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Statistics groups at KAUST in October 2022: stat.kaust.edu.sa
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KAUST Statistics Program 5 years anniversary (2012-2022)

My research group in 2012 Current Statistics core faculty

Dr Sameh Abdulah (ECRC)
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Vic Barnett (1938-2014)
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1. Some Fundamental Problems in Environmental Data Science

Spatial data follow law of geography:
“nearby things tend to be more alike
than those far apart”
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1.1 Spatial Gaussian likelihood inference

n irregularly-spaced observations from zero-mean Gaussian random field:
Z = {Z(s1), . . . ,Z(sn)}⊤

Matérn spatial covariance function:

Σ(θ)ij = cov
{
Z(si ),Z(sj)

}
=

σ2

2ν−1Γ(ν)

(
∥si − sj∥

β

)ν

Kν

(
∥si − sj∥

β

)
+ τ 2I{i = j}

where Kν(·) is the modified Bessel function of the second kind of order ν,
Γ(·) is the Gamma function, and I is the indicator function

The four components of the parameter vector θ:
partial sill σ2, range β > 0, smoothness ν > 0, and nugget τ 2

Spatial Gaussian log-likelihood:

ℓ(θ) = −n

2
log(2π)− 1

2
log|Σ(θ)| − 1

2
Z⊤Σ(θ)−1Z

Log determinant and linear solver require a Cholesky factorization of the symmetric positive definite
covariance matrix Σ(θ)

Cholesky factorization requires O(n3) floating point operations and O(n2) memory

Computations become challenging for large n
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Likelihood vs least squares in spatial covariance estimation

Functional boxplots for: functional data, functional simulations
Other functions: variogram; covariogram; extremal coefficient; return level curve; log-periodogram;
forecasting skill curve; etc.

Example: exponential variogram 1− exp(−h/θ) with θ = 0.25
Mean-zero GP generated at 400 random locations in unit square
Estimate θ by OLS, WLS, MLE; 1000 replicates
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1.2 Spatial kriging

Kriging is spatial interpolation (Best Linear Unbiased Predictor, BLUP)

Let (
Z1

Z2

)
∼ Nn+m

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
then:

(Z2|Z1 = z1) ∼ Nm

(
µ2 +Σ21Σ

−1
11 (z1 − µ1) , Σ22 −Σ21Σ

−1
11 Σ12

)
Kriging with conditional mean

Uncertainty quantification with conditional variance

Computations become challenging for large n and/or m
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1.3 Gaussian random field simulations

Unconditional simulations:

Y = (Y1, . . . ,Yn)
⊤ where Yi are iid from N (0, 1)

Σ is an n × n covariance matrix with (Σ)ij = cov{Z(si ),Z(sj)}
Σ1/2 from spectral decomposition or Cholesky decomposition of Σ

Then: Z = µ+Σ1/2Y is Nn(µ,Σ)

Conditional simulations: If (
Z1

Z2

)
∼ Nn+m

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
then:

(Z2|Z1 = z1) ∼ Nm

(
µ2 +Σ21Σ

−1
11 (z1 − µ1),Σ22 −Σ21Σ

−1
11 Σ12

)

Computations become challenging for large n and/or m
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Gaussian random field simulations with Matérn correlation function
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1.4 Multivariate Gaussian probabilities

Probit Gaussian process models

Application: windspeed exceeds a threshold for energy production

Windspeed at 140 m on January 21, 2014; threshold of 4 m/s

Region includes NEOM and Dumat Al Jandal

35 40 45 50 55

1
5

2
0

2
5

3
0

x1

x 2

5

10

15

20

Saudi Arabia

Yemen

Iraq
Iran

Egypt

Israel

Eritrea
Sudan

United Arab Emirates

Jordan

Kuwait

Bahrain
Qatar

Oman

Egypt

Sudan

35 40 45 50 55

1
5

2
0

2
5

3
0

x1
x 2

Saudi Arabia

Yemen

Iraq
Iran

Egypt

Israel

Eritrea
Sudan

United Arab Emirates

Jordan

Kuwait

Bahrain
Qatar

Oman

Egypt

Sudan

34 36 38 40 42 44

2
4

2
6

2
8

3
0

3
2

x1

x 2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

34 36 38 40 42 44

2
4

2
6

2
8

3
0

3
2

x1

x 2

●
●

●
●
●

●
●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●

●
●
●

●
●
●

●
●

Φn(a, b;Σ) =

∫ b

a

1√
(2π)n|Σ|

exp

(
−1

2
x⊤Σ−1x

)
dx

Also: Bayesian probit regression; unified skew-normal (SUN) distributions (∝ ϕnΦn);
excursion/contour regions

Computations become challenging for large n
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1.5 Robust inference for spatial data

Vic Barnett and Toby Lewis book: Outliers in Statistical Data

More challenging for spatial data (position of outliers matters)

Spatial breakdown point

Highly robust variogram estimator

Maximum Lq-likelihood estimator (MLqE) for Gaussian random fields:

ℓq(θ) =
R∑
j=1

Lq

[
1√

(2π)n|Σ(θ)|
exp

(
−1

2
Z⊤
j Σ(θ)−1Zj

)]

where

Lq(u) =

{
logu, if q = 1(
u1−q − 1

)
/(1− q), if 0 < q < 1

Computations become challenging for large n and/or R, and many q’s
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2. Large-Scale Environmental Data Science with ExaGeoStat

When the size n of datasets becomes large:

O(n3) floating point operations and O(n2) memory for exact computations of Cholesky factorization
High-Performance Computing (HPC) can help when n is large
ExaGeoStat software:
https://github.com/ecrc/exageostat
https://github.com/ecrc/exageostatr

Note: n = 1′000′000 then n3 = 1018= 1 billion billions

ExaGeoStat for:
1 Likelihood inference/learning for Matérn covariance function (among others)
2 Spatial kriging (interpolation)
3 Random field simulations
4 Multivariate Gaussian probabilities
5 Robust spatial inference

Various approximation methods have been proposed in literature to ease computation & memory burden

2021/2022/2023 KAUST Competitions on Spatial Statistics for Large Datasets investigate the
performance of different approximation methods with large synthetic data generated by ExaGeoStat

Marc G. Genton (KAUST) 2023 Barnett Lecture
September 7, 2023

14



2.1 What is HPC?

High-Performance Computing (HPC) is the use of advanced computing techniques and technologies to
solve complex problems that require significant computational power

HPC systems are designed to deliver high processing speeds, large-scale storage capacities, and high-speed
data transfer capabilities

They often have multiple processors (each with multi-cores) and may have accelerators (such as Graphics
Processing Units (GPUs))

HPC term applies to systems that function above a TFLOPS or O(1012) floating-point operations per
second (Flops/s)

Name Unit Value
kiloFLOPS kFLOPS 103

megaFLOPS MFLOPS 106

gigaFLOPS GFLOPS 109

teraFLOPS TFLOPS 1012

petaFLOPS PFLOPS 1015

exaFLOPS EFLOPS 1018

zettaFLOPS ZFLOPS 1021

yottaFLOPS YFLOPS 1024
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Modern hardware architectures

Shared-memory systems: a type of computer architecture where multiple processors or cores access a
common physical memory, e.g., x86-64 (Intel and AMD processors), IBM POWER, Graphics Processing
Units (GPUs)

Distributed-memory systems: a type of computer architecture in which multiple processors or nodes have
their own local memory and communicate with each other through message passing, e.g., clusters and
supercomputers

With sufficiently fast network we can in principle extend this approach to millions of CPU-cores and beyond

Benefits: Scalability, reliability, and performance

Challenges: Complex architectural, construction, and debugging processes
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TOP 500 Supercomputers June 2023 (https://www.top500.org)

You can think of Fugaku (cost $1 billion!) as putting 20 million smartphones in a single room, or equivalently
300,000 standard servers in a single room
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Marry Statistics and HPC: High Performance Statistical Computing (HPSC)

Example: ExaGeoStat software for exascale geostatistics
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ExaGeoStat software: Portability!
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2.2 Task-based parallelism and dynamic runtime systems

Task-based parallelization is a parallel computing technique in which a large task or problem is divided into
smaller subtasks that can be executed concurrently on multiple processors or cores

Parallel coding on different hardware architectures requires different skills and coding tools:
Shared-memory systems (e.g., OpenMP)
GPUs (e.g., OpenCL, CUDA)
Distributed systems (e.g., Message Passing Interface (MPI))

Dynamic runtime systems are software frameworks or environments that provide a layer of abstraction
above the hardware and operating system, aiming to simplify the management and coordination of
parallel and concurrent computations, e.g., StarPU (INRIA Bordeaux, France) and PaRSEC (UTK, USA)

Dynamic runtime systems facilitate the creation, scheduling, and execution of tasks on available processing
units (such as CPU cores or GPUs).
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2.3 Tile-based linear algebra

Tile-based linear algebra refers to a technique used to optimize the execution of linear algebra operations
on parallel architectures

It involves breaking down large matrices into smaller submatrices, called tiles, to exploit the memory
hierarchy and parallelism of modern processors

It aims to enhance cache utilization and minimize data movement between different levels of memory,
such as cache and main memory

The size of the tiles is chosen based on factors such as cache size, memory bandwidth, and computational
requirements

Tile-based linear algebra algorithms can be parallelized to take advantage of multi-core processors, GPUs,
or distributed computing environments

Existing tile-based algorithms rely on task-based parallelism and runtime systems (e.g., StarPU and
PaRSEC) to optimize the performance of existing linear algebra solvers over the modern HPC hardware
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2.4 Tile low-rank (TLR) linear algebra

Tile-based low-rank approximation refers to an approach for approximating matrices by decomposing them
into low-rank structures using a tile-based framework

This technique aims to reduce the computational complexity and storage requirements associated with
working with large-scale data by representing the original matrix as a combination of low-rank factor
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2.5 Multi- and mixed-precision computational statistics

Double-precision computation (64-bit) has been widely used as the primary representation for
floating-point numbers in computations

There has been a recent surge in studies driven by the demand from applications to use reduced
representations, such as single (32-bit) or half (16-bit), in order to accelerate computations while
maintaining an acceptable level of accuracy

The concepts of multi- and mixed-precision computation have emerged:
Multi-precision computation uses a combination of different precisions in different parts of an algorithm
Mixed-precision computation uses varying precisions within the same algorithm’s operation

We introduced the new concept of mixed-precision tile-based linear solvers for spatial statistics:

Benefits: Faster computations; memory savings, energy efficiency; scalability
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MMPR: R package for Multi- and Mixed-Precision computational statistics

MMPR is an advanced package designed to provide R users with a customized data structure
MMPR is tailored for researchers and data scientists working with multi- or mixed-precision arithmetic
The package provides support for three distinct precisions: half, single, and double. It also offers a
mixed-precision data structure organized in a tile-based format
MMPR achieves fast execution for lower precisions by leveraging highly optimized libraries such as MKL
and OpenBLAS, whereas R uses Rblas
Download: https://github.com/stsds/MMPR Soon on CRAN!
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2.6 ExaGeoStat software: Exascale geostatistics

ExaGeoStat covariance matrix representation
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ExaGeoStatR

ExaGeoStatR is a package for large-scale Geostatistics in R that supports parallel computation of the Gaussian
maximum likelihood function, kriging and simulations on shared memory, GPU, and distributed memory systems

© KAUST/Somersault1824
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ExaGeoStat development timeline
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geoR - fields - ExaGeoStatR comparison (speedup)

Average over 100 samples
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ExaGeoStatR performance on distributed-memory system (Shaheen-II)
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ExaGeoStat performance on distributed-memory system (Fugaku)
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ExaGeoStatR comparison with bigGP

Comparison of ExaGeoStatR with bigGP from a performance perspective for Cholesky factorization on a
distributed system (Ibex HPC cluster from KAUST using up to 16 40-core Intel Skylake nodes)
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ExaGeoStatR for SST data kriging
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ExaGeoStatR for SST data kriging
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Adaptive mixed-precision maps & reduced power consumption on GPUs for Cholesky
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3. Competitions on Spatial Statistics for Large Datasets

Goal: investigate the performance of different approximation methods with large synthetic datasets
generated by ExaGeoStat

Through the competition, we can better understand when each approximation method is adequate

The full datasets with one million locations are publicly available at:
2021: https://doi.org/10.25781/KAUST-8VP2V
2022: http://dx.doi.org/10.25781/KAUST-4ADYZ
2023: ...
which act as benchmarking data for future research

The exact MLEs and lowest RMSEs achieved by researchers worldwide are released so that other/new
methods can be easily compared
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3.1 In 2021: Gaussian and non-Gaussian

Launched November 23, 2020; Ended February 1, 2021

29 research teams worldwide registered and 21 teams successfully submitted results

Competition consists of four parts:
Task Data model Data size

1a GP estimation GP 90,000
1b prediction GP predict 10,000 conditional on 90,000
2a prediction Tukey g -and-h predict 10,000 conditional on 90,000
2b prediction GP & Tukey g -and-h predict 100,000 conditional on 900,000

Metric for GP estimation:
Mean Loss of Efficiency (MLOE) and
Mean Misspecification of the Mean Square Error (MMOM)

Metric for prediction: RMSE

Marc G. Genton (KAUST) 2023 Barnett Lecture
September 7, 2023

36



In 2021: Gaussian estimation/prediction results

Sub-competition Submission Score Rank

1a

ExaGeoStat(estimated-model) 154 0
SpatStat-Fans 156 1

GpGp 186 2
RESSTE(CL/krig) 229 3

1b

ExaGeoStat(true-model) 72 0
RESSTE(CL/krig) 78 1

ExaGeoStat(estimated-model) 79 1.5
HCHISS 93 2

Chile-Team 113 3
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3.2 In 2022: Nonstationary, space-time, multivariate

Launched March 1, 2022; Ended May 1, 2022

20 research teams worldwide registered

Hosted the competition on the Kaggle machine learning and data science platform

Sub- Setting True # of Training Testing
comp Data Model Datasets Data Size Data Size
1a Univariate GP with 2 90K 10K

Nonstationary Nonstationary
Spatial Mean or Cov

1b Univariate GP with 2 900K 100K
Nonstationary Nonstationary

Spatial Mean or Cov
2a Univariate GP with 9 90K 10K

Stat. ST Non-Separable Cov
2b Univariate GP with 9 900K 100K

Stat. ST Non-Separable Cov
3a Bivariate GP with 3 45K 5K

Stationary Parsimonious/Flexible
Spatial Matérn Cross-Cov

3b Bivariate GP with 3 450K 50K
Stationary Parsimonious/Flexible
Spatial Matérn Cross-Cov
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3.3 In 2023: Irregular locations, confidence/prediction intervals

Launched February 1, 2023; Ended May 1, 2023

11 research teams worldwide registered

Five different designs considered for the locations of the observations:
1. Chessboard; 2. Left-bottom; 3. Satellite; 4. Clusters; 5. Regular

Sub-comp Model Target # designs Training Testing
1a Gaussian Estimation 5 90K –

Matérn (95% conf interval)
1b Gaussian Estimation 5 900K –

Matérn (95% conf interval)
2a Gaussian Prediction 5 90K 10K

Matérn (95% pred interval)
2b Gaussian Prediction 5 900K 100K

Matérn (95% pred interval)
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Summary

1.1 Spatial Gaussian likelihood inference

ℓ(θ) = −n

2
log(2π)− 1

2
log|Σ(θ)| − 1

2
Z⊤Σ(θ)−1Z

1.2 Spatial kriging

µ2 +Σ21Σ
−1
11 (z1 − µ1) , Σ22 −Σ21Σ

−1
11 Σ12

1.3 Gaussian random field simulations

Z = µ+Σ1/2Y is Nn(µ,Σ) , (Z2|Z1 = z1) ∼ Nm

(
µ2 +Σ21Σ

−1
11 (z1 − µ1),Σ22 −Σ21Σ

−1
11 Σ12

)
1.4 Multivariate Gaussian probabilities

Φn(a, b;Σ) =

∫ b

a

1√
(2π)n|Σ|

exp

(
−1

2
x⊤Σ−1x

)
dx

1.5 Robust inference for spatial data

ℓq(θ) =
R∑
j=1

Lq

[
1√

(2π)n|Σ(θ)|
exp

(
−1

2
Z⊤
j Σ(θ)−1Zj

)]
Marc G. Genton (KAUST) 2023 Barnett Lecture

September 7, 2023
43



Summary

1 Some Fundamental Problems in Environmental Data Science
1.1 Spatial Gaussian likelihood inference
1.2 Spatial kriging
1.3 Gaussian random field simulations
1.4 Multivariate Gaussian probabilities
1.5 Robust inference for spatial data

2 Large-Scale Environmental Data Science with ExaGeoStat
2.1 What is HPC?
2.2 Task-based parallelism and dynamic runtime systems
2.3 Tile-based linear algebra
2.4 Tile low-rank (TLR) linear algebra
2.5 Multi- and mixed-precision computational statistics
2.6 ExaGeoStat software: Exascale geostatistics

3 Competitions on Spatial Statistics for Large Datasets
3.1 In 2021: Gaussian and non-Gaussian
3.2 In 2022: Nonstationary, space-time, multivariate
3.3 In 2023: Irregular locations, confidence/prediction intervals

QUESTIONS?
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Supplement: ExaGeoStatR on shared-memory system

Tile size effect:

16-core Intel Sandy Bridge Xeon E5-2650 Chip

●

●

●

●
●

● ●

● ● ● ● ● ● ● ●
●

●

●

●
●

●

●
● ● ● ● ● ● ● ● ● ●

●

●

●
● ● ●

● ● ● ● ● ● ●
● ● ●

● ●

●
● ● ●

● ●
●

●

●

●

● ●
● ●

●

●

●

●

●
●

●
● ●

● ● ● ● ● ● ●

●

●

●

●

●
●

●
● ●

● ● ● ● ● ● ●

●

●

●

●

●
●

●
●

● ● ●
●

● ● ● ●

●

●

●
● ● ●

● ● ● ●
●

●
● ●

●
●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
● ●

● ● ● ● ● ●

●

●

●

●

●
●

● ●

● ● ● ●
● ● ● ●

●

●

●

●

●
●

●
●

● ● ● ●

●

● ● ●

n: 400 n: 900 n: 1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.5

1.0

1.5

2.0

0.25

0.50

0.75

0.1

0.2

0.3

Number of CPU cores

E
xe

cu
tio

n 
tim

e 
pe

r 
ite

ra
tio

n 
(s

)

ts

●

●

●

●

560

320

160

100

Marc G. Genton (KAUST) 2023 Barnett Lecture
September 7, 2023

45


	Some Fundamental Problems in Environmental Data Science
	1.1 Spatial Gaussian likelihood inference
	1.2 Spatial kriging
	1.3 Gaussian random field simulations
	1.4 Multivariate Gaussian probabilities
	1.5 Robust inference for spatial data

	Large-Scale Environmental Data Science with ExaGeoStat
	2.1 What is HPC?
	2.2 Task-based parallelism and dynamic runtime systems
	2.3 Tile-based linear algebra
	2.4 Tile low-rank (TLR) linear algebra
	2.5 Multi- and mixed-precision computational statistics
	2.6 ExaGeoStat software: Exascale geostatistics

	Competitions on Spatial Statistics for Large Datasets
	3.1 In 2021: Gaussian and non-Gaussian
	3.2 In 2022: Nonstationary, space-time, multivariate
	3.3 In 2023: Irregular locations, confidence/prediction intervals


