
Boosting Earth System Model Outputs
And Saving PetaBytes in Their Storage

Using Exascale Climate Emulators
Sameh Abdulah1,7, Allison H. Baker2,8, George Bosilca3,9, Qinglei Cao4,10, Stefano Castruccio5,11,

Marc G. Genton1,7, David E. Keyes1,7, Zubair Khalid1,6,12, Hatem Ltaief1,7, Yan Song1,7,
Georgiy L. Stenchikov1,7, and Ying Sun1,7

1Extreme Computing & Statistics & Earth Science, King Abdullah University of Science and Technology, KSA
2Computational and Information Sciences Lab, NSF National Center for Atmospheric Research, USA

3NVIDIA, USA
4Department of Computer Science, Saint Louis University, USA

5Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, USA
6 Department of Electrical Engineering, Lahore University of Management Sciences, Pakistan

7{Firstname.Lastname}@kaust.edu.sa 8abaker@ucar.edu 9gbosilca@nvidia.com
10qinglei.cao@slu.edu 11scastruc@nd.edu 12zubair.khalid@lums.edu.pk

Abstract—
We present the design and scalable implementation of an

exascale climate emulator for addressing the escalating computa-
tional and storage requirements of high-resolution Earth System
Model simulations. We utilize the spherical harmonic transform
to stochastically model spatio-temporal variations in climate data.
This provides tunable spatio-temporal resolution and significantly
improves the fidelity and granularity of climate emulation,
achieving an ultra-high spatial resolution of 0.034◦(∼3.5 km) in
space. Our emulator, trained on 318 billion hourly temperature
data points from a 35-year and 31 billion daily data points
from an 83-year global simulation ensemble, generates statis-
tically consistent climate emulations. We extend linear solver
software to mixed-precision arithmetic GPUs, applying different
precisions within a single solver to adapt to different correlation
strengths. The PaRSEC runtime system supports efficient parallel
matrix operations by optimizing the dynamic balance between
computation, communication, and memory requirements. Our
BLAS3-rich code is optimized for systems equipped with four
different families and generations of GPUs, scaling well to achieve
0.976 EFlop/s on 9,025 nodes (36,100 AMD MI250X multi-
chip module (MCM) GPUs) of Frontier (nearly full system),
0.739 EFlop/s on 1,936 nodes (7,744 Grace-Hopper Superchips
(GH200)) of Alps, 0.243 EFlop/s on 1,024 nodes (4,096 A100
GPUs) of Leonardo, and 0.375 EFlop/s on 3,072 nodes (18,432
V100 GPUs) of Summit.

Index Terms—Dynamic runtime systems, High-performance
computing, Mixed-precision computation, Spatio-temporal cli-
mate emulation, Spherical harmonic transform, Task-based pro-
gramming models.

I. JUSTIFICATION FOR THE GORDON BELL PRIZE
Exascale climate emulator developed using 318 billion

hourly and 31 billion daily observations for generating climate
emulations at ultra-high spatial resolution (0.034◦ ∼ 3.5 km).

Authors are listed alphabetically by their last names.

Modeling climate data using spherical harmonics. Mixed-
precision computations. PaRSEC dynamic runtime system.
Running on 9,025 nodes on Frontier, 1,936 nodes on Alps,
1,024 nodes on Leonardo, and 3,072 nodes on Summit, with
the hybrid Flop/s rates 0.976 EFlop/s, 0.739 EFlop/s, 0.243
EFlop/s, and 0.375 EFlop/s, respectively.

II. PERFORMANCE ATTRIBUTES

Problem size 54,486,360 spatial locations across the
globe at a spatial resolution of 0.034◦
(∼3.5 km)

Category of achievement Scalability and peak performance
Type of method used Spherical Harmonic Transform (SHT)

and Cholesky factorization
Results reported on basis of Cholesky factorization
Precision reported Double and mixed-precision
System scale - 0.976 EFlop/s on 9,025 nodes of

Frontier (36,100 AMD MI250X
multi-chip module (MCM) GPUs)
equivalent to 72,200 AMD Graphics
Compute Dies (GCDs)
- 0.739 EFlop/s on 1,936 nodes of
Alps (7,744 NVIDIA Grace-Hopper
Superchips (GH200))
- 0.243 EFlop/s on 1,024 nodes of
Leonardo (4,096 NVIDIA A100 GPUs)
- 0.375 EFlop/s on 3,072 nodes of
Summit (18,432 NVIDIA V100 GPUs)

Measurement mechanism Timers, Flops

III. OVERVIEW OF THE PROBLEM
Climate change, evident in rising temperatures, extreme

weather events, sea-level rise, and ecosystem disruption, poses
significant risks and urgently requires action due to inten-
sified heatwaves, storms, droughts, floods, and biodiversity
loss [1], [2]. We stand at a critical juncture where converging

SC24, November 17-22, 2024, Atlanta, GA, USA
979-8-3503-5291-7/24/$31.00 ©2024 IEEE

advancements in technology and methodologies, including the
integration of exascale supercomputers, offer unprecedented
opportunities to tackle the existential threats of climate change.
Our work leverages exascale computing to develop scalable
climate emulators that complement high-resolution climate
projections, a capability not practically affordable by tradi-
tional climate models alone due to their expensive computa-
tional demands and petabyte-scale storage requirements.

Conventional climate models use conservation laws ex-
pressed as partial differential equations (PDEs) to represent
the interactions within Earth’s systems, providing insights into
climate change causes, mitigation impacts, and the potential
trajectories of future climate conditions [3], [4]. Climate
modeling began in the 1950s, and over the years, models
have become increasingly sophisticated as computing power,
observations, and our understanding of the climate system have
advanced, with Earth System Models (ESMs) now the state-
of-the-art models available to climate scientists [5].

Throughout 80 years of modern computing, capabilities
deemed unimaginable by one generation have become routine
expectations of the next. Gordon Bell papers have regularly
expanded the headroom of applications, in terms of resolution,
fidelity, and/or performance [6], which we do here for the next
Coupled Model Intercomparison Project (CMIP) campaign.
The CMIP campaigns support detailed comparisons of ESMs
by enabling systematic analysis, validation, and enhancement.
CMIPs are “resource-intensive and time-consuming to run”
[7], with each new phase becoming increasingly complex in
terms of experimental design, number of model intercompar-
isons, and the growth in data requested. For example, the most
recent CMIP Phase 6 (CMIP6) effort resulted in roughly 28 PB
from 45 modeling institutes hosted by the Earth System Grid
Federation (ESGF) [8]. For comparison, CMIP3 generated
40 TB of data, and CMIP5 generated 2 PB of data [9].
For individual modeling centers, generating and preparing the
data for the CMIP efforts is typically a monumental task.
For CMIP6, the National Center for Atmospheric Research
(NCAR) ran 37,000 years of climate with the Community
Earth System Model (CESM), consuming 190 million CPU
hours and resulting in 2 PB post-processed time series data [7].
Similarly, the Goddard Institute for Space Studies (GISS)
contribution to CMIP6 required 104.5 million CPU hours on
the NASA Center for Climate Simulation (NCCS) Discover
supercomputer and generated 147 TB of simulation data [10].
Moreover, financial constraints limit the storage capacity avail-
able for climate simulations. For example, managing data at
NCAR incurs costs of approximately $45 per TB annually.
This results in substantial financial burdens for projects with
petabyte-scale storage needs and can limit science objectives.
In a recent survey of the NCAR computing community, 70%
of respondents indicated that disk volume limitations have a
moderate or severe impact on their work.

Computational demands and storage requirements for ESMs
continue to escalate as the climate community progresses
toward ultra-high-resolution (i.e., kilometer-scale) simulations.
Some scientists believe that simulations at these so-called

“global storm-resolving” scales are necessary to understand
better how weather and extremes will be affected by climate
change [11]. The recent DYAMOND (DYnamics of the At-
mospheric general circulation Modeled On Non-hydrostatic
Domains) project [12] exemplifies the computational cost of
kilometer-scale simulations. In the initial DYAMOND exper-
iments, the nine atmosphere-only models in the project ran
for only 40 days, due to both computational and petabyte-
scale storage costs (note that short timesteps are typically
needed for high-res model runs). At the grid spacing of
5 km or less needed to capture small-scale processes, the
average DYAMOND model output rate was just 6 SDPD
(simulated-days-per-day), and 3D variable output was severely
limited. For example, each output sample for the ICON model
simulations was ∼1 TB [12], and the 3.25 km resolution
SCREAM (Simple Cloud-Resolving E3SM Model, whose
developers were awarded the first Gordon Bell Prize for
Climate Modeling in 2023 [13]) contribution to DYAMOND
produced ∼4.5 TB of data per simulated day [14]. Note that
even a coarser quarter-degree horizontal-grid resolution (∼25
km), which is still considered high-resolution for climate, is
quite costly. For example, E3SM consumed almost 100 million
core hours on Argonne’s Theta supercomputer for a single
50-year-long simulation [15]. Because the model resolution
significantly impacts the trade-off between the computational
costs and representation of the climate system, addressing
both computational and data storage challenges is essential
for advancing climate modeling capabilities.

Climate emulators play a pivotal role in alleviating the
computational burden and storage requirements associated
with climate modeling and simulations, as highlighted by their
use in the Intergovernmental Panel on Climate Change (IPCC)
assessment report (AR6) to forecast warming across various
emission scenarios. These emulators, capable of controlling
numerous climate system aspects through parameter variation,
can be tuned to mimic ESMs behavior using simulated data
such as CMIP6 and generate climate projections within sec-
onds on a standard desktop computer. This enables multiple
runs with varied parameter values for a single emissions
scenario, which is crucial for encompassing the uncertainty
range in future climate projections. Emulators have been part
of the climate modeling landscape for almost as long as the de-
velopment of more advanced climate models (e.g., [16]–[23]).
In Figure 1, we review these contributions through the lens
of the computational cost associated with climate emulator
design (more details provided in the next section). We note that
the current climate emulators have not yet attained a spatial
resolution finer than 100 km. Moreover, only those emulators
designed with an assumption of axial symmetry (stationarity
with respect to longitude) have managed to achieve a daily
temporal resolution. In this context, our work makes the
following notable contributions:

• We have developed a computationally efficient exascale
climate emulator that surpasses existing emulators by a
factor of 245,280 in terms of spatio-temporal resolution,

Fig. 1: Overview of existing work vs. this work. Analysis of computational cost associated with the emulator design for different spatial
resolutions and the review of the existing emulators. The computational complexity scales as O(L3T + L4) and O(L4T + L6) for axially
symmetric and longitudinally anisotropic models, respectively, where T is the count of temporal data points and L parameterizes the spatial
resolution, reflecting the number of grid points along either latitude or longitude. Existing emulators have achieved spatial resolutions of up to
100 km (approximately 0.901 degrees at the equator) and temporal resolutions down to the daily scale under the axial symmetry (stationarity
with respect to longitude) assumption. In contrast, anisotropic models have been limited to an annual temporal scale at 100 km spatial
resolution. The climate emulator design in this work (indicated by a green star) significantly advances the fidelity and granularity of climate
emulation by achieving an unprecedented spatial resolution (∼ 3.5–100 km) and hourly temporal resolution, surpassing the existing emulators
by a factor of 245,280 (28 times in spatial resolution and 8,760 times in temporal resolution).

that is, offering 28 times greater spatial and 8,760 times
greater temporal resolution (see Figure 1). This advance-
ment marks a significant milestone in climate science, as
it enables the generation of hourly emulations at an ultra-
high spatial resolution of 0.034◦(∼3.5 km) for the first
time — a step towards accurate climate projections and a
deeper understanding of climate change and its impacts.
Our emulator, capable of generating climate emulations
statistically consistent with the simulations, is trained on
318 billion hourly and 31 billion daily data points of
surface temperature derived from a global ensemble of
simulations spanning 35 years (1988-2022) and 83 years
(1940-2022), respectively.

• Our approach addresses the limitations of existing em-
ulators by employing the spherical harmonic transform
(SHT) of global data to model anisotropic interactions.
We also present HPC innovations for the scalable imple-
mentation of the emulator design on the exascale com-
puters. Our implementation applies multiple precisions
within a single solver, catering to the covariance strengths
of the data. Furthermore, we rely on PaRSEC runtime
system to support efficient parallel matrix operations
and optimize the balance between computation, com-
munication, and memory requirements with tile-centric
mixed-precision support. The scalability of the design is
demonstrated by generating unprecedented 0.034◦(∼3.5
km) hourly climate emulations, equivalent to 477 billion
data points for a single year emulation of temperature
data, illustrated in Figure 2 at 25 km spatial resolution
(the maximum available resolution of ERA5 data).

• We optimize our code for large-scale execution on sys-

tems equipped with different families and generations of
GPUs, scaling well to achieve 0.976 EFlop/s on 9,025
nodes (36,100 AMD MI250X GPUs) of Frontier (topping
the June 2024 Top500 list), 0.739 EFlop/s on 1,936 nodes
(7,744 NVIDIA H100 GPUs) of Alps (ranked 6th), 0.243
EFlop/s on 1,024 nodes (4,096 NVIDIA A100 GPUs) of
Leonardo (ranked 7th), and 0.375 EFlop/s on 3,072 nodes
(18,432 NVIDIA V100 GPUs) of Summit (ranked 9th).
Our implementation demonstrates excellent weak scaling
efficiency and up to 72% strong scaling efficiency with
as many as 12,288 V100 GPUs on Summit. We also rely
on KAUST’s Shaheen III CPU partition (ranked 23rd) to
perform most of the science experiments in this paper.

We thus bridge the gap between ESM simulations and
the growing demand for accessible, highly resolved emu-
lations and projections. Since our emulator enhances and
complements computationally expensive and storage-intensive
simulations, we anticipate substantial savings in storage (in
petabytes) needed for storing such simulations, heralding a
new era of analysis at ultra-high spatio-temporal resolutions.
Furthermore, by shifting the majority of the computational
effort from communication-bound sparse double-precision
kernels characteristic of PDE-based models to dense low-
precision tensor core kernels in the wheelhouse of the GPU
commodity market, we open a more sustainable swim lane to
climate modeling.

IV. CURRENT STATE OF THE ART
A. Climate Emulators: Review and Computational Challenges

The development of climate emulators has recently gained
prominence due to their role in complementing and enhancing

(a) Jan. 01, 2019 Simulations (b) Jan. 01, 2019 Emulations

(c) Jun. 01, 2019 Simulations (d) Jun. 01, 2019 Emulations

Fig. 2: Hourly (24-hour) surface temperatures (in K) generated
by climate simulations (ERA5 dataset) and the proposed climate
emulator (single realization, statistically consistent with simulations)
are plotted in (a) simulations and (b) emulations for January 1, 2019,
and in (c) simulations and (d) emulations for June 1, 2019. This figure
includes an animation (at 2-hour intervals) for enhanced visualization,
optimally viewed in Adobe Acrobat.

the ESM simulations (e.g., [17], [24]–[27], see Section VIII for
potential uses of climate emulators). At the heart of emulator
design is the principle of training a statistical model on a
limited set of simulations to generate new data or predict
outcomes for new inputs, eliminating the need for a large
ensemble of full-scale climate model runs. The development of
emulators spans decades, with the conventional approach pri-
marily revolving around the use of Gaussian processes (GPs)
and auto-regressive models to capture the intricate spatio-
temporal dependencies found in climate simulations driven by
underlying physical mechanisms. A primary challenge with
this approach is the processing of extensive high-resolution
data in global climate simulation, as performing inference
with GPs on such large datasets can be computationally
prohibitive. Addressing this computational challenge benefits
from drawing on existing techniques such as low-rank approx-
imations [28], composite likelihoods [29], stochastic partial
differential equations [30], covariance tapering [31], and their

combinations [32]. Notably, efficient algorithms to handle
large datasets and the distribution of computations across mul-
tiple processors have been proposed to reduce the emulation
times [16], [17]. [23] presents an innovative emulator tailored
for global surface temperature simulations from the recently
published CESM2-LENS2 data, featuring a spatial resolution
of approximately 1◦×1◦. By leveraging the SHT, the emulator
efficiently transitions simulations from the spatial domain to
the spectral domain. Exploiting continuity by changing the
discrete basis from grid values to spectral amplitudes leads to
significant reductions in both the computational and storage
costs, enabling the generation of emulations across annual,
monthly, and daily scales. The spectral basis also provides a
unified representation of data with different grid resolutions.

The anisotropic (non-stationary) spatial dependence in the
output of ESM simulations also presents significant computa-
tional challenges associated with estimating and decomposing
the covariance matrix that captures this spatial dependence.
Common simplifications include assuming isotropy and ax-
ial symmetry (stationarity along the longitude), leading to
diagonal and sparse covariance matrices, respectively [16],
[21]–[23]. This reduces the computational workload for matrix
estimation and its Cholesky decomposition.

In Figure 1, we analyze and compare the spatial resolution
and computational cost of various emulators proposed in the
literature. The computational complexity when assuming axial
symmetry scales as O(L3T + L4), where T denotes the
number of temporal data points, and L denotes the spatial
resolution, reflecting the number of grid points along either
latitude or longitude. Emulators designed under this assump-
tion have reached spatial resolutions up to 100 km and tem-
poral resolutions down to the daily scale. Relaxing the axial
symmetry assumption increases the computational complexity
associated with the emulator design to O(L4T + L6). As
a result, emulators accommodating longitudinal variation are
typically confined to annual temporal resolutions and moderate
spatial resolutions (∼100-500 km) [17]–[19]. We overcome the
computational challenges associated with accurately capturing
the anisotropic spatial dependencies in ESMs by employing
HPC innovations in our scalable implementation. These inno-
vations enable efficient parallel implementation of SHT and
the computation and decomposition of the covariance matrix.
The proposed HPC innovations, combined with recent scien-
tific advancements, offer pathways to harness the power of
supercomputers to develop exascale scalable climate emulators
capable of generating climate emulations consistent with the
intricate details of climate dynamics and achieving a level of
resolution previously unattainable in both space and time.

B. Climate Emulator Design – Overview

We consider spatio-temporal climate data, denoted by
y
(r)
t (θi, ϕj) for latitude θi ∈ [0, π], longitude ϕj ∈ [0, 2π),

time point t, and ensemble r, where i = 1, . . . , Nθ, j =
1, . . . , Nϕ, t = 1, . . . , T , and r = 1, . . . , R. The data in the
spatial domain are located on a grid of Nθ ×Nϕ points, and
the total size of the dataset given by R×T×Nθ×Nϕ depends

Fig. 3: An overview of the design and development pipeline of the climate emulator, including HPC innovations, detailing each step in the
process of developing an emulator and using it to generate emulations (see Section V for details).

on the spatial and temporal resolutions. As an illustration,
hourly observations of ERA5 surface temperature are plotted
in Figure 2(a) and (c).

Utilizing the SHT, which transforms spatial data on the
sphere into the spectral domain based on eigenfunctions of
the angular part of the 3D Laplacian, we present the design of
an emulator equipped with efficient and adaptable capabilities
tailored specifically for managing the complexities inherent in
large-scale global climate simulations such as non-stationary
spatial dependencies that exist among latitudes and between
different geographic regions (e.g., land and ocean), and tem-
poral dynamics. The capability of the proposed emulator for
generating climate emulations statistically consistent with the
simulations has been demonstrated in [23] for different scenar-
ios. Figure 3 provides an overview of the emulator design and
the steps involved in generating emulations, including HPC
innovations. In the next section, we describe the mathematical
formulation and computational complexity associated with
designing the emulator and generating emulations.

C. Advancements in Dense Linear Algebra: State-of-the-Art

Dense matrix algorithms are extensively utilized across vari-
ous applications, from scientific computing to engineering and
data analysis. Operations such as Cholesky have seen signifi-
cant performance improvements due to rapid advancements in
hardware technology. With well-designed parallel algorithms,
the performance of these dense operations can approach the
underlying theoretical limits of the hardware. These algorithms

use task-based programming to handle detailed computations
efficiently and are known as tile-based linear solvers. They
divide the matrix into tiles represented in a Directed Acyclic
Graph (DAG) in Figure 3, where nodes and edges represent
computational tasks and their dependencies, respectively [33].

On modern hardware, such as GPUs, there is a trend towards
supporting operations at lower precision, a development that
AI workloads capitalize on for accelerated training and infer-
ence. For instance, NVIDIA V100, A100, and H100 can run
single-precision (SP) / half-precision (HP) 2X/16X, 16X/32X,
14.7X/29.5X faster than double-precision (DP) arithmetic,
respectively (assuming, if supported, tensor core operations
and the SXM interface). This shift also presents an opportu-
nity in dense linear algebra to exploit fast matrix operations
performed at reduced precision, particularly in scientific ap-
plications that can tolerate reduced computational accuracy.

Mixed-precision matrix approximations capitalize on hard-
ware trends and substantially reduce memory usage. This
reduction allows more of the working set to reside in fast
memory, enhancing performance [34], [35]. To effectively
manage these operations, which vary inherently in their data
structures and precision levels (i.e., DP/SP/HP), it is essen-
tial to implement a dynamic runtime system framework that
adeptly orchestrates these heterogeneous tasks.

D. Increased Productivity with Dynamic Runtime Systems

Task-based dynamic runtimes have been proposed as an
alternative for programming challenges raised by complex

hierarchical systems, with the goal of facilitating the schedul-
ing of fine-grained “work units”, or tasks, onto the underly-
ing hardware resources and managing the communications.
Augmented with various scheduling strategies, they are able
to reduce idle time for imbalanced applications and reduce
expensive data movements while favoring data locality. These
runtime systems support shared- and distributed- memory
systems, including support for accelerators. The result is an
asynchronous execution model offering adaptive capabilities
beyond the bulk synchronous SPMD mainstream.

The programming API varies between the different frame-
works, going from a relatively easy to depict sequential
declaration of tasks and their dependencies for OpenMP [36],
StarPU [37], OmpSs [38], HPX [39], Charm++ [40], to a
more complex, static or dynamic, symbolic representation of
the graph of tasks for PaRSEC [41] and Legion [42]. In all
cases, the users remain responsible for the correct description
of the graph of tasks, and the runtime is responsible for the
effective unrolling of the tasks and resulting communications
onto the available resources, providing a separation of con-
cerns between algorithmic description and execution.
PaRSEC [41], the runtime used in this work, relies on

a domain-specific language (DSL) that represents the entire
DAG in a compressed and parametrized manner. This per-
mits leveraging collective communications that are crucial in
dense matrix algorithms, provides opportunities for commu-
nication/computations overlap, and better uses data locality
and caching. PaRSEC decouples the data distribution from
the actual task operations, providing a level of abstraction
allowing for type changes, or adaptive precision conversion, at
the communication level, based on the needs for successors.

V. INNOVATIONS REALIZED

A. Climate Emulator Design – Formulation

We represent the climate data in terms of deterministic and
stochastic components as [22], [23]

y
(r)
t (θi, ϕj) = mt(θi, ϕj) + σ(θi, ϕj)Z

(r)
t (θi, ϕj), (1)

where Z
(r)
t (θi, ϕj) is the stochastic component at spatial

location (θi, ϕj), time point t, and ensemble r. The terms mt

and σ represent the deterministic functions responsible for the
mean trend and standard error, respectively, and are shared
across all ensembles. The mean trend mt for each spatial
location can be modeled using an infinite distributed lag model
to relate it with the radiative forcing (RF) trajectory xt (annual
scale) as [17], [22], [23]

mt =β0 + β1x⌈t/τ⌉ + β2(1− ρ)

∞∑
s=1

ρs−1x⌈t/τ⌉−s,

+

K∑
k=1

{
ak cos

(
2πtk

τ

)
+ bk sin

(
2πtk

τ

)}
, (2)

where β0(θi, ϕj) is the intercept, and β1(θi, ϕj) and β2(θi, ϕj)
are slopes for the current and past RF, respectively. Here
β2(θi, ϕj){1− ρ(θi, ϕj)}ρ(θi, ϕj)

s−1 are the lag weights that
decrease the impact of past RF exponentially by ρ(θi, ϕj) ∈

[0, 1]. The choice of K depends on the number of terms
used to model the periodic (e.g., intraday or interannual)
variations. τ is a parameter capturing the frequency of periodic
variations with a value τ = 12, τ = 365 and τ = 8760 for
monthly, daily, and hourly temporal resolutions, respectively.
Leveraging the independence, we can efficiently estimate the
parameters in (2) and σ by using 1D maximum likelihood
estimation (MLE) method [22], [23] for each spatial location
with the computational complexity O(T).

1) Modeling in the Spherical Harmonic Domain: We model
the stochastic component in terms of spherical harmonics as

Z
(r)
t (θi, ϕj) =

L−1∑
ℓ=0

ℓ∑
m=−ℓ

(z
(r)
t)ℓ,mYℓ,m(θi, ϕj) + ε

(r)
t (θi, ϕj),

where Yℓ,m(θi, ϕj) =
√

2ℓ+1
4π

(ℓ−m)!
(ℓ+m)!P

m
ℓ (cos θi) exp(imϕj)

and (z
(r)
t)ℓ,m represent an orthonormal spherical harmonic

basis function and coefficient, respectively, of degree ℓ ≥ 0
and order |m| ≤ ℓ. Since we have truncated the representation
in terms of basis functions at degree L − 1, the last term
ε
(r)
t (θi, ϕj) accounts for the remaining information and is

assumed to be independent and follow N (0, v2(θi, ϕj)). The
harmonic coefficients (z

(r)
t)ℓ,m are computed by the SHT

given by [43]:

(z
(r)
t)ℓ,m =

∫ π

θ=0

∫ 2π

ϕ=0

Z
(r)
t (θ, ϕ)Yℓ,m(θ, ϕ) sin θdθdϕ, (3)

which can be re-formulated by dropping the dependence on t
and r for succinct representation as

(z)ℓ,m =

∫ π

θ=0

Gm(θ)Yℓ,m(θ, 0) sin θdθ, (4)

with Yℓ,m(θ, ϕ) = Yℓ,m(θ, 0)eimϕ and

Gm(θ) =

∫ 2π

ϕ=0

Z(θ, ϕ)e−imϕdϕ = 2π

L−1∑
ℓ=|m|

(z)ℓ,mYℓ,m(θ, 0),

which can be used to represent the data in the form

Z(θ, ϕ) =

L−1∑
m=−(L−1)

Gm(θ)e−imϕ (5)

with an assumption that the data are band-limited at degree L.
Noting the relationship between Wigner-d function, denoted
by dℓm,n(θ) for degree ℓ and orders |m|, |n| ≤ ℓ, and the

spherical harmonic [44]: Yℓ,m(θ, 0) =
√

2ℓ+1
4π dℓm,0(θ), and the

expansion of Wigner-d function in terms of complex exponen-
tials [44]: dℓm,0(θ) = i−m

∑ℓ
m′=−ℓ d

ℓ
m′,0(

π
2) d

ℓ
m′,m(π2) e

im′θ,
we express Gm(θ) after changing the order of summation as

Gm(θ) =

L−1∑
m′=−(L−1)

Km,m′ eim
′θ, (6)

where Km,m′ = i−m
∑L−1

ℓ=max(|m′|,|m|)
√

(π)(2ℓ+ 1) fℓ,m ×
dℓm′,0(

π
2) d

ℓ
m′,m(π2). Substituting (6) in (4) yields

(z)ℓ,m =

L−1∑
m′′=−(L−1)

Sℓ,m,m′′

L−1∑
m′=−(L−1)

Km,m′ I(m′ +m′′) (7)

where Sℓ,m,m′′ = i−m
√

2ℓ+1
4π dℓm′′,0

(
π
2

)
dℓm′′,m

(
π
2

)
, and

I(q) is an integral of the form

I(q) =

∫
θ∈[0,π]

eiqθ sin θdθ =

{
δ|q|,1

iqπ
2 , q odd,

2
1−q2 , q even,

(8)

where δ|q|,1 is a Kronecker delta function.
Since the representation of the data in (5) indicates that

Z(·, ϕ), with complex exponentials {eimϕ} as basis functions,
is band-limited at L, Gm(θ) can be recovered accurately
using the Fast Fourier Transform (FFT) if Nϕ ≥ 2L − 1.
We extend the domain of Gm(θ) to include the points along
co-latitude in (π, 2π) for θ ∈ (0, π) as Gm(2π − θ) =
2π

∑L−1
ℓ=|m| fℓ,mYℓ,m(θ, π) = (−1)m Gm(θ), where we have

used (−1)mYℓ,m(θ, π) = Yℓ,m(θ, 0). We use (6) to recover
Km,m′ exactly by employing inverse FFT provided Gm(θ)
over 2Nθ − 2 points along extended co-latitude if Nθ > L.
Once we have Km,m′ for all |m|, |m′| < L, we use (7) for the
exact computation of SHT under the assumption that the data
are band-limited. We note that the SHT can be computed with
sufficient accuracy using the proposed approach even when the
data are not band-limited, as illustrated in [23], and the error
captured by ε

(r)
t is incorporated in the emulation process.

2) Efficient Implementation: For efficient implementation
of SHT, we pre-compute the Wigner-d matrix, thus eliminating
the need to recalculate them with each temporal observa-
tion. The computation of Gm(θ) and Km,m′ is optimized to
O(L2 logL) through the FFT, whether along ϕ or an extended
θ. Once Km,m′ is determined for all |m|, |m′| < L for each
observation, the computational complexity of the inner sum-
mation in (7) is O(L3) for all m and m′′. The subsequent outer
summation also requires O(L3) per observation, resulting in a
total complexity of O(TL3) for all temporal observations. The
Wigner-d functions, specifically for the fixed argument π/2,
can be efficiently calculated using recursion relations, with an
O(ℓ2) complexity for computing dℓm′′,m(π2) from dℓ−1

m′′,m(π2),
resulting in a total of O(L3) across all degrees and orders.
The calculation of Sℓ,m,m′ also takes O(L3). As Sℓ,m,m′ does
not depend on the data, it can be pre-computed for ℓ < L,
|m| ≤ ℓ, and |m′| < L, necessitating O(L3) in storage
space. While our pre-computation strategy does not change the
asymptotic computational complexity of SHT, it significantly
reduces actual computation time. Additionally, we underscore
that our proposed SHT computation technique is fully paral-
lelizable, offering a linear computational complexity of O(L)
for computing SHT for different time points simultaneously.

3) Modeling the Temporal Dependence and Constructing
a Covariance Matrix: After the computation of SHT of
the stochastic component for all time points, we can form
a matrix F(r) = (f

(r)
1 , . . . , f

(r)
T) ∈ RL2×T where f

(r)
t =

((z
(r)
t)00, . . . , (z

(r)
t)LL)

⊤ ∈ RL2

is a vector of spherical
harmonic coefficients for each time slot t = 1, . . . , T . We
model the temporal dependence using a vector auto-regressive
model of order P , that is, f (r)t =

∑P
p=1 Φpf

(r)
t−p + ξ

(r)
t , where

each Φp ∈ RL2×L2

, p = 1, 2, . . . , P , is assumed to be a
diagonal correlation matrix [23], and ξ

(r)
t

i.i.d.∼ NL2(0,U).

The covariance matrix U can be empirically evaluated with
computational complexity O(L4T) as

Û =
1

R(T − P)

R∑
r=1

T∑
t=P+1

ξ
(r)
t

(
ξ
(r)
t

)⊤
, (9)

and then factorized via Cholesky decomposition with com-
putational complexity O(L6) as Û = VV⊤. In cases where
R(T − P) < L2, we introduce a minor perturbation along
the diagonal of Û to ensure it remains positive definite. This
completes the design of our emulator capable of generating
emulations using the matrices V, {Φp}Pp=1 and parameters (or
matrices) v, σ, β0, β1, β2, ρ, {ak, bk}Kk=1 defining the charac-
teristics of spatio-temporal climate data.

B. Generating Emulations

Using V, we first generate ξ
(r)
t

i.i.d.∼ NL2(0,U) and
determine f

(r)
t by employing Φp for p = 1, . . . , P in O(L2T).

We then compute inverse SHT of the spherical harmonic
coefficients f

(r)
t to obtain (Z̃

(r)
t) over a grid of Nθ latitudes

and Nϕ longitudes with the computational complexity of
O(L3T). Add ε

(r)
t ∼ N (0, v2) to (Z̃

(r)
t) to get (Z

(r)
t).

Finally, we use (1) to generate emulations with the overall
computational complexity of O(L3T).

C. Using PaRSEC to Meet Exascale Challenges

Scale changes everything, escalating minor issues to ma-
jor performance bottlenecks. Scaling up our experiments,
especially on platforms where each node has a tremendous
computing capability, highlighted two potential issues: the
importance of ordering communications, especially collective
communications, and the significance of minimizing memory
waste. PaRSEC has support for both of these capabilities,
including user-driven support via annotations in the source
code, but this support was not previously tested at this scale.

Tiles from a regularly distributed matrix with varied preci-
sion require different amounts of storage. PaRSEC has support
for dynamic memory allocations based on the incoming data
[45], but as the communication layer can reshape the data to
adapt it to the precision required by the successors’ tasks, this
allocation needs to be set dynamically, driven by the sender.
Moreover, this dynamic allocation should be able to handle
data on both CPU and accelerator memory.

Collective communications in PaRSEC are conceptually
similar to those in MPI, with the major difference that no
group or communicator is known in advance; the group
will be dynamically built based on the location of successor
tasks and propagated (either physically or symbolically) with
the collective message. This means that each node of the
propagation tree will locally construct the group of collectives
and identify the processes with which they interact before
participating in the collective communication. Moreover, as
many collective communications are ongoing simultaneously,
the original version of PaRSEC tried to maximize the overall
bandwidth and allow for multiple concurrent collective com-
munications. In other words, PaRSEC favored bandwidth over
latency, resulting in individually longer collective latency but

an overall better bandwidth usage. At scale, especially for
strong scaling experiments, such a strategy is sub-optimal, as
it creates starvation points. Thus, we realigned the priorities of
the collective communications to focus on individual latency
first, leading to faster and more regular time-to-solution.

D. Mixed-Precision Computation Innovations

Recent GPUs from various vendors are designed to deliver
high performance at lower precision levels, catering to mod-
ern AI workloads. In earlier research, we introduced mixed-
precision (MP) computation for large-scale single matrices,
utilizing tile-based algorithms to distribute precision across
different tiles according to application features. For example,
precision distribution can be based on bandwidth, as seen in
band-based MP computations [34], [46], or it can be tailored
around numeric features, as demonstrated in tile-centric MP
approaches [47]. All these studies were around CPU-based
systems, including Intel, ARM, and Fujitsu A64FX Systems.

Recently, we expanded this approach to single and multiple
GPUs [35], achieving improved performance and reduced
power consumption for environmental applications. This ad-
vancement aims to enhance the accuracy of predictions using
existing geospatial data. Here, we broaden the capabilities of
the PaRSEC runtime system and mixed-precision computation
using tile-based linear algebra algorithms to large-scale GPU-
based systems, specifically, Frontier (AMD MI250X), Alps
(NVIDIA H100), Leonardo (NVIDIA A100), and Summit
(NVIDIA V100), and we supplement our study with efficiency
and scalability assessment results for climate emulators.

VI. HOW PERFORMANCE WAS MEASURED

A. Spatio-temporal Dataset, Upsampling and Accuracy

We consider the surface temperature measured at 2 meters
above the surface, encompassing land, sea, and inland water
bodies, as spatio-temporal climate data. We use the ERA5
dataset, which provides the surface temperature spanning the
last 83 years (1940-2022) at a spatial resolution of 0.25◦

corresponding to Nθ = 721 latitude points and Nϕ =
1440 longitude points and the spherical harmonic band-limit
L = 720. In anticipation of future climate simulations and
experiments expected to feature even higher spatial resolu-
tions, we perform spline interpolation to upscale the data to
higher spatial resolutions consistent with the band-limits of
720, 1,440, 2,880, and 5,219 (see green stars in Figure 1).
This upscaling of the number of grid points serves dual
purposes: i) to demonstrate the scalability of the design and
computational performance of our emulator and ii) to ensure
our approach remains relevant and aligned with advancements
in climate modeling. We use K = 5 to capture periodic
variations along the time and P = 3 for auto-regressive
modeling of spherical harmonic coefficients, a choice deemed
sufficient based on existing related research [22], [23]. For the
temporal dimension, we consider hourly and daily resolutions,
resulting in T = 306,600 (35 years, hourly, 1988-2022) and
T = 30,295 (83 years, daily 1940-2022) time slots, after
adjusting for the omission of an extra day in leap years. As

highlighted earlier, even daily resolution has not been fully
adopted in the existing emulator designs primarily due to the
significant computational demand to process large amounts of
data. We plot the hourly ERA5 data alongside the emulations
in Figure 2 for two days. We also plot the daily simulations
and emulations for the same two days in Figure 4 for different
mixed-precision variants. These figures illustrate the statistical
consistency (studied in detail in [23]) between the emulations
and simulations at different precision levels employed in the
tile-based decomposition of the covariance matrix.

B. Performance Measured in Flop/s

We assess the numerical robustness of our mixed-precision
approach by applying the climate emulator with various L
values, specifically, 720, 1,440, 2,880, and 5,219. We report
the Flop/s and scalability achieved on up to 9,025 nodes on
Frontier (36,100 AMD MI250X GPUs), 1,936 nodes on Alps
(7,744 GH200 GPUs), 1,024 nodes on Leonardo (4,096 A100
GPUs), and 3,072 nodes of Summit (18,432 V100 GPUs). To
optimize performance, we fine-tuned our code and integrated it
with the highly optimized BLAS/LAPACK libraries available
on each of these systems.

We conducted experiments on the four supercomputers,
utilizing four precision variants: full double-precision (DP); a
single band as DP with the remaining tiles as SP (DP/SP); DP
with 5% as SP and the remaining tiles as HP (DP/SP/HP); and
a single band as DP with the remaining tiles as HP (DP/HP).
The performance results were reported in terms of achieved
Flop/s for a single Cholesky factorization, which is required
after the SHT step to emulate new climate datasets. We varied
the problem sizes to encompass all spatial resolutions down
to 0.034◦. The performance data spanned different numbers
of nodes across the various systems, limited by availability
but nevertheless providing a comparison of our computational
capability across different configurations and resolutions. This
approach allowed us to assess the efficiency of each variant
under different computational loads and system scales.

C. Strong and Weak Scaling Efficiency

Having greatest availability on about-to-be-retired Summit,
we gave it a triumphant swan song of strong and weak
scaling experiments using up to 2,048 nodes (12,288 NVIDIA
V100 GPUs) with four Cholesky decomposition variants: the
reference DP, and variants DP/SP, DP/SP/HP, and DP/HP. For
the weak scaling experiments, we assigned the same amount
of data to each GPU while varying the number of GPUs.
This approach helped us evaluate how effectively our MP
code can maintain performance per GPU as the scale of the
system increases. It allowed us to assess the consistency of
performance across different GPU counts, to understand how
the application scales horizontally.

For strong scalability, we used a constant workload that
512 nodes of Summit would typically handle and tested this
workload on larger configurations of 1,024 and 2,048 nodes.
This allowed us to measure the scaling efficiency across the
different precision variants. Specifically, we examined how

(a) ERA5 Data, Jan. 01, 2019 (b) Emulation (DP) (c) Emulation (DP/SP) (d) Emulation (DP/HP)

(e) ERA5 Data, Jun. 01, 2019 (f) Emulation (DP) (g) Emulation (DP/SP) (h) Emulation (DP/HP)

Fig. 4: ERA5 surface temperatures (in K) on (a) Jan. 1, 2019, and (e) Jun. 1, 2019. The corresponding emulated temperatures using DP,
DP/SP, and DP/HP, are plotted in the same row.

the performance per GPU with the fixed workload decreased
with adding more GPUs and computed the efficiency as the
performance ratio per GPU on the 512-node configuration.
This metric helps in understanding the effectiveness of re-
source utilization and in pinpointing potential overheads or
inefficiencies in the parallelization of the code, especially as
we scale up to a larger number of GPUs.

D. Attributes of the HPC Systems

This study focuses on four GPU-based systems. Frontier at
ORNL consists of 9,472 nodes, each equipped with four AMD
MI250X GPUs; each GPU is a multi-chip module (MCM)
with two AMD Graphics Compute Dies (GCDs) and four
Terabytes of flash memory. Frontier has a theoretical peak
performance of 1.71 EFlop/s in DP operations. Recently listed
Alps at CSCS consists of many resources; we focus on the
Grace-Hopper partition of 2,688 CPU-GPU supernodes, each
equipped with four NVIDIA GH200 with 72 ARM cores CPU
and one NVIDIA H100 Tensor Core GPU with 96GB of
HBM3. Alps has a theoretical peak performance of 353.75
PFlop/s in DP operations. Leonardo at CINECA comprises
3,456 nodes, each with four NVIDIA A100 64GB GPUs and
boasting a theoretical peak performance of 306.31 PFlop/s
in DP. Summit at ORNL supercomputer consists of 4,608
compute nodes, each equipped with two 22-core IBM Power9
CPUs and six NVIDIA Tesla V100 GPUs, with over 600 GB
of coherent memory accessible by both CPUs and GPUs and
a theoretical peak performance of 200.79 PFlop/s in DP.

VII. PERFORMANCE RESULTS

We analyze performance on the four above-mentioned sys-
tems, covering various problem sizes and weak and strong
scalability efficiency on Summit.

A. Performance of Mixed-Precision Cholesky on Summit

In [34], we propose a banded-mixed-precision approach
through PaRSEC at large-scale. At this scale, tile-based mixed-
precision Cholesky factorization has a special communication
pattern. First, POTRF (c, c) on the diagonal tile broadcasts to
TRSMs in column c for a given tile-based matrix. Secondly,

TRSM (r, c) broadcasts to GEMMs in row r, GEMMs in
column c, and SYRK (r, c). Due to different precisions, a task
might receive a tile at a different precision than it operates
on, necessitating a precision conversion. This conversion can
occur at the sender or the receiver. If we apply down-
precision conversion at the sender, we boost performance
by reducing communication. Send-based conversion enhances
performance, as exemplified by TRSM to GEMMs conver-
sions, which reduces repeated conversions across successive
GEMMs. An evaluation with single and multiple GPUs of
sender/receiver-based conversions was introduced in [35]. In
this work, we have optimized the performance by dynamically
applying sender-based conversion and compared the perfor-
mance to our previous work [34] on 128 nodes of Summit.
As shown in Figure 5, we can obtain a speedup up to 1.53X
with DP/HP. The other two curves have slightly improved, i.e.,
1.15X and 1.06X for DP and DP/SP, respectively, because the
advantage in communication is hindered by the computation
overhead, resulting in a negligible performance gain compared
to the DP/HP variant.

Figure 6 shows the performance comparisons of several
precision configurations: DP, DP/SP, DP/SP/HP, and DP/HP
on 2,048 nodes of Summit. The red dashed line represents
the peak performance of DP on 2,048 Summit nodes. The
figure illustrates that DP Cholesky achieves 61.7% of the peak
performance. The figure also reports the speedups achieved
by the three MP configurations compared to DP computation,
showing speedups of 2X, 3.2X, and 5.2X for DP, DP/SP/HP,
and DP/HP, respectively. The figure also demonstrates that
with a problem size of approximately 8M, DP/HP Cholesky
on 2,048 nodes can achieve up to 304.84 PFlop/s.

B. Scalability of Mixed-Precision Cholesky on Summit

Figure 7 (left) illustrates the weak scalability of Summit
performing MP Cholesky decomposition. The reported perfor-
mance is normalized to reflect single-node performance and
facilitate a more granular analysis. As the number of nodes
increases from 64 to 2,048, each maintains performance levels
per node for different configurations. Figure 7 demonstrates
excellent scaling efficiency when maintaining the same work-

0.66M 0.86M 1.06M 1.27M
Matrix Size

0

2

4

6

8

10

12

14

Pe
rfo

rm
an

ce
 (P

Fl
op

/s
)

1.15

1.06

1.53

DP/HP: New
DP/HP: Old
DP/SP: New

DP/SP: Old
DP: New
DP: Old

Fig. 5: Performance of Cholesky factorization for DP, DP/SP, and
DP/HP on 128 nodes of Summit (768 NVIDIA V100 GPUs) com-
pared to the work in [34], with varying covariance matrix sizes.

2.10M 3.15M 4.19M 5.24M 6.29M 7.34M 8.39M
Matrix Size

50

100

150

200

250

300

Pe
rfo

rm
an

ce
 (P

Fl
op

/s
)

61.7% 2.0X

3.2X

5.2X

DP/HP
DP/SP/HP
DP/SP
DP

Fig. 6: Performance of Cholesky factorization using four precision
levels: DP, DP/SP/HP, DP/SP, and DP/HP on 2,048 nodes of Summit
(12,288 NVIDIA V100 GPUs), with varying covariance matrix sizes.

384 1536 3072 6144 12288
Number of GPUs

0

20

40

60

80

100

120

140

Pe
rfo

rm
an

ce
 (T

flo
p/

s)

100% 99%
107%

95%
101%

100% 97%
105%

94%
103%

100% 101% 105% 97% 92%

100% 99% 108% 93% 111%

DP/HP
DP/SP/HP

DP/SP
DP

3072 6144 12288
Number of GPUs

0

20

40

60

80

100

120

140

160

180

Pe
rfo

rm
an

ce
 (T

Fl
op

/s
)

100%

75%

56%
100%

73%
60%

100%
86%

72%
100%

65% 55%

DP/HP
DP/SP/HP

DP/SP
DP

Fig. 7: Weak (left) and strong (right) scaling on 2,048 nodes of Summit (12,288 NVIDIA V100 GPUs), using various precision levels, i.e.,
DP, DP/SP, DP/SP/HP, and DP/HP.

load per GPU as the number of GPUs increases. Compared to
the baseline performance on 384 GPUs, the scaling efficiency
ranges from 92% to 111% across various GPU counts, up to
12,288 V100 GPUs, using different MP variants.

Figure 7 (right) illustrates the strong scalability on the
Summit system when performing MP Cholesky decompo-
sition. This figure shows how the system handles a fixed
total workload as the number of nodes increases from 3,072
to 12,288 GPUs, effectively showcasing the utilization of
additional computational resources while maintaining the same
problem size. The largest problem size that fits the memory of
3,072 GPUs is used as the fixed workload. The performance
metrics are also normalized to show performance per node.
As typically expected in strong scalability scenarios, the
performance per node tends to decrease when more resources
are applied to the same problem size. For instance, with the
DP variant, the efficiency drops to about 55% per node when
comparing the performance of 2,048 nodes with 512 nodes.

However, efficiency improves noticeably when using mixed-
precision variants. Efficiency increases to 72% for DP/SP and
60% for DP/SP/HP, indicating that these configurations miti-
gate performance degradation more effectively than the pure
DP setup. This suggests that employing mixed-precision can
be a strategic choice for enhancing computational efficiency
in large-scale systems, especially when significantly scaling
up the number of nodes. The efficiency of DP/HP in a large
number of nodes has dropped to 56% due to less work being
required per node compared to the DP/SP variant.

C. Performance Comparisons of Mixed-Precision Cholesky

Table I highlights DP/HP performance in PFlop/s of the
mixed-precision Cholesky on 1,024 nodes of the four sys-
tems, i.e., Frontier, Alps, Leonardo, and Summit, maxing
out the device memory with each matrix size in addition to
PaRSEC internal memory buffers. Moreover, since Summit
has a higher GPU count per node than other systems, we
normalize the absolute performance per GPU. We can observe
performance improvements in NVIDIA GPU hardware gen-
erations. While NVIDIA A100 achieves similar performance
to AMD MI250X, NVIDIA GH200 outperforms it by 1.6X.
There is still room for further improvements on Frontier and
Alps systems by leveraging their network interconnect using
CUDA-aware MPI to mitigate data movement overheads.
This requires additional support within PaRSEC and will be
addressed in future work.

D. Experiments of Largest Scale Climate Emulators

Figure 8 reports the largest scale experiments conducted
on the Leonardo and Summit systems, using DP/HP config-
urations with 1,024 and 3,072, respectively. Additionally, we
report Alps results using three node counts, i.e., 1,024, 1,600,
and 1,932, and Frontier results using four node counts, i.e.,
2,048, 4,096, 6,400, 9,025. We achieved 0.243 EFlop/s on
the Leonardo system using 1,024 nodes with a problem size
of approximately 8.39M. On the Summit system, activating
3,072 nodes yielded 0.375 EFlop/s for a problem size of
around 12.58M. On Alps, we measured 0.364, 0.623 and 0.739
EFlop/s on 1,024, 1, 600 and 1,936 nodes with problem sizes

TABLE I: DP/HP Performance on 1,024 nodes of the four
systems, i.e., Frontier, Alps, Leonardo, and Summit.

System Frontier Alps Leonardo Summit
Vendor AMD NVIDIA
Chip MI250X GH200 A100 V100

GPUs 4,096 4,096 4,096 6,144
Matrix Size 8.39M 10.49M 8.39M 6.29M
Performance

(PFflop/s) 223.7 384.2 243.1 153.6

TFlop/s/GPU 54.6 93.8 57.2 25

of approximately 10.49M, 14.42M, and 15.73M, respectively.
Finally, on the Frontier system, we executed on 2,048, 4,096,
6,400, and 9,025 nodes and achieved 0.316, 0.523, 0.715, and
0.976 EFlop/s with problem sizes of approximately 12.58M,
16.78M, 20.97M, and 27.24M, respectively.

VIII. IMPLICATIONS
Dynamic runtime systems have become critical to scalability

and performance. Not only do they insulate computational
scientists from the programming aspects, allowing them to
focus on algorithmics and science, but they also enable
computer scientists to quickly explore and adapt solutions to
the evolving needs of applications. The level of performance
obtained on the highest-end platforms shows that task-based
runtime systems have matured, outpacing their initial node-
level scope to become scalable partners for HPC applications
that can handle resource management and communication
overlap, assuming the algorithm has enough computations.

In this work, we propose a mixed-precision approach that
leverages the capability of modern GPUs to perform fast,
lower-precision computations with the power of runtime sys-
tems. This enables us to develop efficient solvers, such as
Cholesky factorization, that can accelerate the performance
of applications at their algebraic core. With dynamic runtime
systems, we balance load across inhomogeneous tiles of large-
scale matrices and hide communication latencies with dense
compute-bound algorithms. While this solution is assessed in
the context of a climate emulator, it has the potential to benefit
a wide range of applications that require rapid computations
using dense linear solvers. We have optimized and tested our
code across four different GPU architectures – AMD MI250X,
NVIDIA GH200, NVIDIA A100, and NVIDIA V100 – on
four distinct systems: Frontier, Alps, Leonardo, and Summit.

Our work integrates state-of-the-art HPC to develop
extreme-scale climate emulators, showcasing the potential of
supercomputers to advance climate modeling at ultra-high
resolution and enable significant savings in the petabytes of
storage required for storing climate simulations. Our approach
uses the SHT for modeling spatio-temporal climate data, ac-
commodating climate data sourced from various spatial resolu-
tions. We establish a sustainable approach to climate modeling
on GPUs by shifting computation from communication-bound
sparse double-precision kernels inherent in PDE-based models
to low-precision tensor core kernels. As evidenced by IPCC
assessment reports and our endorsement letters, the exascale
climate emulator holds significant potential for the climate
community, advancing climate research and policy making.

8.39M
12.58M
12.58M

16.78M
20.97M

27.24M
10.49M

14.42M
15.73M

Matrix Size

0

200

400

600

800

1000

Pe
rfo

rm
an

ce
 (P

Fl
op

/s
)

Frontier 9,025 Nodes
Frontier 6,400 Nodes
Frontier 4,096 Nodes
Frontier 2,048 Nodes
Alps 1,936 Nodes
Alps 1,600 Nodes
Alps 1,024 Nodes
Summit 3,072 Nodes
Leonardo 1,024 Nodes

Fig. 8: Performance of largest runs on Summit, Leonardo, Alps, and
Frontier; with additional run-up points on Alps and Frontier, all using
the DP/HP precision variant.

Climate emulators have already found widespread application
in assessing the sensitivity of various physical parameters [24],
performing model calibration [25], analyzing emission sce-
narios [17], studying the internal variability on climate model
outputs [26], investigating the persistence of climate anomalies
and analyzing the temporal dynamics of climate systems [27].
Extending these applications, this work will enable climate
scientists to apply ultra-high spatial resolution models to
enhance understanding and predict climate change impacts.

This work also holds significant potential in advancing
the development of machine learning (ML) and AI-driven
methods for forecasting or prediction applications in climate
science. For example, our framework can enhance hybrid
approaches that combine physics with ML, thereby generating
higher fidelity climate data [48] and refine 3D neural networks
recently proposed for weather forecasting [49]. Finally, we
highlight the utility of our work for applications beyond
climate science, given the flexible, scalable design of the
emulator. For instance, our HPC innovations can be used to
build an emulator for N -body simulations in cosmology for
generating cosmological mass maps required for estimating
the cosmological parameters [50]. In summary, we aim to
drive the development of robust and multi-variate emulators
for generating high-resolution spatio-temporal data that ride
the waves of high performance architecture.

ACKNOWLEDGMENTS
For computer time, this research used Shaheen III at the Super-

computing Laboratory of the King Abdullah University of Science
and Technology (KAUST) in Thuwal, Saudi Arabia; Frontier and
Summit at the Oak Ridge Leadership Computing Facility at the US
DOE’s Oak Ridge National Laboratory; Alps at CSCS in Lugano,
Switzerland; and Leonardo at CINECA in Bologna, Italy. The au-
thors are deeply grateful to the OLCF, CSCS, and CINECA for
the discretionary allocations that allowed partial scaling runs after
completing the science runs at KAUST and to NVIDIA for brokering
the CSCS and CINECA connections. We also would like to thank
Bilel Hadri from the KSL team at KAUST, as well as Thomas
Herault, Aurelien Bouteiller, and Joseph Schuchart from the ICL team
at the University of Tennessee, Knoxville (UTK), for their essential
support in facilitating this work.

REFERENCES

[1] J. Rising et al. The missing risks of climate change. Nature,
610(7933):643–651, 2022.

[2] I. P. on Climate Change (IPCC). Climate Change 2022 – Impacts,
Adaptation and Vulnerability: Working Group II Contribution to the
Sixth Assessment Report of the Intergovernmental Panel on Climate
Change. Cambridge University Press, 2023.

[3] I. Sognnaes et al. A multi-model analysis of long-term emissions and
warming implications of current mitigation efforts. Nature Climate
Change, 11(12):1055–1062, 2021.

[4] W. Mort. Avoiding dangerous climate change. Ecoscience, 14(1):134–
135, 2007.

[5] G. Flato et al. Evaluation of climate models. In Climate change 2013:
the physical science basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change,
pp. 741–866. Cambridge University Press, 2014.

[6] J. Dongarra and D. Keyes. The co-evolution of computational physics
and high-performance computing. Nature Physics Reviews, 2024. To
appear.

[7] S. Mickelson et al. A new end-to-end workflow for the Community
Earth System Model (version 2.0) for the Coupled Model Intercom-
parison Project Phase 6 (CMIP6). Geoscientific Model Development,
13(11):5567–5581, 2020.

[8] Earth System Grid Federation. ESGF Data Statistics, 2024. http:
//esgf-ui.cmcc.it/, Last accessed on 2024-02-27.

[9] V. Balaji et al. Requirements for a global data infrastructure in support
of CMIP6. Geoscientific Model Development, 11(9):3659–3680, 2018.

[10] NASA Center for Climate Simulation. GISS and NCCS Con-
tribute to CMIP6 International Climate Model Intercomparison
Project, 2021. https://www.nccs.nasa.gov/news-events/nccs-highlights/
GISS-CMIP6, Last accessed on 2024-02-27.

[11] C. Schär et al. Kilometer-scale climate models: prospects and challenges.
Bulletin of the American Meteorological Society, 101(5):E567 – E587,
2020.

[12] B. Stevens et al. DYAMOND: the dynamics of the atmospheric general
circulation modeled on non-hydrostatic domains. Progress in Earth and
Planetary Science, 6(61), 2019.

[13] M. Taylor et al. The simple cloud-resolving E3SM atmosphere model
running on the Frontier Exascale System. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC’23), 2023.

[14] P. M. Caldwell et al. Convection-permitting simulations with the E3SM
global atmosphere model. Journal of Advances in Modeling Earth
Systems, 13(11), 2021.

[15] P. M. Caldwell et al. The DOE E3SM coupled model version 1:
description and results at high resolution. Journal of Advances in
Modeling Earth Systems, 11(12):4095–4146, 2019.

[16] S. Castruccio and M. L. Stein. Global space-time models for climate
ensembles. The Annals of Applied Statistics, pp. 1593–1611, 2013.

[17] S. Castruccio et al. Statistical emulation of climate model projections
based on precomputed GCM runs. Journal of Climate, 27(5):1829–1844,
2014.

[18] P. H. G. Philip B. Holden, Neil R. Edwards and R. D. Wilkinson.
Emulation and interpretation of high-dimensional climate model outputs.
Journal of Applied Statistics, 42(9):2038–2055, 2015.

[19] R. Link et al. Fldgen v1.0: an emulator with internal variability and
space–time correlation for earth system models. Geoscientific Model
Development, 12(4):1477–1489, 2019.

[20] S. Castruccio et al. Reproducing internal variability with few ensemble
runs. Journal of Climate, 32(24):8511–8522, 2019.

[21] J. Jeong et al. A stochastic generator of global monthly wind energy with
Tukey g-and-h autoregressive processes. Statistica Sinica, 29(3):1105–
1126, 2019.

[22] H. Huang et al. Saving storage in climate ensembles: a model-
based stochastic approach (with discussion). Journal of Agricultural,
Biological and Environmental Statistics, 28(2):324–344, 2023.

[23] Y. Song et al. Efficient stochastic generators with spherical har-
monic transformation for high-resolution global climate simulations
from CESM2-LENS2. Journal of the American Statistical Association,
0(0):1–15, 2024.

[24] J. E. Oakley and A. O’Hagan. Probabilistic sensitivity analysis of
complex models: a Bayesian approach. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 66(3):751–769, 2004.

[25] W. Chang et al. Fast dimension-reduced climate model calibration
and the effect of data aggregation. The Annals of Applied Statistics,
8(2):649–673, 2014.

[26] W. Hu and S. Castruccio. Approximating the internal variability of
bias-corrected global temperature projections with spatial stochastic
generators. Journal of Climate, 34(20):8409–8418, 2021.

[27] G. Branstator and H. Teng. Two limits of initial-value decadal pre-
dictability in a CGCM. Journal of Climate, 23(23):6292–6311, 2010.

[28] N. Cressie and G. Johannesson. Fixed rank kriging for very large spatial
data sets. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 70(1):209–226, 2008.

[29] J. Guinness. Gaussian process learning via Fisher scoring of Vecchia’s
approximation. Statistics and Computing, 31(3):25, 2021.

[30] D. Bolin et al. Covariance–based rational approximations of fractional
SPDEs for computationally efficient Bayesian inference. Journal of
Computational and Graphical Statistics, 33(1):64–74, 2024.

[31] C. G. Kaufman et al. Covariance tapering for likelihood-based estimation
in large spatial data sets. Journal of the American Statistical Association,
103(484):1545–1555, 2008.

[32] A. Datta et al. Hierarchical nearest-neighbor Gaussian process models
for large geostatistical datasets. Journal of the American Statistical
Association, 111(514):800–812, 2016.

[33] E. Agullo et al. Numerical linear algebra on emerging architectures: The
PLASMA and MAGMA projects. In Journal of Physics: Conference
Series, volume 180. IOP Pub., 2009.

[34] S. Abdulah et al. Accelerating geostatistical modeling and prediction
with mixed-precision computations: a high-productivity approach with
PaRSEC. IEEE Transactions on Parallel and Distributed Systems,
33(4):964–976, 2021.

[35] Q. Cao et al. Reducing data motion and energy consumption of geospa-
tial modeling applications using automated precision conversion. In 2023
IEEE International Conference on Cluster Computing (CLUSTER), pp.
330–342. IEEE, 2023.

[36] OpenMP. OpenMP 4.5 Complete Specifications, 2015.
[37] C. Augonnet et al. StarPU: a unified platform for task scheduling on

heterogeneous multicore architectures. Concurrency and Computation:
Practice and Experience, 23(2):187–198, 2011.

[38] A. Duran et al. A proposal to extend the OpenMP tasking model with
dependent tasks. Intl. Journal of Parallel Programming, 37(3):292–305,
2009.

[39] T. Heller et al. Application of the ParalleX execution model to stencil-
based problems. Computer Science - Research and Development, 28(2-
3):253–261, 2013.

[40] L. V. Kale and S. Krishnan. CHARM++: a portable concurrent object
oriented system based on C++. In ACM Sigplan Notices, volume 28,
pp. 91–108. ACM, 1993.

[41] G. Bosilca et al. PaRSEC: exploiting heterogeneity to enhance scalabil-
ity. Computing in Science & Engineering, 15(6):36–45, 2013.

[42] M. Bauer et al. Legion: expressing locality and independence with
logical regions. In IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC, pp. 1–11, 2012.

[43] J. Chowdhury et al. Fast and accurate spherical harmonic transform
for spatio-temporal regular grid data. IEEE Signal Processing Letters,
31:1825–1829, 2024.

[44] R. A. Kennedy and P. Sadeghi. Hilbert Space Methods in Signal
Processing. Cambridge University Press, Cambridge, UK, March 2013.

[45] Q. Cao et al. Leveraging PaRSEC runtime support to tackle challenging
3D data-sparse matrix problems. In 2021 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 79–89. IEEE, 2021.

[46] S. Abdulah et al. Geostatistical modeling and prediction using mixed
precision tile Cholesky factorization. In 26th International Conference
on High Performance Computing, Data, and Analytics (HiPC), pp. 152–
162. IEEE, 2019.

[47] Q. Cao et al. Reshaping geostatistical modeling and prediction for
extreme-scale environmental applications. In SC22: International Con-
ference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–12. IEEE, 2022.

[48] S. Yu et al. ClimSim: A large multi-scale dataset for hybrid physics-ML
climate emulation. Advances in Neural Information Processing Systems,
36, 2024.

[49] K. Bi et al. Accurate medium-range global weather forecasting with 3d
neural networks. Nature, 619(7970):533–538, 2023.

[50] N. Perraudin et al. Emulation of cosmological mass maps with
conditional generative adversarial networks. Frontiers in Artificial
Intelligence, 4:673062, 2021.

	3.PlayPauseRight:
	3.PlayRight:
	3.PauseRight:
	3.PlayPauseLeft:
	3.PlayLeft:
	3.PauseLeft:
	anm3:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	2.PlayPauseRight:
	2.PlayRight:
	2.PauseRight:
	2.PlayPauseLeft:
	2.PlayLeft:
	2.PauseLeft:
	anm2:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	anm1:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	anm0:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

