantification’s quality using the true asymptotic
ariance (TAV) and calculate the difference ratio (DRV) with respect to the sample variance (SV):
R = |SV− TAV|/TAV.

.3.1. Asymptotic variances and correlations
This part of the experiment extends the asymptotic studies by Stein (1999) to a larger sample

ize in a two-dimensional field. Moreover, we also included M1 and M3 for the same analysis. We
nly used the first replicate for the analysis because the simulations reveal that the variations of
(θ) are minimal for various replicates.

Figs. 8 and 9 illustrate that the MLEs of M2 distinguish themselves from those of M1 and M3,
hich have a high resemblance. Instead of taking up a continuously decreasing trend, such as

σ̂ 2, β̂, ρ̂, α̂), the TAV of φ̂ decreases first and then takes an upward trend on weak and medium
ields, as presented in Fig. 8(d). Such upward-turning behavior results from strengthening the
ositive correlations of (φ̂, α̂) in δ (Fig. 9(d)), which also appeared in the work by Stein (1999).
n addition, such behavior of φ̂ is not explicit on the strong field due to a weaker correlation of
φ̂, α̂), as depicted in Figs. 9(d). Moreover, α̂ exhibits opposite behavior to (β̂, ρ̂) in terms of the
orrelation with ν̂ displayed in Figs. 9(c), 9(f), and 9(i).
The TAVs of (φ̂, α̂) are also opposite to (σ̂ 2, β̂, ρ̂) concerning field strengths, which agrees with

he patterns of their IQRs shown in Fig. 3. Diagonal elements of the Fisher information matrix for
ll these parameters at δ = 1 are presented in Table 3 to address the differences together with the
symptotic correlations of the MLEs shown in Fig. 9.
Second, all parameters in M2 are positively correlated. However, in M1 and M3, the variance

nd range parameters are positively correlated (Figs. 9(a) and 9(g)), but the range and smoothness
arameters are negatively correlated (Figs. 9(c) and 9(i)). In addition, their variance and smoothness
arameters are close to being orthogonal (Figs. 9(b) and 9(h)). Although M1 and M3 display many
imilarities, some differences exist. A weaker negative correlation of (ρ̂, ν̂) and a stronger positive
orrelation of (σ̂ 2, ρ̂) than their counterparts in M1 are displayed in Figs. 9(c), 9(i), 9(g), and 9(a).
stronger correlation of (β̂, ν̂) is somewhat intuitive because β can be viewed as an aggregation of

ρ, ν), which in principle, should be more correlated with ν. In M3, such a correlation is diminished
y taking ν1/2 out of the range parameter. There is no simple reason for a weaker correlation of
σ̂ 2, β̂), but one possibility is that β̂ contains ν̂, which is independent of σ̂ 2.

The TAVs of ν̂ rise in δ for all three parameterizations shown in Figs. 8(c), 8(f), and 8(i),
hich is consistent with the results from Stein (1999) because tightly spaced clusters are more

nformative for ν̂. In addition, the TAVs of ν̂ decrease when field correlation strengthens for all
hree parameterizations for various reasons. The decreases for M1 and M3 result from increase
f Iν shown in Table 3 and also ν̂’s decreasing correlation with β̂ and ρ̂ shown in Figs. 9(c) and
(i). However, for ν̂ in M2, the decrease of its TAV is due to its decreasing correlations with (φ̂, α̂)
Figs. 9(e) and 9(f)) because Iν decreases, as listed in Table 3. Decreasing TAVs of α̂ in δ agrees with
he results from Stein (1999)’s experiment, which was explained by its relevance to low-frequency
ehaviors. Therefore, a sparse grid is more informative of α̂. The upward-turning behavior of the
16



K. Wang, S. Abdulah, Y. Sun et al. Spatial Statistics 58 (2023) 100787

b

T

b
s
b
i
δ

Fig. 8. True Asymptotic Variances (TAVs) for the MLEs of M1 , M2 , and M3 under weak (red, circle), medium (green,
triangle), and strong (blue, square) exponential Gaussian fields. The x-axis (spacing) and y-axis (TAV) except for (β̂, ρ̂) are
on a logarithmic scale to better demonstrate the trend behaviors of the TAVs. The y-axis of (β̂, ρ̂) are on a linear scale
ecause the decreasing trends are already obvious.

AVs of α̂ in the work by Stein (1999) do not appear in the current studies because the asymptotic
correlations of (φ̂, α̂) and (α̂, ν̂) are lower on irregular grids. Large TAVs of (β̂, ρ̂) at a small δ can
e attributed to the failure to recognize the dependence range with observations squeezed into a
mall region and therefore, large uncertainties on the parameter estimates. The dependence range
ecomes easier to pinpoint as the study region expands. The TAV reductions of σ̂ 2 in δ are not
ntrinsic but rather due to σ̂ 2’s interactions with (β̂, ρ̂) because Iσ2 is fixed at 800 despite of varying
and field correlation strengths. In addition, (σ̂ 2, ν̂) are nearly orthogonal as shown in Figs. 9(b) and
17
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Fig. 9. True Asymptotic Correlations between MLEs of M1 , M2 , and M3 under weak (red, circle), medium (green, triangle),
and strong (blue, square) exponential Gaussian fields.

9(h). In particular, TAV of σ̂ 2 decreases in increasing δ primarily because of its decreasing correlation
with (β̂, ρ̂) (Figs. 9(a) and 9(g)). Furthermore, TAVs of σ̂ 2 increase as field correlation strengthens,
hich can be ascribed to the rising correlations with (β̂, ρ̂).
As previously mentioned, Table 3 demonstrates that increase in field strength incurs tangible

oss on Iβ and Iρ . The correlation between range and variance parameters also increases in M1

nd M3 (Figs. 9(a) and 9(g)). Consequently, TAVs of (β̂, ρ̂) tend to increase as field correlation
trengthens. In contrast, Iφ increases as field correlation strengthens. φ̂ also is less correlated with
α̂, ν̂) (Figs. 9(d) and 9(e)). Therefore, φ̂ exhibits opposite TAV behaviors compared with (β̂, ρ̂)
18
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Table 3
Fisher information for θ for M1 , M2 , and M3 on the exponential Gaussian fields (ν = 0.5) at
δ = 1.
Dependence range/correlation strength (M1) Iσ2 Iβ Iν
β = 0.033 (weak) 800.0 474155.5 2653.6
β = 0.1 (medium) 800.0 71786.2 10694.5
β = 0.234 (strong) 800.0 14146.3 21987.3

Dependence range/correlation strength (M1) Iφ Iα Iν
φ = 9.6458, α = 30.3030 (weak) 8.6 0.3 74835.8
φ = 3.1831, α = 10.0000 (medium) 79.0 0.4 71747.9
φ = 1.3603, α = 4.2735 (strong) 432.3 0.6 71265.5

Dependence range/correlation strength (M1) Iσ2 Iρ Iν
ρ = 0.0467 (weak) 800.0 236782.6 956.3
ρ = 0.1414 (medium) 800.0 35917.6 6118.6
ρ = 0.3309 (strong) 800.0 7080.5 14784.9

as indicated in Fig. 8. In addition, Iα is only slightly increased and therefore, the TAV reductions
riginate from α̂’s decreasing correlations with (φ̂, ν̂) (Figs. 9(d) and 9(f)).

.3.2. Quality of uncertainty quantification
This section calculates the SV, TAV, and DRV values to measure the quality of uncertainty

uantification with TAV at finite samples, n = 1600. The computed results are summarized in
able S6 in the Supplementary Material. We have also repeated the experiment with different n
nd recorded the results in Tables S7, S8, and S9 to address the concerns of increasing n because
hen n is large enough, the variances should converge in theory regardless of parameterizations.
e have shown that differences in matches of SV and TAV consistently persist as in n = 1600 with

arious values of n. Therefore, the comparisons drawn in this subsection are representative.
For the non-nugget effect models, Table S6 reveals that the DRs of ν̂ in M2 are the most

ignificant in all settings, indicating apparent discrepancies between SV and TAV. Such discrepancies
an be attributed to the strong parameter correlations (almost linear) of (φ̂, ν̂) as illustrated in
ig. 9(e). High parameter correlations critically affect MLEs, causing mathematical complexities and
rrors in their interpretations (Willmot, 1988). Difficulties will also arise in numerical optimizations,
ausing slow convergence or even divergence (Cox and Reid, 1987) and non-identifiability (Li and
u, 2013). Consequently, the uncertainty for ν̂ in M2 is not properly approximated by the TAVs at
inite samples.

In contrast, DRVs for ν̂ in M1 and M3 are small because (σ̂ 2, ν̂) are nearly independent, as
epicted in Figs. 9(b) and 9(h). The strong correlation also affects φ̂, where the DRVs appear large
n numerous settings. In addition, the DRs for (σ̂ 2, β̂, ρ̂) are notably larger when the variance and
ange estimates have almost linear dependence at medium and strong correlations. Although this
isturbance is veiled by the inappropriate convergence tolerance forM3, the same issue arises when
lower tolerance is applied. Large DRs of α̂ are more likely to result from low Fisher information
nd, therefore, are challenging to estimate because α̂ does not display linear dependence with
ther parameters like (β̂, ρ̂). Furthermore, significant DRVs for

(
σ̂ 2, ρ̂

)
confirm their high-tolerance

nduced bias shown in Fig. 3. Overall, M1 achieves the best match between SVs and TAVs in the
on-nugget effect models.
In addition, the TAV of σ̂ 2 and ν̂ are comparable in both M1 and M3 but the TAVs of β̂ are

bviously smaller than those of ρ̂ in most cases. An appropriate explanation of the smaller TAVs
f β̂ can also be drawn from the link function, β = 2ν1/2ρ, provided in Table 1. If we assume ν as
nown and apply the invariance property of MLEs, we have β̂ = 2ν1/2ρ̂. Then, Var(ρ̂) = 4νVar(β̂).
n principle, Var(ρ̂) is expected to exceed Var(β̂) except on extremely rough fields (i.e., ν < 0.25).
he situation appears on the weak exponential Gaussian field but not on the others, as shown in
able S6.
Nugget effects increase the TAVs and result in considerable DRs for θ̂1, θ̂2, which is consistent

ith the heavier effects of τ 2 on M and M discussed in Section 4.2.1. In numerous settings, TAVs
1 2

19



K. Wang, S. Abdulah, Y. Sun et al. Spatial Statistics 58 (2023) 100787

s
i
S
M

t
s
d
s
r

5

p
m
t

of β̂ can exceed those of ρ̂. DRVs of θ̂3 are relatively contained. Moreover, the nugget effects are
more critical on strongly high-frequency relevant parameters. For instance, TAVs predominantly
scale by ten times or more for (ν̂, φ̂). However, TAV increases are moderate on the rest, primarily
caling by 4 to 5 times at maximum. The TAVs for β̂ tend to scale larger than those for ρ̂, again
ndicating the susceptibility of M1 to the nugget effects compared with M3. Furthermore, Table
5 in the Supplementary Material indicates that M3 offers the most stable DRVs for τ̂ 2, whereas
1 and M2 display critical deviations in some cases. Therefore, TAVs of θ̂3 approximate the

uncertainties more efficiently at finite samples in the nugget effect models. The TAVs of τ̂ 2 follow
he same pattern as the IQRs shown in Fig. 4. The TAV of τ̂ 2 reduces as the field correlation and
moothness increase and drops to the lowest on a strong-correlated smooth field. It is difficult to
raw conclusions on the asymptotic distributions of the MLEs because 1600 samples might not be
ufficient for the MLEs to reach normality. The number of samples required for asymptotic normality
equires further explorations.

. Tile low-rank approximation

The direct maximization of the log-likelihood function (4) is usually time-consuming and com-
utationally inefficient. Abdulah et al. (2018b) implemented a tile-based parallel TLR approximation
ethod for the MLE operation to compress off-diagonal tiles up to a pre-specified accuracy. First,

he TLR decomposes the large covariance matrix into tiles of a given tile size, Σ (θ) = {D(θ)i,j}, and
maintains the diagonal tiles D(θ)i,i in dense forms. Singular value decomposition is performed on
the individual off-diagonal tiles so that only a certain number of eigenvalues and eigenvectors can
be preserved to reach the specified accuracy measured by the Frobenius norm, ∥D(θ)i,j− D̃(θ)i,j∥F <

ϵ. The low-rank tile D̃(θ)i,j occupies less memory space during computation, accelerating matrix
operations. Abdulah et al. (2018b) demonstrated that the TLR method could significantly reduce
modeling time while maintaining decent estimation accuracy. Furthermore, Hong et al. (2021)
argued that TLR outperforms the Gaussian predictive process proposed by Banerjee et al. (2008)
and the composite likelihood method developed by Vecchia (1988) and Curriero and Lele (1999).

In this section, we evaluate the performance of the TLR approximation on the previously
generated datasets from the three parameterizations under sparse covariance settings. We set the
tile size to 400 and the accuracy level to 10−7. Therefore, the covariance matrix was divided into
16 tiles, each containing 4002 entries. We applied the TLR approximation to the 12 off-diagonal
tiles while keeping the diagonal tiles dense. As reported in Section 4.2.1, the measures MSPE and
MLOE are insensitive to the parameterizations. Hence, we only present the DRs between the sample
means and true values, the AER, and MMOM on the exponential Gaussian fields (similar results were
observed onWhittle Gaussian fields). Overall, the TLR method resembles the results produced by the
exact method. In addition,M1 is slightly more accurate thanM3 for the non-nugget effect models in
terms of point estimations (Table S2, Supplementary Material) and AERs (Table S4, Supplementary
Material) but is more vulnerable to the nugget effects. The MMOMs also reflect the same situation:
the MMOMs are mostly comparable for the non-nugget effect models, whereas the MMOMs of M1
tend to deviate more from zero compared with MMOMs of M3 in the nugget effect models shown
in Fig. 10, indicating that using M1 in TLR settings is more prone to model specification errors.

Another crucial difference in parameterizations is that applying M2 in TLR settings is quite
challenging. The problem is that φ and α cannot land at small values in the search space because
they will then characterize fields of significantly strong correlations, for which the resulting
covariance matrix has a high possibility of being numerically singular if a loose accuracy level is
applied to the off-diagonal blocks. Indeed, we encountered this problem when the accuracy level
was 10−5, 10−7, and 10−9.

The results from Abdulah et al. (2018b) demonstrated that a low accuracy level increases the
modeling time and diminishes the purpose of the complexity reduction. Numerical singularity is not
a critical issue for M1 and M3 because small range parameter values typically characterize weakly
correlated fields. Although numerical singularity is not a significant concern, using the nugget effect
models in TLR settings is preferred. Noise added to the diagonals can improve the matrix condition
number and, thus, better avoid numerical singularity, enabling even looser accuracy conditions and
further accelerating the modeling process.
20
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Fig. 10. Boxplots of the MMOM using TLR approximation with 300 replicates for the non-nugget effect models (τ 2
= 0)

nd nugget effect models (τ 2
= 0.1) under weak (first block), medium (second block), and strong (third block) field

orrelations, separated by vertical lines in each sub-figure, on the exponential Gaussian fields (ν = 0.5). Red lines denote
he expected MMOM value when the true covariance is applied. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)

Table 4
Comparisons of convergent iterations of the MLEs for M1 , M2 , and M3 using Saudi wind speed
residual data under exact covariance estimation with and without nugget effects.
Model/parameterization M1 M2 M3

Non-nugget 187.4 (64.5) 314.7 (85.2) 189.7 (99.9)
Nugget 308.9 (168.2) 545.1 (224.1) 296.3 (101.0)

6. Application to Saudi wind speed data

In this section, we apply M1, M2, and M3 to Saudi Arabia wind speed residual data from Huang
t al. (2022) visualized in Fig. 11, containing 3173 observations across the entire country on January
st, 2013. The locations are rescaled within [0, 1]2 to match the previous experiment settings.
n addition, we randomly split the data into 10 sets of training and testing data, accounting for
0% (2538) and 20% (635) of the entire dataset. Then, we measured the convergent iterations
nd asymptotic variance (AV) estimated from the testing data and MSPE on the training data. The
uning parameters are the same as in the simulation studies. The numbers in Tables 4 to 6 indicate
he means computed across all 10 testing and training sets. The numbers in parentheses indicate
heir associated standard deviations. Tables 4 to 6 demonstrate that many of the conclusions
rom numerical simulations remain true in practice. First, we observe that M2 requires the most
onvergent iterations for both non-nugget and nugget effect models. In addition, M1 is the most
fficient for the non-nugget effect models but becomes volatile and gets outperformed by M3 in the
resence of nugget effects. Further, (σ̂ 2, ρ̂) in M3 encounter inaccuracy issues in the non-nugget
odel, as the AVs significantly deviate from those of their counterparts in M1 with the nugget
ffect. The nugget effect τ 2 and its AV are consistently estimated to be around 0.03 and 0.00012
cross all parameterizations. Therefore, the overall nugget effect is limited. Hence, the AVs of (σ̂ 2, ρ̂)
hould be similar in both scenarios like those of (σ̂ 2, β̂) in M1.
Second, α̂ in both scenarios and φ̂ in the nugget effect model display much more significant

Vs than the other estimates. Third, MSPE barely changes across differing parameterizations and
ncreases under the exposure of nugget effects. In addition, the nugget effect, even minimally, sig-

ˆ 2 ˆ
ificantly affects (φ, ν̂) but has limited influences on the uncertainties of (σ̂ , β, ρ̂, α̂) in comparison.
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Fig. 11. Saudi wind speed residual data on January 1st, 2013, at 3173 locations.

Table 5
Comparisons of the MSPE for M1 , M2 , and M3 using Saudi wind speed residual data under an
exact covariance estimation with and without nugget effects.
Model/parameterization M1 M2 M3

Non-nugget 0.1115 (0.0166) 0.1089 (0.0142) 0.1076 (0.0156)
Nugget 0.1121 (0.0163) 0.1118 (0.0166) 0.1107 (0.0156)

Table 6
Comparisons of AVs for M1 , M2 , and M3 using Saudi wind speed residual data under an exact covariance estimation
with and without nugget effects.
M1 σ 2 β ν τ 2

0.1040 (0.1450) 0.0546 (0.0873) 0.000258 (0.0000215) 0

M2 φ α ν τ 2

0.00649 (0.00221) 5.7512 (0.9247) 0.000281 (0.0000222) 0

M3 σ 2 ρ ν τ 2

0.5272 (0.7103) 0.5897 (0.8085) 0.000249 (0.0000233) 0

M1 σ 2 β ν τ 2

0.1671 (0.3272) 0.0413 (0.0892) 0.00423 (0.00157) 0.000123 (0.0000326)

M2 φ α ν τ 2

3.3101 (5.6246) 11.1619 (2.2612) 0.00557 (0.00157) 0.000119 (0.0000346)

M3 σ 2 ρ ν τ 2

0.0683 (0.1209) 0.0304 (0.0647) 0.00478 (0.00154) 0.000127 (0.0000440)

Last, the AV of β̂ is slightly more significant but roughly identical to that of ρ̂ in the nugget effect
model because ν̂ is estimated to be around 0.3, which is a rough field with some minor nugget
effects.

7. Discussion

In this study, we comprehensively compared the three most widely used parameterizations of
the Matérn covariance function. We utilized both simulated and real data to investigate various
aspects such as modeling efficiency and accuracy, the behavior of maximum likelihood estimators,
and other crucial factors. Our analysis was made possible by utilizing the high-performance
computing software, ExaGeoStat, which allowed us to perform matrix operations in parallel and
22
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generate large-scale spatial data efficiently. We also employed benchmarking functions such as
MMOM and the Fisher information matrix, which are sensitive to different parameterizations and
can aid in selecting the optimal parameterization.

In summary, M1 is preferable over M2 and M3 in modeling speed. Further, M1 also provides
ecent and stable estimation accuracy in non-nugget effect models, offering lower uncertainty than
2 and avoiding the high-tolerance inaccuracy issues occurring in M3. However, in the presence

f nugget effects, M1 and M2 are more disturbed than M3 with biased estimates and apparent
deviations between TAVs and SVs. Moreover, the resistance of M3 to the nugget effects also holds
in TLR approximations. The TAV of MLEs for M1 is highly likely to be the lowest in non-nugget
effect models, allowing for more informative confidence intervals. Prediction efficiency and the
MSPE of the three parameterizations are comparable, but the MSPEs of M1 and M3 are the most
trustworthy of the three. Moreover, M1 and M3 offer better parameter orthogonality, defined
in Cox and Reid (1987), than M2; Jørgensen and Knudsen (2004) also refer to this concept of
parameter orthogonality as F-orthogonality, indicating the asymptotic independence among the
MLEs. Therefore, TAVs of ν̂ are closer to the SVs. Furthermore, parameters for M1 and M3 have
ore statistical-intuitive interpretations, in which σ 2

+ τ 2
= Var{Z(s)} and β and ρ are direct

measures of the dependence range. In addition, the TLR method can be applied to M1 and M3,
whereas M2 often runs into numerical singularity issues. Lastly, per the small variances of MLEs
for M1 and M3, it would be relatively safe to use a smaller search space in optimization, further
enhancing modeling speed. However, such action is hazardous for M2, whose MLEs might take a
large range of values and vary dramatically. Due to the above reasoning, we recommend M1 for
the non-nugget effect model and M3 for the nugget effect model. If there is an absolute preference,
the link functions presented in Table 1 and the Jacobian transformations of I(θ) provided in the
Supplementary Material can enable flexible transitions between any of them. As for the Bayesian
context, we believe similar issues as in the frequentist context will likely arise due to the likelihood
part unless very strong priors are imposed. As for the Bayesian context, we believe that similar
issues as in the frequentist context will likely arise due to the likelihood part unless very strong
priors are imposed. Further analysis of the Matérn parametrizations in the Bayesian context is worth
exploring but beyond the scope of the current paper.
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