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Abstract
Correlated binary response data with covariates are ubiquitous in longitudinal or
spatial studies. Among the existing statistical models, the most well-known one
for this type of data is the multivariate probit model, which uses a Gaussian link
to model dependence at the latent level. However, a symmetric link may not be
appropriate if the data are highly imbalanced. Here, we propose a multivariate
skew-elliptical link model for correlated binary responses, which includes the
multivariate probit model as a special case. Furthermore, we perform Bayesian
inference for this new model and prove that the regression coefficients have a
closed-form unified skew-elliptical posterior with an elliptical prior. The new
methodology is illustrated by an application to COVID-19 data from three differ-
ent counties of the state of California, USA. By jointly modeling extreme spikes
in weekly new cases, our results show that the spatial dependence cannot be
neglected. Furthermore, the results also show that the skewed latent structure
of our proposed model improves the flexibility of the multivariate probit model
and provides a better fit to our highly imbalanced dataset.
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1 INTRODUCTION

Correlated binary response data with covariates frequently
arise in longitudinal or spatial studies. For instance, in
longitudinal studies, the disease status (i.e., diseased or
not diseased) is measured over time on the same per-
son. Similarly, in a panel study of income dynamics, the
employment status informationmay be collected over time
from the same survey participant. The multivariate pro-
bit model (Ashford & Sowden, 1970; Chib & Greenberg,
1998) is well known for this type of data, as it describes the
dependence between binary variables by a latent Gaussian
link, which allows for flexible modeling of dependence,

has a straightforward interpretation of the parameters, and
is easily amenable to Bayesian inference.
A symmetric link, however, does not always provide

the best fit to a given dataset; see Chen et al. (1999) and
Kim et al. (2008) for some examples. In this case, the
link might be misspecified, yielding substantial bias in the
mean response estimates (Czado & Santner, 1992). Chen
et al. (1999) used the rate at which the probability of a
given binary response variable approaches 0 and 1 to guide
the selection of a symmetric or asymmetric link. In other
words, if the binary response data are highly imbalanced,
the rate of the probability of the randomvariable approach-
ing 0 is typically very different from the one approaching

1788 © 2022 The International Biometric Society. Biometrics. 2023;79:1788–1800.wileyonlinelibrary.com/journal/biom

https://orcid.org/0000-0002-2070-1993
https://orcid.org/0000-0001-6467-2998
https://orcid.org/0000-0002-1228-2071
mailto:raphael.huser@kaust.edu.sa
https://wileyonlinelibrary.com/journal/biom
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fbiom.13731&domain=pdf&date_stamp=2022-09-06


ZHANG et al. 1789

1, so that an asymmetric link might be preferred over a
symmetric link. Motivated by this observation, a variety of
flexible asymmetric link models have been proposed for
univariate binary response data, such as the skew-𝑡 link
model (Kim, 2002), skew-probit link model (Bazán et al.,
2010), and generalized extreme value link model (Wang &
Dey, 2010). The last one was recently extended to model
correlated imbalanced binary data by using a multivariate
normal distribution to capture the dependence (Zhao et al.,
2021). However, to the best of our knowledge, no other
multivariate asymmetric linkmodels have previously been
proposed in the literature for correlated binary responses.
The purpose of this paper is to propose a flexible multi-
variate skew-elliptical (Branco & Dey, 2001) link model for
correlated binary responses, which includes the multivari-
ate probit model as a special case and allows for tractable
Bayesian inference; see Section 2.2 for details on the mul-
tivariate skew-elliptical distribution, used in our model as
a key building block.
Durante (2019) has proved that for the univariate probit

model with Gaussian priors the posterior of the regres-
sion coefficients belongs to the class of unified skew-
normal distributions (Arellano-Valle & Azzalini, 2006).
In this paper, we also consider Bayesian inference for
our new multivariate model and prove that the poste-
rior of the regression coefficients belongs to the unified
skew-elliptical family (Arellano-Valle & Genton, 2010) for
an elliptical prior. The closed-form and tractable poste-
rior for the regression coefficients facilitates inference by
using an algorithm that does not rely on data augmenta-
tion, and thus avoids the convergence and mixing issues
of the classical data-augmentation algorithms for probit
models; see Johndrow et al. (2019) for a discussion of
this issue.
We illustrate the new methodology by an application

to COVID-19 pandemic data from three different coun-
ties of the state of California, USA. By jointly modeling
the occurrences of extreme spikes in weekly new infected
cases using our new model, we can estimate the under-
lying spatial dependence structure, which might provide
helpful quantitative insights into the transmission modes
of the virus and help authorities mitigate its spread.
Furthermore, our model has additional skewness param-
eters compared to the multivariate probit model, which
improves its flexibility and makes it more appropriate for
modeling our highly imbalanced dataset.
This paper is organized as follows. Section 2 describes

the preliminaries of the skew-elliptical and unified skew-
elliptical distributions. Section 3 details our proposed
methodology. We first introduce the new skew-elliptical
link model and prove that the regression coefficients of
this model have a unified skew-elliptical posterior, and
then we focus on two important special cases, that is, the

skew-normal and skew-𝑡 link models. Section 4 concerns
a simulation study and an application to COVID-19 pan-
demic data. Section 5 concludes with a discussion and
perspectives on future research.

2 PRELIMINARIES:
SKEW-ELLIPTICAL AND UNIFIED
SKEW-ELLIPTICAL DISTRIBUTIONS

2.1 The skew-elliptical distribution

The skew-elliptical distribution, originally proposed by
Azzalini and Capitanio (1999), was formulated by mul-
tiplying an elliptical density with a skewing function.
Branco and Dey (2001) proposed a new formulation of
the skew-elliptical distribution by means of a conditioning
mechanism. The close relationship between these two for-
mulations is established in Azzalini and Capitanio (2003).
Thanks to the construction in terms of a conditioning
mechanism, the formulation in Branco and Dey (2001)
has led to many attractive properties of this class of distri-
bution, such as the existence of stochastic representation
and closeness under marginalization and affine transfor-
mation. Fang (2003) considered a slightly wider class of
distributions than Branco and Dey (2001) by adding an
extra truncation parameter, which was later called the
extended skew-elliptical distribution in Arellano-Valle and
Genton (2010), and showed that this new distribution is
closed under marginalization, affine transformation, and
also conditioning.
Here we adopt a slightly different parameterization than

Fang (2003) with the truncation parameter taken as 0
and consider only skew-elliptical random vectors which
possess densities. Let 𝑔(𝑑+1) be a density generator for a
(𝑑 + 1)-dimensional elliptical random vector that satisfies
∫ ∞

0
𝑟(𝑑+1)∕2−1𝑔(𝑑+1)(𝑟)d𝑟 = Γ{(𝑑 + 1)∕2}𝜋−(𝑑+1)∕2. Then a

𝑑-dimensional random vector 𝑿 has a skew-elliptical dis-
tribution with location parameter vector 𝝃 ∈ ℝ𝑑, positive-
definite scalematrix Σ ∈ ℝ𝑑×𝑑, skewness parameter vector
𝜶 ∈ ℝ𝑑, and density generator 𝑔(𝑑+1), if its density function
is

𝑓𝑿(𝒙) = 2|Σ|−1∕2𝑔(𝑑){(𝒙 − 𝝃)⊤Σ−1(𝒙 − 𝝃)}

×𝐺{𝜶⊤𝜎−1(𝒙 − 𝝃); 𝑔𝑞(𝒙)}, 𝒙 ∈ ℝ𝑑, (1)

where 𝜎=diag(Σ)1∕2∈ℝ𝑑×𝑑, 𝑞(𝒙)=(𝒙 − 𝝃)⊤Σ−1(𝒙 − 𝝃),
𝑔(𝑑) is the 𝑑-dimensional marginal density generator
induced by 𝑔(𝑑+1), and 𝐺(⋅; 𝑔𝑞(𝒙)) is the cumulative
distribution function of the univariate elliptical distri-
bution with mean 0, scale 1, and conditional density
generator 𝑔𝑞(𝒙)(𝑠) = 𝑔(𝑑+1){𝑠 + 𝑞(𝒙)}∕𝑔(𝑑){𝑞(𝒙)}. We write
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𝑿 ∼ 𝑑(𝝃 , Σ, 𝜶, 𝑔(𝑑+1)). When 𝜶 = 𝟎, the skew-elliptical
distribution reduces to elliptical distribution.
The skew-elliptical distribution has two stochastic rep-

resentations, that is, a convolution-type representation and
a conditioning-type representation; see Equations (10) and
(19) in Fang (2003). The former is useful for random sam-
pling, and the latter allows us to express its cumulative
distribution function in the following simple form:

𝐹𝑿(𝒙) = 2𝐺𝑑+1(𝒙∗ − 𝝃∗; Σ∗, 𝑔
(𝑑+1)), (2)

with 𝒙∗ = (0, 𝒙⊤)⊤, 𝝃∗ = (0, 𝝃⊤)⊤ and

Σ∗ =

(
1 −𝜹⊤𝜎

−𝜎𝜹 Σ

)
,

where 𝜎 = diag(Σ)1∕2 ∈ ℝ𝑑×𝑑, 𝜹 = (1 + 𝜶⊤Σ̄𝜶)−1∕2Σ̄𝜶

with Σ̄ being the correlation matrix corresponding to Σ,
that is, Σ = 𝜎Σ̄𝜎, and 𝐺𝑑+1(𝒙∗ − 𝝃∗; Σ∗, 𝑔

(𝑑+1)) denotes
the cumulative distribution function of the (𝑑 + 1)-variate
elliptical distribution with location vector 𝝃∗ ∈ ℝ𝑑+1,
positive-definite covariance matrix Σ∗ ∈ ℝ(𝑑+1)×(𝑑+1), and
density generator 𝑔(𝑑+1). The positive definiteness of Σ∗
implies that the admissible parameters of (Σ, 𝛼) are such
that the matrix Σ̄ − 𝜹𝜹⊤ is positive definite.
A prominent subclass of the skew-elliptical distribu-

tion is the skew-normal distribution (Azzalini & Dalla
Valle, 1996). Specifically, when 𝑔(𝑑+1) is the (𝑑 + 1)-variate
normal density generator, the density function of 𝑿 is

𝑓𝑿(𝒙) = 2𝜙𝑑(𝒙 − 𝝃 ; Σ)Φ{𝜶⊤𝜎−1(𝒙 − 𝝃)}, 𝒙 ∈ ℝ𝑑,

where 𝜙𝑑(𝒙 − 𝝃 ; Σ) denotes the probability density func-
tion of the 𝑑-variate Gaussian distribution with mean vec-
tor 𝝃 and covariance matrix Σ, and Φ(⋅) is the cumulative
distribution function of the standard normal distribution.
We denote this distribution as 𝑿 ∼  𝑑(𝝃 , Σ, 𝜶). When
𝜶 = 𝟎, it reduces to the𝑑-dimensional normal distribution,
𝑑(𝝃 , Σ).
When 𝑔(𝑑+1) is the (𝑑 + 1)-variate 𝑡 density generator

with 𝜈 degrees of freedom, we get another important sub-
class of the skew-elliptical distribution, that is, the skew-𝑡
distribution (Branco & Dey, 2001; Azzalini & Capitanio,
2003). Its density has the following form:

𝑓𝑿(𝒙) = 2𝑡𝑑(𝒙 − 𝝃 ; Σ, 𝜈)𝑇

[
𝜶⊤𝜎−1(𝒙 − 𝝃)

{
𝜈 + 𝑝

𝑞(𝒙) + 𝜈

}1∕2

; 𝜈 + 𝑑

]
,

𝒙 ∈ ℝ𝑑,

where 𝑡𝑑(𝒙 − 𝝃 ; Σ, 𝜈) denotes the probability density func-
tion of the 𝑑-variate 𝑡 distribution with location vector
𝝃 , scale matrix Σ, and degrees of freedom 𝜈, 𝑇(⋅; 𝜈 + 𝑑)

denotes the univariate 𝑡 distribution function with degrees
of freedom 𝜈 + 𝑑. Wewrite𝑿 ∼  𝑑(𝝃 , Σ, 𝜶, 𝜈). When 𝜶 =

𝟎, it reduces to the 𝑑-dimensional 𝑡 distribution, and when
𝜈 → ∞, it tends to the 𝑑-dimensional skew-normal distri-
bution.

2.2 The unified skew-elliptical
distribution

An extension of the skew-elliptical distribution is the
unified skew-elliptical distribution (Arellano-Valle & Gen-
ton, 2010), which aims to gain more flexibility by uni-
fying various skew-elliptical families under the same
model. Specifically, a 𝑑-dimensional random vector 𝑿

has a unified skew-elliptical distribution, denoted by 𝑿 ∼

𝑑,𝑚(𝝃 , Σ, Λ, 𝝉, Γ, 𝑔(𝑑+𝑚)), if its density function is
𝑓𝑿(𝒙) = |Σ|−1∕2𝑔(𝑑){(𝒙 − 𝝃)⊤Σ−1(𝒙 − 𝝃)}

×
𝐺𝑚{𝝉 + Λ𝜎−1(𝒙 − 𝝃); Γ, 𝑔

(𝑚)

𝑞(𝒙)
}

𝐺𝑚(𝝉; Γ + ΛΣ̄Λ⊤, 𝑔(𝑚))
, 𝒙 ∈ ℝ𝑑,

where 𝑞(𝒙) = (𝒙 − 𝝃)⊤Σ−1(𝒙 − 𝝃), 𝑔(𝑑+𝑚) is a (𝑑 + 𝑚)-
variate elliptical density generator, 𝑔(𝑑) and 𝑔(𝑚) are its 𝑑-
variate and𝑚-variate marginal density generators, respec-
tively, 𝑔(𝑚)

𝑞(𝒙)
(𝑠) = 𝑔(𝑑+𝑚){𝑠 + 𝑞(𝒙)}∕𝑔(𝑑){𝑞(𝒙)}, 𝝃 ∈ ℝ𝑑 is a

location parameter vector, 𝝉 ∈ ℝ𝑑 introduces additional
flexibility to capture skewness, Γ ∈ ℝ𝑚×𝑚 is a correlation
matrix, andΛ ∈ ℝ𝑚×𝑑 encompasses themain effect on the
skewness. When 𝑚 = 1, it reduces to the extended skew-
elliptical distribution (Fang, 2003), and if we further have
𝝉 = 𝟎, it reduces to the skew-elliptical distribution (1).
Similar to the skew-elliptical distribution, the unified

skew-elliptical distribution also has two special subclasses,
that is, the unified skew-normal distribution (Arellano-
Valle &Azzalini, 2006) and the unified skew-𝑡 distribution.
When 𝑔(𝑑+𝑚) is the (𝑑 + 𝑚)-variate normal density gen-
erator, we get the unified skew-normal distribution with
density

𝑓𝑿(𝒙) = 𝜙𝑑(𝒙 − 𝝃 ; Σ)
Φ𝑚{𝝉 + Λ𝜎−1(𝒙 − 𝝃); Γ}

Φ𝑚(𝝉; Γ + ΛΣ̄Λ⊤)
, 𝒙 ∈ ℝ𝑑,

(3)
where Φ𝑚(⋅; Γ) denotes the centered 𝑚-dimensional nor-
mal distribution function with covariance matrix Γ. We
write 𝑿 ∼  𝑑,𝑚(𝝃 , Σ, Λ, 𝝉, Γ). The definition (3) is
equivalent to the one inArellano-Valle andAzzalini (2006)
with a slightly different parameterization but is consis-
tent with Arellano-Valle and Genton (2010). When 𝑔(𝑑+𝑚)
is the (𝑑 + 𝑚)-variate 𝑡 density generator with 𝜈 degrees
of freedom, we get the unified skew-𝑡 distribution with
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density

𝑓𝑿(𝒙) = 𝑡𝑑(𝒙 − 𝝃 ; Σ, 𝜈)

𝑇𝑚

[
{𝝉 + Λ𝜎−1(𝒙 − 𝝃)}

{
𝜈+𝑝

𝑞(𝒙)+𝜈

}1∕2

; Γ, 𝜈 + 𝑑

]
𝑇𝑚(𝝉; Γ + ΛΣ̄Λ⊤, 𝜈)

,

𝒙 ∈ ℝ𝑑,

where 𝑇𝑚(⋅; Γ, 𝜈 + 𝑑) denotes the centered 𝑚-
dimensional 𝑡 distribution function with dispersion
matrix Γ and degrees of freedom 𝜈 + 𝑑. We write
𝑿 ∼  𝑑,𝑚(𝝃 , Σ, Λ, 𝜈, 𝝉, Γ).

3 POSTERIOR INFERENCE FOR THE
SKEW-ELLIPTICAL LINKMODEL

3.1 The skew-elliptical link model

Asdiscussed in Section 1,whenmodeling correlated binary
data, the multivariate probit model uses a Gaussian link
to capture dependence at the “latent level.” A symmetric
link, however, does not always provide the best fit to a
given dataset, in particular for binary response data that
are highly imbalanced.
In this section, we extend the Gaussian link to the

multivariate skew-elliptical link, which includes the skew-
normal and skew-𝑡 links as special cases. Specifically, let
𝑌𝑖𝑗 denote a binary {0, 1} response on the 𝑖th observa-
tion of the 𝑗th variable and denote by 𝒀𝑖 = (𝑌𝑖1, … , 𝑌𝑖𝑀)

⊤

the collection of the 𝑖th observation on all 𝑀 variables
for 𝑖 = 1, … , 𝑛. Let 𝒀∗

𝑖
= (𝑌∗

𝑖1
, … , 𝑌∗

𝑖𝑀
)⊤ be a vector of

latent variables capturing dependence among the compo-
nents of 𝒀𝑖 , 𝜷 ∈ ℝ𝑝 be a vector of regression coefficients,
𝑋𝑖 = (𝒙𝑖1, … , 𝒙𝑖𝑀)

⊤ ∈ ℝ𝑀×𝑝 be the data matrix for the 𝑖th
observation, and let𝑋 = (𝑋⊤

1 , … , 𝑋⊤
𝑛 )

⊤ ∈ ℝ𝑛𝑀×𝑝. Then the
multivariate skew-elliptical link model can be expressed
as

𝑌𝑖𝑗 =

⎧⎪⎨⎪⎩
1, if 𝑌∗

𝑖𝑗
> 0,

0, otherwise,

𝒀∗ = (𝒀∗⊤
1 , … , 𝒀∗⊤

𝑛 )⊤ = 𝑋𝜷 + 𝜺, (4)

⎛⎜⎜⎝
𝜷

𝜺

⎞⎟⎟⎠
||||| Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1) ∼ 𝑝+𝑛𝑀

⎛⎜⎜⎝
⎛⎜⎜⎝
𝝁

𝟎

⎞⎟⎟⎠,
⎛⎜⎜⎝
Ω 0

0 I𝑛 ⊗ Σ

⎞⎟⎟⎠,
⎛⎜⎜⎝
𝟎

𝜶

⎞⎟⎟⎠, 𝑔(𝑝+𝑛𝑀+1)
⎞⎟⎟⎠,

where 𝝁 ∈ ℝ𝑝 is a location parameter vector, Ω ∈ ℝ𝑝×𝑝

is a positive-definite covariance matrix, I𝑛 ∈ ℝ𝑛×𝑛 is
the identity matrix, ⊗ denotes the Kronecker product,
Σ ∈ ℝ𝑀×𝑀 is a positive-definite covariance matrix, 𝜶 ∈

ℝ𝑛𝑀 is a skewness parameter vector, and 𝑔(𝑝+𝑛𝑀+1) is a
(𝑝 + 𝑛𝑀 + 1)-variate elliptical density generator.

To better understand the assumption on the joint dis-
tribution of 𝜷 and 𝜺 in the model (4), we express it in
a different way. Using Proposition 2 in Fang (2003), an
equivalent formulation is

𝜷 ∣ 𝑔(𝑝+𝑛𝑀+1) ∼ 𝑝(𝝁,Ω, 𝟎, 𝑔(𝑝+1)), (5)

𝜺 ∣ 𝜷, Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1) ∼ 𝑛𝑀(𝟎, I𝑛 ⊗ Σ, 𝜶, 𝑔
(𝑛𝑀+1)

𝑞(𝜷)
), (6)

where 𝑞(𝜷)=(𝜷 − 𝝁)⊤Ω−1(𝜷 − 𝝁), 𝑔(𝑛𝑀+1)

𝑞(𝜷)
(𝑠) = 𝑔(𝑝+𝑛𝑀+1)

{𝑠 + 𝑞(𝜷)}∕𝑔(𝑝){𝑞(𝜷)}, and 𝑔(𝑝), 𝑔(𝑝+1) are the 𝑝- and (𝑝 +
1)-variate marginal density generators induced by the
same generator 𝑔(𝑝+𝑛𝑀+1), respectively. Assumption (5)
may be understood as the elliptical prior, as the skew-
ness parameter is zero, for 𝜷, while (6) is the distributional
assumption for the error in the latent data vector 𝒀∗.
From (6), we observe that 𝜷 and 𝜺 are dependent, but
they are conditionally independent given 𝑞(𝜷). This weak
dependence between them is broken when 𝑔(𝑝+𝑛𝑀+1) is
the normal density generator. Specifically, when 𝑔(𝑝+𝑛𝑀+1)

is the (𝑝 + 𝑛𝑀 + 1)-variate normal density generator, (5)
becomes the typical Gaussian prior, 𝑝(𝝁,Ω), and (6)
becomes 𝜺 ∣ Σ, 𝜶 ∼  𝑛𝑀(𝟎, I𝑛 ⊗ Σ, 𝜶), which is inde-
pendent of 𝜷 conditional on Σ and 𝜶. If we further
have 𝜶 = 𝟎, then (6) becomes 𝜺 ∣ Σ ∼ 𝑛𝑀(𝟎, I𝑛 ⊗ Σ) and
model (4) reduces to the well-known multivariate pro-
bit model (Ashford & Sowden, 1970; Chib & Greenberg,
1998) with a typical Gaussian prior for 𝜷. By assuming
a joint distribution for 𝜷 and 𝜺, we can gain two major
advantages. The first is that we are able to account not
only for the dependence between 𝜷 and 𝜺 but also for
the dependence between the different observations 𝒀𝑖, 𝑖 =
1, … , 𝑛. The second is that this assumption allows us to
get a tractable posterior for 𝜷; see Section 3.2 for more
details.
Themultivariate probit model (Chib &Greenberg, 1998)

assumes that the covariates are not shared by the 𝑀 vari-
ables 𝑌𝑖1, … , 𝑌𝑖𝑀 . In that case, 𝜷 can be understood as
𝜷 = (𝜷⊤1 , … , 𝜷⊤𝑀)

⊤, where 𝜷𝑗 ∈ ℝ𝑝𝑗 with
∑𝑀

𝑗=1 𝑝𝑗 = 𝑝 is the
regression coefficients for the 𝑗th variables 𝑌1𝑗, … , 𝑌𝑛𝑗 ,
and 𝒙𝑖𝑗 is understood as the vector 𝒙𝑖𝑗 = (𝒙⊤

𝑖𝑗1
, … , 𝒙⊤

𝑖𝑗𝑀
)⊤

with 𝒙𝑖𝑗𝑘 = 𝟎 for 𝑘 ≠ 𝑗, so that 𝒙⊤
𝑖𝑗
𝜷 = 𝒙⊤

𝑖𝑗𝑗
𝜷𝑗 . This nota-

tion of expanded vector 𝜷 and 𝒙𝑖𝑗 simplifies the expression
of our model (4).
From (6), we know that the admissible parameters of

(Σ, 𝜶) are those such that the matrix I𝑛 ⊗ Σ̄ − 𝜹𝜹⊤ is
positive definite, where Σ̄ is the correlation matrix cor-
responding to Σ and 𝜹 = {1 + 𝜶⊤(I𝑛 ⊗ Σ̄)𝜶}−1∕2(I𝑛 ⊗ Σ̄)𝜶.
From (4), we obtain the joint probability mass function of
𝒀 = (𝒀⊤

1 , … , 𝒀⊤
𝑛 )

⊤ = 𝒚, given all the parameters and the
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1792 ZHANG et al.

data matrix 𝑋, as

𝑝(𝒚 ∣ 𝜷, Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1)) = ∫
𝐴𝑛𝑀

⋯∫
𝐴11

2|I𝑛 ⊗ Σ|−1∕2
× 𝑔𝑞(𝜷),𝑛𝑀{𝑞(𝒕)}𝐺(𝜶⊤𝒕; 𝑔

𝑞(𝜷)

𝑞(𝒕)
)d𝒕,

where 𝑞(𝒕) = 𝒕⊤(I𝑛 ⊗ Σ−1)𝒕, 𝑔𝑞(𝜷)
𝑞(𝒕)

(𝑠) = 𝑔
(𝑛𝑀+1)

𝑞(𝜷)
{𝑠 + 𝑞(𝒕)}∕

𝑔𝑞(𝜷),𝑛𝑀{𝑞(𝒕)}, 𝑔𝑞(𝜷),𝑛𝑀 is the 𝑛𝑀-variate marginal den-
sity generator induced by 𝑔(𝑛𝑀+1)

𝑞(𝜷)
, and 𝐴𝑖𝑗, 𝑖 = 1, … , 𝑛, 𝑗 =

1,… ,𝑀 is the interval (−𝒙⊤
𝑖𝑗
𝜷,∞) if 𝑦𝑖𝑗 = 1, and (−∞, 𝒙⊤

𝑖𝑗
𝜷]

if 𝑦𝑖𝑗 = 0. Although the above joint probability involves
multidimensional integration over a constrained space,
we show in the following section that it can be substan-
tially simplified.

3.2 Unified skew-elliptical posterior for
the regression coefficients

In this section, we prove that for the multivariate skew-
elliptical linkmodel (4), the regression coefficients param-
eter 𝜷 has a unified skew-elliptical posterior for an ellip-
tical prior. To prove this result, we first simplify the joint
probability mass function 𝑝(𝒚 ∣ 𝜷, Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1)) of the
observed data in the following lemma. All proofs are
deferred to the Appendix.

Lemma 1. The joint probability mass function 𝑝(𝒚 ∣

𝜷, Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1)) based on (4) can be simplified to

𝑝(𝒚 ∣ 𝜷, Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1)) = 2𝐺𝑛𝑀+1(𝐷∗𝜷; Σ∗, 𝑔
(𝑛𝑀+1)

𝑞(𝜷)
),

where 𝐷 = diag(2𝒚 − 𝟏𝑛𝑀) ∈ ℝ𝑛𝑀×𝑛𝑀 with 𝟏𝑛𝑀 ∈ ℝ𝑛𝑀

being the vector of 1s, 𝐷∗ = (𝟎𝑝, (𝐷𝑋)
⊤)⊤ ∈ ℝ(𝑛𝑀+1)×𝑝,

𝟎𝑝 ∈ ℝ𝑝 is a vector of 0s, and

Σ∗ =

(
1 −𝜹⊤𝐷(I𝑛 ⊗ 𝜎)

−(I𝑛 ⊗ 𝜎)𝐷𝜹 𝐷(I𝑛 ⊗ Σ)𝐷

)
∈ ℝ(𝑛𝑀+1)×(𝑛𝑀+1),

with 𝜹 ∈ ℝ𝑛𝑀, 𝜹 = {1 + 𝜶⊤(I𝑛 ⊗ Σ̄)𝜶}−1∕2(I𝑛 ⊗ Σ̄)𝜶, 𝜎 =
diag(Σ)1∕2 ∈ ℝ𝑑×𝑑 and Σ̄ being the correlation matrix cor-
responding to Σ, that is, Σ = 𝜎Σ̄𝜎.

Now we are ready to present our main result that the
posterior distribution of 𝜷 coincides with a unified skew-
elliptical distribution.

Theorem 1. Let 𝒚 = (𝒚⊤1 , … , 𝒚⊤𝑛 )
⊤ be observations from

the multivariate skew-elliptical link model (4) and 𝑋 =

(𝑋⊤
1 , … , 𝑋⊤

𝑛 )
⊤ be the corresponding data matrix. Then

𝜷 ∣ 𝒚, Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1) ∼

𝑝,𝑛𝑀+1(𝝁𝑝𝑜𝑠𝑡, Ω𝑝𝑜𝑠𝑡, Λ𝑝𝑜𝑠𝑡, 𝝉𝑝𝑜𝑠𝑡, Γ𝑝𝑜𝑠𝑡, 𝑔
(𝑝+𝑛𝑀+1)),

with posterior parameters

𝝁𝑝𝑜𝑠𝑡 = 𝝁, Ω𝑝𝑜𝑠𝑡 = Ω, Λ𝑝𝑜𝑠𝑡 = 𝜎−1∗ 𝐷∗𝜔,

𝝉𝑝𝑜𝑠𝑡 = 𝜎−1∗ 𝐷∗𝝁, Γ𝑝𝑜𝑠𝑡 = Σ̄∗,

where 𝐷∗ ∈ ℝ(𝑛𝑀+1)×𝑝 and Σ∗ ∈ ℝ(𝑛𝑀+1)×(𝑛𝑀+1) are
the matrices defined in Lemma 1, 𝜎∗ = diag(Σ∗)

1∕2 ∈

ℝ(𝑛𝑀+1)×(𝑛𝑀+1), Σ̄∗ is the correlation matrix corresponding
to Σ∗, that is, Σ∗ = 𝜎∗Σ̄∗𝜎∗, and 𝜔 = diag(Ω)1∕2 ∈ ℝ𝑝×𝑝 .

In Bayesian regression, we are mostly interested in the
posterior marginals, their moments, and more complex
functionals such as measures of dependence and cred-
ible intervals. Thanks to the fundamental property of
the unified skew-elliptical distribution that it is closed
under marginalization, conditioning, and affine transfor-
mations, this type of inference is simplified. We refer
to Arellano-Valle and Genton (2010) for details on how
to obtain the parameters of the marginal distribution,
conditional distribution, and the distribution after affine
transformations. As for the calculation of the posterior
moments and credible intervals, numerical integration of
the marginal posterior densities can be used. When inter-
est is in the posterior moments, another approach is to
use the moment-generating function. We refer to Section 5
of Arellano-Valle and Genton (2010) for derivations of the
moment generating function and moments of the unified
skew-elliptical distribution.

3.3 Special case: The skew-𝒕 link model

In this section, we consider a special case, that is the skew-𝑡
linkmodel obtained when the density generator 𝑔(𝑝+𝑛𝑀+1)

in model (4) is the (𝑝 + 𝑛𝑀 + 1)-variate 𝑡 density genera-
torwith 𝜈 degrees of freedom. The skew-normal linkmodel
is a limiting model of the skew-𝑡 link model as 𝜈 tends to
infinity, and more details about this model are provided
in the Supporting Information. Specifically, for the skew-
𝑡 link model, the joint distributional assumption of 𝜷 and
𝜺 is(
𝜷

𝜺

)|||||Σ, 𝜶, 𝜈 ∼  𝑝+𝑛𝑀

((
𝝁

𝟎

)
,

(
Ω 0

0 𝐼𝑛 ⊗ Σ

)
,

(
𝟎

𝜶

)
, 𝜈

)
,

which is equivalent to assuming

𝜷 ∣ 𝜈 ∼ 𝑝(𝝁,Ω, 𝜈),

𝜺 ∣ 𝜷, Σ, 𝜶, 𝜈 ∼  𝑛𝑀

(
𝟎,
𝜈 + (𝜷 − 𝝁)⊤Ω−1(𝜷 − 𝝁)

𝜈 + 𝑝
(I𝑛 ⊗ Σ), 𝜶, 𝜈 + 𝑝

)
,

where 𝑝(𝝁,Ω, 𝜈) denotes the 𝑡 distribution with loca-
tion parameter vector 𝝁, dispersion matrix Ω, and degrees
of freedom 𝜈. The nonnegative parameter 𝜈 can be
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ZHANG et al. 1793

considered as a hyper-parameter which controls the
dependence between 𝜷 and 𝜺. As 𝜈 increases the depen-
dence decreases, and when 𝜈 → ∞ the skew-𝑡 link model
tends to the skew-normal link model and the dependence
between them vanishes.
By taking 𝑔(𝑛𝑀+1) in Lemma 1 as the 𝑡 density genera-

tor with 𝜈 degrees of freedom, we get the following explicit
expression of the joint probability:

𝑝(𝒚 ∣ 𝜷, Σ, 𝜶, 𝜈)

= 2𝑇𝑛𝑀+1

[{
𝜈 + 𝑝

𝜈 + (𝜷 − 𝝁)⊤Ω−1(𝜷 − 𝝁)

}1∕2

𝐷∗𝜷; Σ∗, 𝜈 + 𝑝

]
. (7)

In practice, we typically assume aweakly informative prior
for 𝜷, which means 𝜈 is often large andΩ is often taken as
a diagonal matrix with large diagonal entries. This implies
that (𝜷 − 𝝁)⊤Ω−1(𝜷 − 𝝁) is often very small compared to
𝜈 and 𝜈 ≈ 𝜈 + (𝜷 − 𝝁)⊤Ω−1(𝜷 − 𝝁). Hence, if we assume
that the diagonal entries of Σ are all equal, then Σ needs
to be a correlation matrix because 𝑝(𝒚 ∣ 𝜷, Σ, 𝜶, 𝜈) ≈ 𝑝(𝒚 ∣

𝑏𝜷, 𝑏2Σ, 𝜶, 𝜈) for any positive number 𝑏. We now state the
result that for the skew-𝑡 link model the posterior of 𝜷
coincideswith a unified skew-𝑡 distribution,which directly
follows from Theorem 1 by taking 𝑔(𝑛𝑀+1) as the (𝑛𝑀 +

1)-variate 𝑡 density generator with 𝜈 degrees of freedom.

Corollary 1. Let𝒚 = (𝒚⊤1 , … , 𝒚⊤𝑛 )
⊤ be observations from the

multivariate skew-t linkmodel and𝑋 = (𝑋⊤
1 , … , 𝑋⊤

𝑛 )
⊤ be the

corresponding data matrix. Then

𝜷 ∣ 𝒚, Σ, 𝜶, 𝜈 ∼  𝑝,𝑛𝑀+1(𝝁𝑝𝑜𝑠𝑡, Ω𝑝𝑜𝑠𝑡, Λ𝑝𝑜𝑠𝑡, 𝜈, 𝝉𝑝𝑜𝑠𝑡, Γ𝑝𝑜𝑠𝑡),

where 𝝁𝑝𝑜𝑠𝑡, Ω𝑝𝑜𝑠𝑡, Λ𝑝𝑜𝑠𝑡, and τpost, Γpost are defined in The-
orem 1.

Similarly to the unified skew-normal distribution,
the unified skew-𝑡 distribution is also closed under
marginalization, conditioning, and affine transformations
(Arellano-Valle & Genton, 2010), which simplifies the
inference of the posterior marginals, their moments, and
functionals such as measures of dependence and credi-
ble intervals. Thanks to the stochastic representation of
the unified skew-𝑡 distribution, exact sampling from the
distribution of 𝜷 ∣ 𝒚, Σ, 𝜶, 𝜈 is also feasible. Specifically,
using Equation (9) in Arellano-Valle and Genton (2010),
𝜷 ∣ 𝒚, Σ, 𝜶, 𝜈 has the stochastic representation

𝜷 ∣ 𝒚, Σ, 𝜶, 𝜈
d
= 𝝁 +

(
𝜈 + 𝑼⊤

1 𝑠(𝐷∗Ω𝐷
⊤
∗ + Σ∗)

−1𝑠𝑼1

𝜈 + 𝑛𝑀 + 1

)1∕2

𝑼0

+ Ω𝐷⊤
∗ (𝐷∗Ω𝐷

⊤
∗ + Σ∗)

−1𝑠𝑼1, (8)

where 𝑠 = diag(𝐷∗Ω𝐷
⊤
∗ + Σ∗)

1∕2 ∈ ℝ(𝑛𝑀+1)×(𝑛𝑀+1), 𝑼0 ∼𝑝(𝟎,Ω − Ω𝐷⊤
∗ (𝐷∗Ω𝐷

⊤
∗ + Σ∗)

−1𝐷∗Ω, 𝜈 + 𝑛𝑀 + 1) is inde-
pendent of𝑼1, which follows a (𝑛𝑀 + 1)-variate truncated

𝑡 distribution with location parameter vector 𝟎, dispersion
matrix 𝑠−1(𝐷∗Ω𝐷

⊤
∗ + Σ∗)𝑠

−1, degrees of freedom 𝜈, and
truncated below the level −𝑠−1𝐷∗𝝁.

3.4 Identifiability of α and ν

In this subsection, we investigate the identifiability of the
skewness parameter 𝜶 and the degree of freedom parame-
ter 𝜈 in the skew-𝑡 linkmodel. Lemma 1 implies that both 𝜶
and 𝜈 play a role in determining the joint probability mass
function 𝑝(𝒚 ∣ 𝜷, Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1)), and hence they should
be identifiable theoretically. Here we conduct a simula-
tion study to verify that. We fix 𝑀 = 1, Σ = 1, 𝜈 = 1, 𝜷 =
(−1,−0.5, 0.5)𝑇 , 𝝁 = 𝟎, andΩ = 25 × I3, and simulate 𝑛 =
100 data from the skew-𝑡 link model with skewness 𝜶 =

𝛼𝑐 × 𝟏𝑛, 𝛼𝑐 = −2 or 2. The first column of the data matrix
𝑋 is set to 𝟏, and the other two columns are generated
from a standard normal distribution. Thenwe compute the
log-likelihood log 𝑝(𝒚 ∣ 𝜷, Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1)) with respect to
different values of 𝛼𝑐. Specifically, all the other parameters
except 𝜶 are treated as nuisance parameters and we use
their true values to compute log 𝑝(𝒚 ∣ 𝜷, Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1)).
Similarly, we fix 𝛼𝑐 = −2 and simulate 𝑛 = 100 data from
the skew-𝑡 link model with degrees of freedom 𝜈 = 1, 2, or
5. Then the log-likelihood with respect to various values of
𝜈 is computed.
Figure 1 displays the log-likelihood with respect to vary-

ing 𝛼𝑐 and 𝜈. It shows that the skewness parameter 𝜶 is
weakly identifiable, which might be due to the fact that
𝜶 appears only through the matrix Σ∗, and if 𝛼𝑐 is large,
then the vector 𝜹 in Lemma 1 would be approximately
(I𝑛 ⊗ Σ̄)𝟏𝑛sign(𝛼𝑐) and hence only the information about
the sign of 𝛼𝑐 is contained in the likelihood. Another obser-
vation is that small values of 𝜈 (𝜈 = 1, 2) are identifiable,
while larger values of 𝜈 (e.g., 𝜈 = 5) are difficult to iden-
tify. One explanation is that as 𝜈 increases, the skew-𝑡 link
model tends to the skew-normal linkmodel and thus larger
values of 𝜈 would be more difficult to estimate.

4 EMPIRICAL STUDIES

4.1 Prior and posterior for α and 𝚺

As the skew-normal link model is a limiting case of
the skew-𝑡 link model when the degree of freedom 𝜈

tends to ∞, in this section we focus on the skew-𝑡 link
model and consider a real-data application. A simula-
tion study is provided in the Supporting Information. To
make the model parsimonious, in both the simulation
study and data application we assume that the skewness
parameters are the same across different observations,
that is, 𝜶 = (𝛼1, … , 𝛼𝑀,… , 𝛼1, … , 𝛼𝑀)

⊤ ∈ ℝ𝑛𝑀 , and Σ is a
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1794 ZHANG et al.

F IGURE 1 Log-likelihood with respect to 𝛼𝑐 and 𝜈. Left panel: true value of 𝛼𝑐 is 𝛼𝑇 = −2 (black line) and 𝛼𝑇 = 2 (red line); right panel:
true value of 𝜈 is 𝜈𝑇 = 1 (black line), 𝜈𝑇 = 2 (red line), and 𝜈𝑇 = 5 (green line). This figure appears in color in the electronic version of this
article, and any mention of color refers to that version

correlation matrix,that is, Σ = Σ̄. The assumption of a
correlation matrix for Σ is not very restrictive because
it is approximately equivalent to assuming that all the
diagonal entries in Σ are equal, as we discussed in Sec-
tion 3.3. Now we specify the prior and posterior for the
skewness parameter 𝜶𝑠 = (𝛼1, … , 𝛼𝑀)

⊤ and the correlation
matrix Σ̄.
Bayesian modeling of unstructured covariance or corre-

lation matrices is a fundamental and difficult task because
of the constraint of positive definiteness and the quadratic
increase of the number of parameters with respect to the
number of correlated variables. More importantly, it is dif-
ficult to specify a prior for them (Gelman et al., 2014). Typ-
ical priors for correlation matrices include the marginally
uniform prior, the jointly uniform prior (Barnard et al.,
2000), and the so-called Lewandowski–Kurowicka–Joe
(LKJ) prior (Lewandowski et al., 2009).
The marginally uniform prior means that each nondi-

agonal element in the correlation matrix has a uniform
marginal distribution over [−1, 1], whereas the jointly uni-
form prior means that the correlation matrix has a joint
uniform distribution over the compact space of valid cor-
relation matrices. The LKJ prior is recommended in the R
library rstan (Stan Development Team, 2022) and has the
form 𝜋(Σ̄) ∝ |Σ̄|𝜂−1, where |Σ̄| is the determinant of Σ̄ and
𝜂 > 0 is the shape parameter of the LKJ distribution. The
jointly uniformprior is a special case of the LKJ prior when
𝜂 = 1.
In this work, we adopt the jointly uniform prior for Σ̄ by

setting 𝜂 = 1 in the LKJ prior and specify an independent
weakly informative Gaussian prior 𝜋𝜶𝑠 for 𝜶𝑠. Then, using
Equation (7), the joint posterior of (Σ̄, 𝜶𝑠) given the data

and the regression coefficients is

𝑝(Σ̄, 𝜶𝑠 ∣ 𝒚, 𝜷, 𝜈) ∝

2𝑇𝑛𝑀+1

[{
𝜈 + 𝑝

𝜈 + (𝜷 − 𝝁)⊤Ω−1(𝜷 − 𝝁)

}1∕2

𝐷∗𝜷; Σ∗, 𝜈 + 𝑝

]
𝜋𝜶𝑠 (𝜶𝑠). (9)

We evaluate the multivariate 𝑡 probability on the right-
hand side of (9) using the R library tlrmvnmvt (Cao et al.,
2022), which implements the classic Genz algorithm (Genz
& Bretz, 1999) and exploits a tile-low-rank algorithm (Cao
et al., 2021) to speed up the computation of themultivariate
normal and 𝑡 probabilities. To avoid sampling the corre-
lation matrix from a constrained space, we consider the
reparameterization adopted in Smith (2013), which reex-
presses a correlationmatrix in terms of the Cholesky factor
of a positive definite matrix Σ̄ = Λ

−1∕2

Σ̄
𝐿Σ̄𝐿

⊤
Σ̄
Λ
−1∕2

Σ̄
, where

𝐿Σ̄ is a lower triangular matrix and ΛΣ̄ = diag(𝐿Σ̄𝐿
⊤
Σ̄
).

Here the diagonal entries of 𝐿Σ̄ are set to 1 such that
the correspondence between 𝐿Σ̄ and Σ̄ is one-to-one. We
denote the collection of the 𝑀(𝑀 − 1)∕2 unconstrained
parameters in 𝐿Σ̄ = (𝑙𝑖𝑗) by 𝜽, that is, 𝜽 = {𝑙𝑖𝑗 ∶ 𝑖 > 𝑗, 𝑖, 𝑗 =

1, … ,𝑀}, and the𝑀(𝑀 − 1)∕2 constrained parameters in Σ̄
by vec(Σ̄). Then, using a change of variableswe get the pos-
terior of (𝜽, 𝜶𝑠) as 𝑝(𝜽, 𝜶𝑠 ∣ 𝒚, 𝜷, 𝜈) = 𝑝(Σ̄, 𝜶𝑠 ∣ 𝒚, 𝜷, 𝜈)|𝐽| =
𝑝(Σ̄, 𝜶𝑠 ∣ 𝒚, 𝜷, 𝜈)

∏𝑀

𝑖=1(1 +
∑

𝑗<𝑖 𝑙
2
𝑖𝑗
)−(𝑀+1)∕2, where |𝐽| =|𝜕vec(Σ̄)∕𝜕𝜽| is the determinant of the Jacobian matrix of

this transformation.
As direct sampling from the conditional distribution

of 𝜽, 𝜶𝑠 ∣ 𝒚, 𝜷, 𝜈 is unknown, we propose to use a random
walk Metropolis–Hastings algorithm to generate samples
from it. Specifically, we first sample 𝜶′𝑠 from a proposal
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ALGORITHM 1 MCMC sampling scheme for the multivariate ST link model

distribution with density 𝑞(⋅ ∣ 𝜶𝑠) and 𝜽′ from a proposal
distribution with density 𝑟(⋅ ∣ 𝜽). Here we take both pro-
posal densities 𝑞 and 𝑟 as symmetric normal densities, that
is, 𝜶′𝑠 ∣ 𝜶𝑠 ∼ 𝑀(𝜶𝑠, ℎ1I𝑀) and 𝜽′ ∣ 𝜽 ∼ 𝐾(𝜽, ℎ2I𝐾), 𝐾 =

𝑀(𝑀 − 1)∕2. Then the acceptance probability is
𝛼((𝜶𝑠, 𝜽), (𝜶

′
𝑠 , 𝜽

′)) = min
{
𝑝(𝜽′,𝜶′𝑠 ∣𝒚,𝑋,𝜷)1((𝜽

′,𝜶′𝑠 )∈𝐶)

𝑝(𝜽,𝜶𝑠∣𝒚,𝑋,𝜷)1((𝜽,𝜶𝑠)∈𝐶)
, 1
}
,

where 1(⋅) is the indicator function and 𝐶 is the space
of all (𝜽, 𝜶𝑠) such that the resulting matrix Σ̄ − 𝜹𝜹⊤ is
positive definite with 𝜹 = (1 + 𝜶⊤Σ̄𝜶)−1∕2Σ̄𝜶.

4.2 MCMC sampling scheme

As sampling from the distribution of 𝜷 ∣ 𝒚, 𝑋, Σ̄, 𝜶 is fea-
sible using (8) and sampling from the distribution of
Σ̄, 𝜶 ∣ 𝒚, 𝑋, 𝜷 has been described in Section 4.1, we now
combine them to construct a Markov chain Monte Carlo
(MCMC) sampler for the multivariate skew-𝑡 link model;
see Algorithm 1.

4.3 Application to COVID-19 pandemic
data

In this subsection, we illustrate our methodology on
COVID-19 pandemic data from different counties of the
state of California, USA, freely downloaded from the Cali-
fornia Open Data Portal (2022). The dataset contains the
number of daily new confirmed cases and deaths from
March 18, 2020, to March 10, 2021, in 58 counties of
California. There is a clear weekly cyclic pattern in this
dataset, that is, the numbers of new confirmed cases on
weekdays are often much larger than those during the
weekends. To avoid modeling this artificial cyclic pattern,
we aggregate the data and consider the weekly new con-
firmed cases, resulting in 𝑛 = 51 weekly observations. As
𝑛 is relatively small, we here only focus on the three most
populous counties in California, that is, Los Angeles, San
Diego, and Orange.
To remove the obvious trend, we apply cubic smooth-

ing splines with six knots to the logarithm of each of the
three time series,where the logarithm is used becausemost
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F IGURE 2 Upper panel: smoothing splines for the time series of weekly new confirmed cases at Los Angeles (left), Orange (middle),
and San Diego (right). Lower panel: the residuals obtained as the difference between the original data and the fitted splines, with red points
considered as extreme spikes and green points as nonextreme values. This figure appears in color in the electronic version of this article, and
any mention of color refers to that version

epidemics grow approximately exponentially during the
initial phase (Ma, 2020). Figure 2 displays the observed
data for the three counties, the smoothing splines for each
time series, and the resulting residuals. We then consider a
residual point as an extreme spike if it exceeds the empiri-
cal 90% quantile of the corresponding time series, and we
denote it as 1; otherwise, we denote it as 0. In this way,
we get three imbalanced binary time series and we aim to
model the dependence among them.
We consider three covariates in total, that is, an inter-

cept, one covariate as time, and another one as the square
of time. Following the recommendation of Gelman et al.
(2008), we standardize the two temporal predictors in a
preliminary step to make them have a mean of 0 and a
standard deviation of 1. To assess the performance of the
multivariate skew-elliptical link model, we consider six
models 1,2,3,4,5, and 6 of different com-
plexity.1,2, and3 are the multivariate skew-𝑡 link
model with 𝜈 = 1, 2, 5, respectively, 4 is the multivari-
ate skew-normal model (i.e., obtained as 𝜈 → ∞), 5 is

the multivariate probit model (obtained with 𝜈 → ∞ and
𝜶 = 𝟎), and6 is the independent probit model (obtained
with 𝜈 → ∞, Σ̄ = I3, 𝜶 = 𝟎).
For each of these models, we run Algorithm 1 for 5000

iterations and remove the first 2000 samples as burn-in.
The prior for the regression parameters 𝜷 is specified as
3(𝟎, 25I3, 𝜈) for themodels1,2,3, and3(𝟎, 25I3)

for the models 4,5, and 6. The prior for the skew-
ness parameters is taken as 3(𝟎, 16I3). The variances of
the proposal densities in the Metropolis–Hastings algo-
rithm are taken the same as in the simulation study, that
is, ℎ1 = 9 and h2 = 0.36.
Table 1 summarizes the estimation results for all the

models. The results show that the estimates of the inter-
cept for all the models are significantly negative. This is
expected as 90% of the observations are 0, and only 10% are
1. We also observe that the credible intervals for the corre-
lation and skewness parameters are generally quite large
(as in the simulation study), implying that they are hard
to estimate with only 𝑛 = 51 observations. However, the
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correlation between the counties of Orange and SanDiego,
and, Σ̄23, seems to be quite strong, as its posterior mean for
models1,2,3,4, and5 is consistently far from
zero (with an estimate close to 0.64) and its 90% credible
interval always excludes zero. This indicates that these two
counties are more connected together in terms of extreme
COVID-19 cases than the other pairs of counties consid-
ered,which sheds some light on the spread of the epidemic.
The extreme occurrences observed in the counties of Los
Angeles and San Diego also seem fairly strongly intercon-
nected since the estimate of Σ13 is also quite high, yet to a
slightly milder degree.
To compare the different fitted models, we use the

deviance information criterion (DIC) proposed by Spiegel-
halter et al. (2002). The DIC is the Bayesian analogue
of the Akaike information criterion and is defined as
DIC = 𝐷(�̄�) + 2𝑝𝐷 , where 𝜿 denotes the collection of all
the parameters, �̄� = E[𝜿 ∣ 𝒚] is its posterior mean, 𝐷(⋅) is
a deviance function and 𝑝𝐷 = E[𝐷(𝜿) ∣ 𝒚] − 𝐷(�̄�) is the
effective number of model parameters. Here we take the
deviance function𝐷(𝜿) as−2 log 𝑝(𝒚 ∣ 𝜷, Σ̄, 𝜶, 𝜈)when the
model is the skew-𝑡 link model, or −2 log 𝑝(𝒚 ∣ 𝜷, Σ̄, 𝜶)

when the model is the skew-normal link model and
estimate E[𝐷(𝜿) ∣ 𝒚] by Monte Carlo using the samples
generated from Algorithm 1. The smaller the DIC value,
the better the model’s goodness-of-fit and predictive per-
formance. We refer to Spiegelhalter et al. (2002) for other
properties about the DIC measure.
Table 1 reports the estimated DIC values for the six

different models. The results show that the multivariate
skew-𝑡 link model with a degree of freedom 𝜈 = 1 provides
the best fit to the data despite its high complexity, the mul-
tivariate skew-normal link model4 has the second best
performance and the independent symmetric probitmodel
6 is the worst. This has three major implications. The
first is that spatial dependence plays an important role in
the spread of the epidemic and ignoring the correlation
would lead to a poor fit of the extreme spikes. The second is
that adding the skewness parameter indeed improves the
model’s flexibility and can provide a better fit to our highly
imbalanced dataset. The third is that for this data applica-
tion, very heavy-tailed link (skew-𝑡 with 𝜈 = 1) and very
light-tailed link (skew-normal) seem to describe the data
better than mild heavy-tailed links (skew-𝑡 with 𝜈 = 2, 5),
and the tail heaviness appears to have a larger effect than
the skewness.

5 DISCUSSION

Although we here focus on the skew-elliptical link model,
the result of a closed-form posterior for the regression

coefficients could also be obtained if we consider a more
flexible class of distributions for the assumption (6). In fact,
if 𝜺 ∣ 𝜷, Σ, 𝜶 has a distribution which is closed under affine
transformation, following the proof of Lemma 1 and The-
orem 1, one can show that the posterior of 𝜷 coincides
with a fundamental skew distribution (Arellano-Valle &
Genton, 2005). This novel result opens up new avenues
for the development of skewed link models for correlated
binary data.
In this paper, we only considered the normal and 𝑡 den-

sity generators because they are the most commonly used
ones, but our results hold for any elliptical density gen-
erators. Moreover, since the skew-normal link model is a
limiting model of the skew-𝑡 link model as the degree of
freedom parameter 𝜈 tends to infinity, in practice, one can
simply choose the skew-𝑡 linkmodel with a series of differ-
ent degrees of freedom for convenience, and then select the
best-performing model based on certain measures such as
DIC. Alternatively, if one has a more efficient algorithm to
sample from high-dimensional truncated 𝑡 distributions,
one might try to include the estimation of the parame-
ter 𝜈 in the Metropolis–Hastings algorithm described in
Section 4.1.
There are various directions for future research. As

the number of observations in our dataset is relatively
small, we chose not to consider too many covariates and
restricted the number of counties. An interesting exten-
sion of our real data application would be to consider
a larger dataset with more informative covariates, such
as daily weather information or population migration
between different counties. Adding such extra covariates
could potentially fit the data better and provide a more
detailed and informed explanation of the spread of the
epidemic. Another interesting methodological extension
is to improve Algorithm 1. As we used the accept–reject
algorithm of Botev (2017) within Algorithm 1 to sam-
ple from a multivariate truncated 𝑡 distribution, its lack
of scalability to higher dimensions is inevitably inher-
ited. Therefore, more efficient and scalable algorithms to
sample fromhigh-dimensional truncated normal and 𝑡 dis-
tributions would significantly improve the performance
of Algorithm 1. Finally, although the skew-elliptical link
models offer extra flexibility in modeling correlated binary
data, there might be identifiability issues, as shown in
Section 3.4, and the skewness parameters are especially
difficult to estimate. So one research question is how to
solve or avoid these issues, possibly by carefully designing
informative prior distributions.

DATA AVAILAB IL ITY STATEMENT
The data can be freely downloaded from the California
Open Data Portal (https://data.ca.gov).
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APPENDIX A
Proof of Lemma 1. Since a diagonal matrix diag(𝒙)

with 𝒙 ∈ {−1, 1}𝑛𝑀 has the property diag(𝒙)𝒙 =

𝟏𝑛𝑀 and (diag(𝒙))−1 = diag(𝒙), we have

𝑝(𝒚 ∣ 𝜷, Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1)) = Pr(𝒀 = 𝒚 ∣ 𝜷, Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1))

= Pr(2𝒀 − 𝟏𝑛𝑀 = 2𝒚 − 𝟏𝑛𝑀 ∣ 𝜷, Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1))

= Pr{𝐷(2𝒀 − 𝟏𝑛𝑀) = 𝟏𝑛𝑀 ∣ 𝜷, Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1)}

= Pr
(
𝐷𝒀∗ > 𝟎 ∣ 𝜷, Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1)

)
= Pr

(
−𝐷𝜺 − 𝐷𝑋𝜷 < 𝟎 ∣ 𝜷, Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1)

)
.

By (6), 𝜺 ∣ 𝜷,Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1) ∼ 𝑛𝑀(𝟎, I𝑛⊗Σ, 𝜶, 𝑔
(𝑛𝑀+1)

𝑞(𝜷)
).

Using Proposition 1 in Fang (2003), we know that

(−𝐷𝜺 − 𝐷𝑋𝜷) ∣ 𝜷, Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1)

∼ 𝑛𝑀(−𝐷𝑋𝜷,𝐷(I𝑛 ⊗ Σ)𝐷,𝐷𝜶, 𝑔
(𝑛𝑀+1)

𝑞(𝜷)
).

Using (2), we finally get

𝑝(𝒚 ∣ 𝜷, Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1))=2𝐺𝑛𝑀+1(𝐷∗𝜷; Σ∗, 𝑔
(𝑛𝑀+1)

𝑞(𝜷)
).

□

Proof of Theorem 1. The posterior density of 𝜷 is

𝑝(𝜷 ∣ 𝒚, Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1)) ∝ 𝑝(𝒚 ∣ 𝜷, Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1))

× 𝑝(𝜷 ∣ 𝑔(𝑝+𝑛𝑀+1)).

Using Lemma 1 and the assumption (5), we have

𝑝(𝜷 ∣ 𝒚, Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1))

∝ 𝐺𝑛𝑀+1(𝐷∗𝜷; Σ∗, 𝑔
(𝑛𝑀+1)

𝑞(𝜷)
)𝑔(𝑝){(𝜷 − 𝝁)⊤Ω−1(𝜷 − 𝝁)}

=𝐺𝑛𝑀+1(𝜎
−1
∗ 𝐷∗𝜷; Σ̄∗, 𝑔

(𝑛𝑀+1)

𝑞(𝜷)
)𝑔(𝑝){(𝜷 − 𝝁)⊤Ω−1(𝜷 − 𝝁)}

= 𝐺𝑛𝑀+1{𝜎
−1
∗ 𝐷∗𝝁 + 𝜎−1∗ 𝐷∗(𝜷 − 𝝁); Σ̄∗, 𝑔

(𝑛𝑀+1)

𝑞(𝜷)
}

× 𝑔(𝑝){(𝜷 − 𝝁)⊤Ω−1(𝜷 − 𝝁)}

= 𝐺𝑛𝑀+1{𝜎
−1
∗ 𝐷∗𝝁 + 𝜎−1∗ 𝐷∗𝜔𝜔

−1(𝜷 − 𝝁); Σ̄∗, 𝑔
(𝑛𝑀+1)

𝑞(𝜷)
}

× 𝑔(𝑝){(𝜷 − 𝝁)⊤Ω−1(𝜷 − 𝝁)}

= 𝐺𝑛𝑀+1{𝝉post + Λpost𝜔
−1(𝜷 − 𝝁); Σ̄∗, 𝑔

(𝑛𝑀+1)

𝑞(𝜷)
}

× 𝑔(𝑝){(𝜷 − 𝝁)⊤Ω−1(𝜷 − 𝝁)}.

Hence, the required posterior is 𝜷 ∣ 𝒚, Σ, 𝜶, 𝑔(𝑝+𝑛𝑀+1) ∼

𝑝,𝑛𝑀+1(𝝁𝑝𝑜𝑠𝑡, Ω𝑝𝑜𝑠𝑡, Λ𝑝𝑜𝑠𝑡, 𝝉𝑝𝑜𝑠𝑡, Γ𝑝𝑜𝑠𝑡, 𝑔
(𝑝+𝑛𝑀+1)). □
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