
Future Generation Computer Systems 161 (2024) 248–258

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Portability and scalability evaluation of large-scale statistical modeling and
prediction software through HPC-ready containers
Sameh Abdulah a,∗, Jorge Ejarque b, Omar Marzouk c, Hatem Ltaief a, Ying Sun a,
Marc G. Genton a, Rosa M. Badia b, David E. Keyes a

a Extreme Computing Research Center (ECRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
b Barcelona Supercomputing Center (BSC), Barcelona, Spain
c Brightskies Inc., Alexandria Governorate, Egypt

A R T I C L E I N F O

Keywords:
Containerization
High-performance computing
Geostatistics
Software scalability
Software portability

A B S T R A C T

HPC-based applications often have complex workflows with many software dependencies that hinder their
portability on contemporary HPC architectures. In addition, these applications often require extraordinary
efforts to deploy and execute at performance potential on new HPC systems, while the users expert in these
applications generally have less expertise in HPC and related technologies. This paper provides a dynamic
solution that facilitates containerization for transferring HPC software onto diverse parallel systems. The study
relies on the HPC Workflow as a Service (HPCWaaS) paradigm proposed by the EuroHPC eFlows4HPC project.
It offers to deploy workflows through containers tailored for any of a number of specific HPC systems.
Traditional container image creation tools rely on OS system packages compiled for generic architecture
families (x86_64, amd64, ppc64, . . .) and specific MPI or GPU runtime library versions. The containerization
solution proposed in this paper leverages HPC Builders such as Spack or Easybuild and multi-platform builders
such as buildx to create a service for automating the creation of container images for the software specific to
each hardware architecture, aiming to sustain the overall performance of the software. We assess the efficiency
of our proposed solution for porting the geostatistics ExaGeoStat software on various parallel systems while
preserving the computational performance. The results show that the performance of the generated images is
comparable with the native execution of the software on the same architectures. On the distributed-memory
system, the containerized version can scale up to 256 nodes without impacting performance.
1. Introduction

Scientific computing has experienced a drastic shift from relying
on single-core machines to massively parallel distributed-shared mem-
ory systems. High-Performance Computing (HPC) tools have added
tremendous value to many applications, allowing them to handle larger
workloads by providing more computing power and memory capacity.
However, HPC systems have become increasingly more complicated
and heterogeneous due to the large variety of hardware architec-
tures and accelerators they incorporate. The software components of
these systems, including operating systems, programming languages,
compilers, libraries, and tools, also exhibit wide variation; this hetero-
geneity also applies to the security constraints and usage restrictions
implemented by the system administrators [1]. This variety creates
challenges for deploying existing HPC software, including poor porta-
bility and low reusability. An extra virtualization layer is a natural
way to tackle these challenges and allow easy and efficient portability

∗ Corresponding author.
E-mail address: sameh.abdulah@kaust.edu.sa (S. Abdulah).

of HPC-oriented software. The primary objective of this layer is to
isolate the software stack from the underlying hardware platform and
help domain scientists run HPC-oriented scientific applications without
fully understanding how to optimize these applications on their HPC
hardware. When the isolation happens at the operating system level,
and the application can run in an isolated user space regardless of the
underlying hardware, this is called ‘‘containerization’’.

Container systems operate by utilizing a shared operating system
kernel across multiple containers. Each has a separate and isolated user-
space environment, allowing many instances to run on the same host
without interfering with each other. This technology appeared first to
manage user access privileges inside the Unix operating system and
gained popularity with the release of Docker [2] and its interaction
with the cloud computing community in 2014. Containers have become
popular in the cloud computing community due to their impact on
improving the portability of the code and the small overhead they add
vailable online 9 July 2024
167-739X/© 2024 Elsevier B.V. All rights are reserved, including those for text and

https://doi.org/10.1016/j.future.2024.06.057
Received 2 November 2023; Received in revised form 1 June 2024; Accepted 28 Ju
data mining, AI training, and similar technologies.

ne 2024

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:sameh.abdulah@kaust.edu.sa
https://doi.org/10.1016/j.future.2024.06.057
https://doi.org/10.1016/j.future.2024.06.057
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.06.057&domain=pdf

Future Generation Computer Systems 161 (2024) 248–258S. Abdulah et al.

c
i
a
c
g
t
b
a
f
i
b
a
o
j
t

g
s
t
a
h
t
p
S
a
d

t
a
p
e
t
f
c
E
T
m
H

to the execution compared to other virtual machine environments such
as KVM [3], VMware Fusion [4], Hyper-V [5], and Xen [6]. Recently,
containers have gained more attention in the HPC community, where
several studies provide performance assessments on the benefits of
containers in improving the scalability and portability of the HPC soft-
ware. The studies argue that containers can be a ‘‘golden solution’’ for
avoiding the complexity of the HPC software setup and can guarantee
portability on contemporary and future HPC systems. However, the
performance achieved by containers relies on how the container images
have been created. To achieve the best performance on an HPC system,
applications must be installed taking into account the features of the
system, such as the computer architecture, the available networking
fabric, and/or the available accelerators.

Traditionally, container images are created using OS packages that
are binary installations pre-compiled with generic optimization flags,
and communication libraries are compiled for generic networking fab-
ric available in most computers. These installations are usable in all the
processors of a family. Still, they cannot use the features of the more
advanced processors, such as vector instructions and other compile-
time optimizations. So, container images created with this methodology
are more portable but cannot achieve the best performance available in
the system.

Trying to close the gap between deployment simplicity and perfor-
mance, the eFlows4HPC project1 proposes a methodology to leverage
ontainers to simplify the installation of complex workflows in HPC
nfrastructures while maintaining the performance at the same level
s native installations. This paper proposes a service to automate the
reation of container images tailored to specific HPC systems. From a
eneric recipe and a target system description, the service automates
he creation of an image for this system, leveraging HPC package
uilders such as Spack [7] and multi-platform container builders such
s buildx, which can customize the building process for the HPC system
eatures. The suggested approach enables the one-time preparation of
nstallation scripts for all software dependencies using Spack, followed
y the creation of container images for all necessary architectures. This
pproach simplifies the deployment of HPC software to the user by
vercoming all the variability of HPC systems mentioned above into
ust two steps: initiating a container image creation service call and
ransferring the resulting container image file to the HPC system.

We assess the performance of the proposed solution by porting the
eospatial statistics application ExaGeoStat [8]. ExaGeoStat is a parallel
oftware library for modeling spatial and spatio-temporal data through
he Maximum Likelihood Estimation (MLE) method. The software can
lso predict missing geospatial data in space or space–time with the
elp of observed data and a set of obtained statistical parameters from
he modeling process. In [9], the authors propose ExaGeoStatR, an R
ackage that wraps the ExaGeoStat software under the R environment.
tatisticians can use ExaGeoStat and ExaGeoStatR to tackle many oper-
tions on large geospatial data volumes if the complexity of installation
oes not limit its adoption.

In this work, we present the experience of using containers with
he ExaGeoStat software by building HPC-ready containers for many
rchitectures from a generic builder recipe. The assessment relies on
re-prepared Spack scripts to generate HPC-ready Singularity contain-
rs. The performance obtained in the experimentation demonstrates
hat containers can preserve the accuracy of shared-memory systems
rom various vendors and distributed memory systems under different
onditions. The assessment includes two computation variants from
xaGeoStat, including dense and Tile Low-Rank (TLR) approximation.
he experiments also implicitly assess the performance of two com-
only used parallel linear algebra libraries, i.e., Chameleon [10],
iCMA [11], and the popular runtime system StarPU [12].

1 https://eflows4hpc.eu.
249
Our contributions can be summarized as follows:

• We present an automated approach for generating HPC-ready
containers for HPC software, ensuring portability across various
hardware architectures while maintaining performance.

• We rely on the combined usage of Spack, Singularity, and Docker
buildx in our container creation process. We employ a straight-
forward bash script to streamline the process of retrieving the
generated containers on a specific hardware system.

• We comprehensively explain the pipeline involved in creating
HPC-ready containers that can be easily applied to existing HPC
software with minimal modifications.

• We employ the ExaGeoStat software and its dependencies as an
example to evaluate and analyze the effectiveness of the created
containers. While our focus is primarily on the ExaGeoStat soft-
ware, it is important to note that our HPC-ready containers can be
applied to a wide range of existing HPC software, provided they
are compatible with the targeted hardware.

• We use multiple shared-memory systems and a distributed
-shared-memory system to demonstrate the performance of our
generated containers compared to the bare-metal installation of
ExaGeoStat. This enables us to assess the efficiency and effective-
ness of the containers in various computing environments.

The paper is organized as follows: Sections 2 and 3 present related
work and background technologies, Section 4 describes the
eFlows4HPC project, and Section 5 gives an overview of the ExaGeoStat
software and its components. Section 6 presents the methodology for
generating HPC-Ready containers. Section 7 describes extensive exper-
imentation performed to evaluate the multiple HPC-ready containers,
and Section 9 summarizes the work.

2. Related work

Many studies aim to evaluate the efficiency of VMs and containers
with HPC applications and systems. For instance, in [13], an evaluation
study on the Xen virtualization system for the HPC systems has been
shown. The Xen virtualization system is a technique that allows running
separate operating systems on the same hardware [6]. Xen is popular
for its high performance, scalability, and reliability. The authors prove
that Xen virtualization can be a practical solution for the HPC software
portability with 2%–3% overhead compared to executing the original
kernels. Another study example comparing three VM solutions has been
proposed in [14]. Among VMWare Server, Xen, and OpenVZ, OpenVZ
provides the most satisfactory performance for HPC applications—other
studies in the virtualization solution are [15–18].

Containers were proposed through the release of Docker [2] in
2013. Containerization has gained more attention in software porta-
bility than VMs since it depends on virtualizing the software layer,
not the entire machine, where different instances share the same host
OS kernel. It allows the ability to isolate the software layer with less
overhead than VMs, which makes this technology interesting for the
HPC community to port complex applications. Many studies have eval-
uated the efficiency of containers in porting HPC software. For instance,
the authors of [19] provide a scalability and portability study for a
production biological simulation application that relies on containers.
The study embraces three container systems, Docker, Singularity [20],
and Shifter [21], and claims that Singularity can provide the scalability
and portability performance required by the target application. Another
study [22] includes performance evaluation of containers under heavy
HPC workloads. The study also assesses the efficiency of container-
based HPC software with different Linux kernels on HPC systems. Other
studies evaluating containers in HPC contexts are [23–26].

Although containers have been used to port HPC applications for
several years, all the efforts were made individually and for a spe-
cific application or software. The HPC community can benefit from a
standard workflow manager that can help simplify the porting process

https://eflows4hpc.eu

Future Generation Computer Systems 161 (2024) 248–258S. Abdulah et al.

o

3

i
S
i

3

d
s
s
c
a
p
c
c
t
m
D
e
t
s
c
n
a
a

for different HPC applications. In [27], the HPC Workflow as a Ser-
vices (HPCWaaS) paradigm has been proposed under the eFlows4HPC
project to enable encapsulating the HPC software workflow more dy-
namically and intelligently. The new paradigm adopted the concept of
‘‘HPC-ready containers’’ to build efficient and more reliable containers
for contemporary HPC applications. Despite containers having a low
execution overhead in executing isolated processes, the HPC applica-
tions are also required to benefit from the particular hardware (CPU
features, accelerators, and network fabric). Therefore, the container
image build processes have to ensure that the software is correctly
configured, such as compilation for specific CPU architecture and with
compatible versions of the MPI and GPU runtimes (CUDA, ROCm).
Previous work on this topic has been tackled in [28,29]. In the first
study, they propose to create a base image per HPC site, which already
includes a proper installation of MPI and GPU runtime, and create
images on top of them. This approach has two drawbacks: it requires
the maintenance of the base images by a system administrator, and
the compilation of container images must be performed in the same
platform as the target HPC site, taking care of the compilation with
the target CPU architecture. In the second case, they propose a tool to
create container images with a specific MPI and CUDA configuration
using their Python-based software description. This approach does not
require maintaining different base images, but as in the previous work,
it does not deal with multiple platforms and CPUs. In our approach,
we support different architectures due to the usage of multi-platform
builders and the management optimal CPU architecture compilations
and MPI and GPU runtime version configuration is provided by HPC
package managers such as Spack.

In this paper, we assess the HPC-ready containers provided by the
HPCWaaS paradigm in the eFlows4HPC project using the ExaGeoStat
software. The selected software mainly relies on dense linear algebra
operations through exact and low-rank approximation computations to
a covariance matrix that can reach millions by millions in size [30].
ExaGeoStat can be executed in all leading-edge parallel hardware ar-
chitectures, including accelerators, which motivates us to use it as a
test case in our study. More details about ExaGeoStat can be found
n [8,31].

. Background

The following subsections provide an overview of the Container-
zation concept, Spack package manager, and Singularity. Spack and
ingularity are the two main components of the HPC-ready containers
n the eFlows4HPC project.

.1. Containerization

Performance portability of HPC software on different HPC systems is
ifficult because of the complicated structure of its dependencies. The
earch for a robust solution allowing fast and secure porting on HPC
ystems led to containerization, which aims to package the software
ode and the required operating system libraries and dependencies into
single executable file that can run on different HPC systems while

reserving the expected performance on these systems. Furthermore,
ontainers are more robust than Virtual Machines (VMs) solutions since
ontainers isolate the software layer from the hardware layer through
he underlying operating system namespaces, which places the software
uch closer to the physical system, thus improving performance [19].
ocker [2] is the most used engine in personal computers and cloud
nvironments. However, it is not highly extended in HPC. Some fea-
ures and requirements of Docker do not fit traditional HPC system
ecurity constraints and resource managers. To fill this gap, other
ontainer engines were created that can easily be executed from the
on-privileged user space and easily integrated with HPC schedulers
nd resource managers. Singularity [20], Shifter [21], and Saurus [32]
re some examples of these types of container engines.
250
3.2. Spack package manager

The Spack package manager [7] provides a novel, recursive spec-
ification syntax to invoke parametric builds of packages and depen-
dencies. It allows any number of builds to coexist on the same system,
and it ensures that installed packages can find their dependencies and
libraries, regardless of the environment. Spack provides a simple spec
syntax, allowing users to configure versions and options easily and
precisely. It simplifies the packaging job for authors as the package files
are written in Python. Also, the specs allow them to maintain a single
file for different package builds.

Spack provides Spack Environments for the creation of container
images. An environment is used to group together a set of specs
for the purpose of building, rebuilding, and deploying coherently.
Environments separate the steps of (a) choosing what to install, (b)
concretizing, and (c) installing. This allows Environments to remain
stable and repeatable. Also, environments allow several specs to be
built at once. In addition, an Environment that is built as a whole can
be loaded as a whole into the user environment. The environment to
be created is defined in a manifest file in YAML format (spack.yaml).

3.3. Singularity container system

The appearance of container solutions such as Docker2 offered
improvements over standard virtual machines. However, for the scien-
tific world, and specifically HPC communities, the Docker technology
does not fit cleanly. Installing Docker on HPC environments would
mean a level of security risk deemed unreasonable, preventing it from
being embraced by a large community. This security risk comes from
Docker’s container processes spawned as children of a root-owned
Docker daemon.

Singularity [20] is a container solution created by the necessity for
scientific application-driven workloads. Singularity containers can be
built on the user’s laptop and run on many large HPC clusters and
in single servers or the cloud. Singularity offers mobility by enabling
environments to be ported via a single image file. It is designed with
the necessary features to allow seamless integration with scientific
computational resources. Singularity is a pioneer in providing an acces-
sible environment for users and administrators since it was developed
in collaboration with HPC administrators, developers, and research
scientists.

The goal of Singularity is to support existing and traditional HPC
resources as easily as installing a single package onto the host operating
system. Singularity can run on a large number of Linux distributions,
including vintage ones. Singularity natively supports technologies such
as InfiniBand and Lustre while integrating seamlessly with any resource
manager (e.g., SLURM, Torque, SGE, etc.) as a result of the fact that Sin-
gularity is run like any other command on the system. Singularity also
includes a SLURM plugin that allows SLURM jobs to be natively run
within a Singularity container. Singularity also enables access to unique
host resources such as GPUs. Regarding security issues, Singularity does
not provide the ability to escalate permission inside a container. With
Singularity, if a user does not have root access on the target system,
the user cannot escalate privileges within the container to root either.

4. The eFlows4HPC project

The EuroHPC Joint Undertaking (EuroHPC JU) aims to develop a
world-class European supercomputing ecosystem. It is procuring and
deploying five petascale and three pre-exascale systems in Europe and
has announced the installation of the first European Exascale system
in 2023. These systems will be capable of running large and complex
applications, which in many cases will not be exclusively traditional

2 Docker website, https://www.docker.com.

https://www.docker.com

Future Generation Computer Systems 161 (2024) 248–258S. Abdulah et al.

𝐋
𝐙

C

C

simulation workloads but include aspects of artificial intelligence and
data analytics. The EuroHPC JU, in addition, is funding projects that co-
design new systems and the necessary software stack and applications
that will leverage future exascale systems.

The eFlows4HPC [27] is a EuroHPC project focusing on developing
workflows. eFlows4HPC aims to provide a software stack that simpli-
fies the development of workflows that combine HPC simulation and
modeling with artificial intelligence and data analytics. The project also
seeks to enable the development of workflows that can react to external
or internal events (i.e., changes in input data or code exceptions)
and dynamically change the behavior of the workflow. In addition,
the eFlows4HPC software stack provides runtimes that execute the
workflows efficiently in terms of time and energy. The project also
develops the concept of the HPC Workflows as a Service (HPCWaaS)
concept, which aims to provide a mechanism to make the use and
reuse of the workflows in HPC infrastructures easier. With this goal,
the project has designed the HPCWaaS interface, which supports all the
phases of the workflow lifetime: workflow development, deployment,
credential management, and execution.

This paper leverages the deployment methodologies developed in
the eFlows4HPC project, which are based on a service that can generate
HPC-ready containers. The container greatly simplifies the software de-
ployment phase in any computing infrastructure. However, if a generic
container image is used in an HPC system, this image will probably
not benefit from the specific hardware features and specialized libraries
of the system. Taking this into account, the project has designed a
methodology that enables the automatic generation of containers that
leverage the hardware and software features of the specific system.

The methodology used in this article is based on combining multi-
platform container builders with HPC package managers to provide
the desired functionality. To build the specific HPC-ready container
image, the application developer generically provides the software
requirements using the HPC package manager format, i.e., without
including specific hardware requirements. The container generation
service uses these software requirements and the information about
the target system we would like to generate the container image for.
This information is used to configure the specific container image build
process for the target HPC system. Once the image for a particular
system has been created, it is stored in an image repository for reuse.
In this implementation, we have used to enable the creation of Docker
buildx for building the images for multiple platforms, Spack as HPC
Package manager.

5. ExaGeoStat: The use case software

Spatial statistics methods aim to model spatial and spatio-temporal
data to obtain a set of statistical parameters that can be later used to
predict missing values in space or space–time. Geospatial data can be
found in many disciplines, including climatology, topography, and ge-
ology. Indeed, traditional geostatistical tools are readily overwhelmed
with the huge amount of geospatial data coming from sources such as
satellites, and novel solutions are needed to handle these large data vol-
umes. ExaGeoStat [8] is high-performance software for computational
geostatistics on many-core systems for tackling large data volumes
through state-of-the-art HPC-based solutions that has run on numerous
Top100 systems of different architectures and was selected as a 2022
Gordon Bell finalist [30].

5.1. ExaGeoStat software operations

ExaGeoStat offers three primary geostatistical operations: synthetic
geospatial data generation, geospatial data modeling using Maximum
Likelihood Estimation (MLE), and geospatial data prediction through
251

kriging. Fig. 1 explains the operations involved in each component.
5.1.1. Synthetic geospatial data generation
ExaGeoStat provides an internal data generator of geospatial data

for experiments under prescribed conditions such as distribution shape
and correlation lengths in space and time. For illustrations herein,
which focus on performance portability and not statistical features, we
consider only the 2D spatial Gaussian distribution. Assuming 𝑛 spa-
tial locations uniformly distributed in the unit square, the covariance
matrix Σ(𝜽) can be built using a wide range of covariance functions,
including the Matérn covariance function [8]. The first task is to
compute the inverse of Σ(𝜽) using Cholesky factorization: Σ(𝜽) =
⋅ 𝐋⊤. The second task is to compute the measurement vector 𝐙 as
= 𝐋 ⋅ 𝐞, where 𝐞 is another random standard Gaussian distributed

vector. The geospatial data are represented by the set of locations and
corresponding measurements in each location, 𝐙. The entire operation
is shown by Fig. 1(a).

5.1.2. Geospatial data modeling
The Maximum Likelihood Estimation (MLE) method is used for

geospatial data modeling in ExaGeoStat. The geospatial data are usually
modeled in spatial statistics as a realization from a Gaussian spatial
random field. Assuming 𝐙 vector be a realization of a Gaussian random
field 𝐙(𝐬) where 𝐬 is the set of spatial locations, Σ(𝜽) is a covariance
matrix with dimension 𝑛, and the random field 𝐙 has a mean zero, the
statistical parameter vector 𝜽 can be obtained based on the Gaussian
log-likelihood function:

𝓁(𝜽) = − 𝑛
2
log(2𝜋) − 1

2
log |Σ(𝜽)| − 1

2
𝐙⊤Σ(𝜽)−1𝐙. (1)

Fig. 1(b) explains in detail how to compute the likelihood function
in five steps: (1) generate the covariance function Σ(𝜽) from an initial
parameter vector 𝜽𝑖𝑛𝑖𝑡; (2) Compute the inverse of Σ(𝜽) using the

holesky factorization operation Σ(𝜽) = 𝐋 ⋅ 𝐋⊤; (3) Compute the log
determinant of Σ(𝜽); (4) Solve the system of linear equations 𝐋−1𝐙; (5)

ompute the dot product 𝐙⊤ ⋅𝐙. The constant expression 𝑐 = − 𝑛
2 log(2𝜋)

can be ignored since it does not affect the optimization problem.

5.1.3. Geospatial data prediction
Data modeling using MLE produces a set of statistical parameters

(�̂�) that can be used in predicting missing values. Assuming unknown
values 𝐙1 with size 𝑚 and known values 𝐙2 with size 𝑛, and 𝐙2 has a
zero-mean function, so 𝐙1 can be obtained as

𝐙1 = Σ12Σ
−1
22 𝐙2, (2)

where Σ12 is the covariance matrix generated from the distance matrix
between the locations of the missing values and the observed val-
ues, Σ22 is the covariance matrix generated from the distance matrix
between the locations of the observed values. The proof and the expla-
nation of Eq. (2) can be found on [33]. Fig. 1(c) explains the prediction
operation in detail.

5.2. Parallel linear algebra mathematics in ExaGeoStat

ExaGeoStat enables parallel computation of the MLE operation
through the state-of-the-art parallel linear algebra libraries, Chameleon
for dense computation, and HiCMA for Tile Low-Rank (TLR) approxi-
mation [11]. Both libraries rely on the StarPU runtime system to enable
porting the code into different parallel hardware systems, including
GPUs. Through tile-based algorithms, Chameleon and HiCMA per-
formed better on shared-memory and distributed-memory systems com-
pared to block-based algorithms in LAPACK [34] and ScaLAPACK [35].
In tile-based algorithms, matrix tiles are distributed to different pro-
cessing units to allow faster execution of the underlying linear algebra
operations that can accelerate applications that mainly rely on linear
algebra such as ExaGeoStat [8].

In HiCMA, low-rank approximation has been used in each matrix

tile with a certain accuracy by compressing each tile using Singular

Future Generation Computer Systems 161 (2024) 248–258S. Abdulah et al.
Fig. 1. ExaGeoStat main operations: (a) Synthetic geospatial data generation (b) Geospatial data modeling using Maximum Likelihood Estimation (MLE) (c) Geospatial data
prediction.
Value Decomposition (SVD). SVD can be replaced by Randomized SVD
(RSVD), or Adaptive Cross Approximation (ACA), to approximate each
off-diagonal tile up to a certain user-defined accuracy threshold. Using
SVD, each tile (𝑖, 𝑗) in the covariance matrix can be represented by
the product of two matrices 𝐔𝑖𝑗 and 𝐕𝑖𝑗 , with a size of 𝑛𝑏 × 𝑘, where
𝑛𝑏 represents the tile size which is a tunable parameter that has an
impact on the overall performance. TLR approximation can compress
the whole covariance matrix and improve the performance of executing
linear algebra operations on large-scale systems. More information
about TLR ExaGeoStat can be found in [31].

6. HPC-ready containers creation mechanism

Like many existing HPC software, ExaGeoStat relies on several
software dependencies to improve the code portability across various
hardware architectures. ExaGeoStat depends on several libraries, in-
cluding BLAS, CUDA, MPI, NLOPT, HWLOC, GSL, StarPU, Chameleon,
STARS-H, and HiCMA [11]. Therefore, using containers is essential to
facilitating seamless code portability.

In this work, we propose generating containers for HPC software
that can be easily created and adapted for different hardware architec-
tures. In this section, we describe the proposed HPC-Ready containers
in the context of ExaGeoStat software. The eFlows4HPC project has
proposed the Container Image Creation service,3 which aims at simpli-
fying the creation of container images for HPC systems. This service
leverages Docker buildx and Spack environments to automatize the
generation of the containers for specific HPC platforms. On one hand,
Docker Buildx allows the Container Image Creation service to build
container images for various Linux platforms (x86_64, amd64, arm64,
and ppc64) regardless of the server architecture. On the other hand, the
Spack package manager enables the service to compile and configure
the necessary software dependencies according to the features of the
target HPC system. It allows developers to use containers to facilitate
deployment on HPC platforms. To run the software on a new hardware
system, the developer simply needs to copy or pull the container image.
This allows for easy execution without additional steps and achieves the
same performance as a native installation.

3 https://github.com/eflows4hpc/image_creation.
252
Fig. 2 shows the complete pipeline the Container Image Creation
service uses to create the HPC-ready containers. The Repository con-
tains a generic and platform-agnostic Spack environment spack.yaml
manifest file per application that includes the software required to
build an image for an HPC application without including any platform-
related information (CPU architecture, accelerators, . . .). The repos-
itory also stores a generic package.py that includes the instal-
lation description according to the Spack schemas (the steps and
dependencies needed to install the HPC application). Since these files
are generic and platform-agnostic, the developer only needs to write
these two files once, as they can be reused to create containers for
different HPC platforms. The Container Image Creation service will
concretize the Spack environment with the specific features of the
HPC machine to build the HPC-ready containers. As an example,
for the ExaGeoStat case, we store the Spack environment manifest
file at https://github.com/eflows4hpc/workflow-registry/tree/main/
kaust/exageostat/spack.yaml and Spack installation descriptions (pack-
age.py) for ExaGeoStat and its dependencies at https://github.com/
eflows4hpc/software-catalog/tree/main/packages/exageostat.

To request the creation of a container image, the developer should
create a JSON document to indicate the application to build and the
characteristics of the specific HPC system. As shown by the given exam-
ple in Fig. 3, the JSON document has several fields. The field machine
specifies the target platform and architecture of the underlying system.
In the example, two optional fields are specified to indicate that we
are creating an image to be managed by Singularity and a specific MPI
version needed in that system. The fields workflow and step_id
are used to obtain the spack.yml and the package.py files in the
repository.

The service uses all this data to create a container build context.
The service extends the generic Spack environment with the machine
features provided in the machine description as depicted in Fig. 4.
The extended environment will specify the original required software
packages and the specific MPI and GPU runtimes supported by the
target HPC machine. It will also configure the environment to ensure
that all the software packages are considering the optimizations for the
CPU architecture available in the HPC system regardless of the host
where the image is built, and we are also configuring the shared linking
to enable the loading of the host MPI and GPU drivers and libraries
at execution time. Apart from the extended environment, the build
context will include the required Spack descriptions downloaded from

https://github.com/eflows4hpc/image_creation
https://github.com/eflows4hpc/workflow-registry/tree/main/kaust/exageostat/spack.yaml
https://github.com/eflows4hpc/workflow-registry/tree/main/kaust/exageostat/spack.yaml
https://github.com/eflows4hpc/workflow-registry/tree/main/kaust/exageostat/spack.yaml
https://github.com/eflows4hpc/software-catalog/tree/main/packages/exageostat
https://github.com/eflows4hpc/software-catalog/tree/main/packages/exageostat
https://github.com/eflows4hpc/software-catalog/tree/main/packages/exageostat

Future Generation Computer Systems 161 (2024) 248–258S. Abdulah et al.
Fig. 2. Pipeline for the creation of HPC-ready containers.
Fig. 3. Container configuration (JSON file). The machine section describes the target
HPC system, and the workflows and step_id sections provide the reference to the
location of the generic Spack file in the Repository.

Fig. 4. Spack environment customization.
253
the repository and a Dockerfile, which executes the Spack command to
install the environment in the container image.

After generating the build context, the service invokes the Docker
buildx tool, passing the generated build context and the platform
specified in the machine description. The Docker buildx tool enables
the creation of container images regardless of the underlying host
platform. If the requested platform is different from the host running
the container image creation service, the buildx tool will create an
emulated environment with the desired platform to build the container
image. Within the build process, Spack is called with the corresponding
options to build the specific image. In the case of ExaGeoStat, the Spack
build will download the source code of ExaGeoStat, its dependencies,
and the corresponding MPI runtime version. Finally, it installs all of
them according to the target HPC platform features.

After the build process, the container image is stored in the reposi-
tory with accompanying metadata indicating the characteristics of the
target machine. This is useful to detect if an image can be reused for
another request, which requires the build the same application for an
HPC platform with the same characteristics. Once it is stored, the image
is converted to the format which is supported by the target machine.
In the case of the example, the generated image is converted to a
Singularity Image Format (SIF).

To manage the creation of the container images, the service provides
an API with three methods to build, check the status, and download
the image. To simplify the access to the service, we have developed a
simple bash client to invoke the service. Fig. 5 shows the usage of this
client.

7. Experimental evaluation

In this section, we assess the efficiency of the HPC-ready containers
using the ExaGeoStat software by conducting experiments in different
parallel architectures and comparing the performance with the native
build. We rely on shared-memory systems with/without accelerators
and a distributed-memory system to evaluate the performance of the
Singularity images under various workloads.

7.1. Experimental testbed

To assess the performance and the portability of the HPC-ready
containers, we use a wide range of manycore systems: a dual-socket
18-core Intel Haswell Intel Xeon E5-2699 running at 2.30 GHz, a
dual-socket 28-core Intel Skylake Intel Xeon Platinum 8176 running at
2.10 GHz, a dual-socket 32-core AMD Naples AMD EPYC 7601 running

Future Generation Computer Systems 161 (2024) 248–258S. Abdulah et al.

L
c
t
s

G
v
a
2
M

t
a
p
a

7

S
i
m
d
x
m
s
s
t
t
t
u
t
a

c
t

Fig. 5. Client usage. The first command shows how to request the creation of a container image. The second command shows how to test the status of the creation. The last
command shows how to download the created image.
s
p
n
c
±
p
s
b
t
−
n
r
S
n

s
t

at 2.2 GHz, a dual-socket 64-core AMD Milan AMD EPYC 7713, a
dual-socket 28-core Intel Icelake Intel Xeon Gold 6330 CPU running
at 2.00 GHz equipped with 4 NVIDIA A100 GPUs, a dual-socket 20-
core Intel Skylake Intel Xeon Gold 6148 running at 2.40 GHz equipped
with 2 NVIDIA V100 GPUs. We also rely on MareNostrum 4 system,
a Barcelona Supercomputing Center (BSC) supercomputer with 3,456
enovo ThinkSystem compute nodes where each node has two 24-
ore Intel Xeon Platinum chips (a total of 165,888) processors and 390
erabytes memory. In our experiments, we use up to 256 nodes on this
ystem.

We rely on GCC v10.2.0 to compile and link against HWLOC v2.8.0,
SL v2.7.1, StarPU v1.3.9, Intel MKL v11.3.1, NLOPT v2.7.0, HiCMA
0.1.1, Chameleon v0.9.2, STARS-H v0.1.0, and ExaGeoStat v1.1.0. For
ll the CPU-based architectures, the Singularity image size is about
.2 GB, the CPU/GPU-based image size is about 8.4 GB, and the
PI-based (only CPU) image size is about 2.3 GB.

All the performance results are an average of 10 different runs for
he three primary operations in ExaGeoStat : data generation, modeling,
nd prediction. In addition, the iterative modeling operation has been
erformed for 10 iterations. This mechanism allows better performance
ssessment to avoid any errors in the runs.

.2. Containers portability on shared-memory systems

In this subsection, we aim to evaluate the performance of the
ingularity images compared to the native build of the software and
ts dependencies using shared-memory systems. Fig. 6 shows the assess-
ent results on five different CPU-based architectures. The runs include
ifferent workloads representing the number of spatial locations on the
-axis. Considering many spatial locations produces a larger covariance
atrix, which requires more memory and computing resources. Each

ubfigure represents a specific hardware architecture and includes three
ubfigures. On the left, the subfigure represents the execution time
o perform each operation in the software in the dense mode, where
he y-axis represents the execution time in seconds. In the middle,
he subfigure represents the average performance in GFlops/s (y-axis)
nder different workloads and in dense mode. Finally, on the right,
he subfigure shows the execution time of the three operations when
pplying TLR approximation under various workloads.

Fig. 6(a) shows the performance comparison using an Intel Haswell
hip. The variation in performance in the dense computation between
he Singularity image and the native build is between −1% and +0.4%,

while in TLR execution, it is between −1% and +2%. The variation
when running on Intel Skylake is between −0.8% and +1% in the dense
case, as shown in Fig. 6(b). In the TLR case, the variation is between
−2% and +0.8%. Fig. 6(c) shows the performance variation when the
Intel Icelake chip is used. The variation between the Singularity image
and the native build-in performance is between −7% and +2% in the
254
dense case and −4% and +2% in the TLR case. On the AMD Milan chip,
the variation in performance is −1% and −0.4% between the image and
native build in the dense case and between in the TLR case as shown in
Fig. 6(d). Finally, on the AMD Naples chip, the variation in performance
between −0.2% and 1% between the image and native build in the
dense case and between −2% and −1% in the TLR case as shown in
Fig. 6(e).

We also use two shared-memory systems with GPU accelerators to
assess the performance, i.e., 20-core Intel Skylake with NVIDIA V100
GPU and 20-core Intel Icelake with A100 GPU. We report the variation
in performance using just the dense case since the software does not
support TLR when relying on GPUs. Fig. 7 shows the variation in
performance on the two systems. The variation in performance between
the Singularity image and the native build using the NVIDIA V100 +
Intel Skylake CPU is between −3% and −1% while using the NVIDIA
A100 + Intel Icelake CPU is between −2% and +1% for the dense case.
The degradation in performance with larger problem sizes is because of
the GPU memory wall, so the software starts to use the CPU memory
and move the data between the two devices when needed.

7.3. Containers portability and scalability on distributed-memory systems

We also conducted a set of experiments on the Marenostrum 4
supercomputer at BSC using up to 256 nodes to validate the perfor-
mance of the generated images compared to the native build. Herein,
we decided to include only the dense experiments because of the page
limits and because we found that the variation in performance between
the generated image and the native build is the same in the TLR case.
Fig. 8 shows the average performance in TFlops/s for the Singularity
image and the native build. Fig. 8(a) shows the performance in TFlops/s
using 4 nodes, which reaches close to 7 TFlops/s. We tuned the tile
ize (ts), and the best performance is obtained when 𝑡𝑠 = 760. The
erformance of the Singularity image varies by ±1% compared to the
ative build. We can consider that there is no difference between both
ases since the variation in different runs of the native build is about
1%. Fig. 8(b) shows the performance difference on 16 nodes. The best
erformance has been obtained when 𝑡𝑠 = 760 – up to 22 TFlops/s. The
ingularity image shows 0.7 to 7% lower performance than the native
uild. This can also be acceptable since the variation in different runs of
he native build can reach this percentage. The singularity image shows
2 to +0.5% compared to the native build using 𝑡𝑠 = 760 and Using 64
odes as shown by Fig. 8(c). The obtained performance in both cases
eaches up to 60 TFlops/s. Fig. 8(d) shows that the performance of the
ingularity image is 0.5 to 2% lower than the native build using 256
odes, and the performance can reach up to 144 TFlops/s in both cases.

In Figs. 6, 7, and 8, we tuned the tile size for each problem
ize in each architecture. In Fig. 9, we compare the performance of
he HPC-ready containers with the native build using 256 nodes on

Future Generation Computer Systems 161 (2024) 248–258S. Abdulah et al.
Fig. 6. Performance assessment on CPU-based shared-memory systems.
MareNostrum 4 using different tile sizes regardless of the obtained
performance. The obtained results vary from around 28 TFlops/s using
𝑡𝑠 = 320 to about 144 TFlops/s using 𝑡𝑠 = 960. The variation in
performance between containers and native build is between −3%
(matrix size = 202 500, and 𝑡𝑠 = 760) to +10% (matrix size = 202 500,
and 𝑡𝑠 = 320) in the worst case.
255
8. Discussion

The method proposed in this article combines multi-platform con-
tainer builders with HPC package managers to enable application porta-
bility on different HPC systems. By integrating the capabilities of
container builders and HPC package managers, we can create the

Future Generation Computer Systems 161 (2024) 248–258S. Abdulah et al.
Fig. 7. Performance on heterogeneous shared-memory systems.

Fig. 8. Performance on MareNostrum 4 supercomputer using a different number of
nodes. Tile Size 𝑡𝑠 has been tuned for each number of nodes. (a) 𝑡𝑠 = 760 (b) 𝑡𝑠 = 760
(c) 𝑡𝑠 = 760 (d) 𝑡𝑠 = 960.

container images offline and move them later to the target HPC system.
This process relies on software requirements and information about
the target HPC system, eliminating the need to build on systems with
restricted access privileges. Once the image for a particular system is
created, it is stored in an image repository for reuse. In this imple-
mentation, we utilize Docker buildx for building images across multiple
platforms and Spack as the HPC package manager.

Existing solutions for container images have two main drawbacks:
root access is required to build the image or part of it on the target
system on shared-access HPC systems, and the performance may not
meet expectations if the image is built on a different system. Our
proposed method for building HPC-ready containers overcomes these
two issues, offering a more reliable solution for the HPC community to
port their software across different HPC systems. One limitation of our
building process is that it requires a custom programming paradigm,
requiring users to have some experience creating and building their
images to guarantee performance. However, the traditional method for
256
creating container images is also not straightforward, demands effort
from the user, and is not fully suitable for HPC systems.

In this study, we also evaluate the performance of our HPC-ready
containers using ExaGeoStat software, which requires several depen-
dencies that must be fine-tuned for different hardware architectures.
ExaGeoStat is an ideal candidate for our assessment because it shares
the same complexity as many existing HPC applications, with its perfor-
mance being highly influenced by the installation process and underly-
ing hardware architecture. Our results demonstrate that our proposed
container images can maintain performance across different archi-
tectures, even when built on a local machine far from the target
system.

9. Conclusions

Containers can be a ‘‘gold solution’’ to increase the usability of
the HPC software in scientific domains through their ability to pre-
serve performance while allowing easy portability on different HPC
systems. Unlike Virtual Machines (VM), containers take up less space,
consume fewer resources, and are easier to manage and scale as they
can be quickly cloned and deployed. This paper assesses the porta-
bility and scalability of pre-generated Singularity images through a
parallel geospatial statistics software ExaGeoStat, which allows large-
scale synthetic geospatial data generation, modeling, and prediction on
manycore systems. We detail how to create HPC-ready containers based
on the Spack package manager. Our results show how the pre-generated
containers perform compared to the native build of the ExaGeoStat soft-
ware. Our experiments explore seven distinct shared-memory systems,
two of which are equipped with NVIDIA accelerators. Additionally,
we utilize the MareNostrum 4 supercomputer at the Barcelona Su-
percomputing Center to evaluate the performance of containers on
a distributed-memory system. Our findings indicate that HPC-ready
containers demonstrate performance levels nearly equivalent to native
builds while offering enhanced portability across various architectures.

CRediT authorship contribution statement

Sameh Abdulah: Conceptualization, Investigation, Software, Val-
idation, Writing – original draft, Writing – review & editing. Jorge
Ejarque: Software, Validation, Writing – original draft. Omar Mar-
zouk: Software, Validation. Hatem Ltaief: Writing – review & editing.
Ying Sun: Writing – review & editing. Marc G. Genton: Conceptual-
ization, Writing – review & editing. Rosa M. Badia: Conceptualization,
Project administration, Supervision, Writing – original draft, Writing –
review & editing. David E. Keyes: Project administration, Supervision,
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work has been supported by King Abdullah University of
Science and Technology (KAUST), Saudi Arabia, the Spanish Govern-
ment (contract PID2019-107255GB), by the Generalitat de Catalunya
(contract 2017-SGR-01414), and by the European Commission’s Hori-
zon 2020 Framework program and the European High-Performance
Computing Joint Undertaking (JU) under grant agreement No 955558
and by MCIN/AEI/10.13039/501100011033 and the European Union
NextGenerationEU/PRTR (project eFlows4HPC).

Future Generation Computer Systems 161 (2024) 248–258S. Abdulah et al.
Fig. 9. Performance on 256 nodes of MareNostrum 4 with different tile sizes.
References

[1] eFlows4HPC consortium, Deliverables D1.1 and D1.3: Requirements metrics
and arquitecture design, 2022, https://eflows4hpc.eu/deliverables/, (Accessed 13
May 2024).

[2] C. Boettiger, An introduction to docker for reproducible research, Oper. Syst.
Rev. 49 (1) (2015) 71–79.

[3] I. Habib, Virtualization with KVM, Linux J. 2008 (166) (2008) 8.
[4] P. Li, Selecting and using virtualization solutions: our experiences with VMware

and VirtualBox, J. Comput. Sci. Coll. 25 (3) (2010) 11–17.
[5] B. Ðorđević, V. Timčenko, O. Pavlović, N. Davidović, Performance compari-

son of native host and hyper-based virtualization VirtualBox, in: 2021 20th
International Symposium INFOTEH-JAHORINA, INFOTEH, IEEE, 2021, pp. 1–4.

[6] T. Abels, P. Dhawan, B. Chandrasekaran, An overview of xen virtualization, Dell
Power Solut. 8 (2005) 109–111.

[7] T. Gamblin, M. LeGendre, M.R. Collette, G.L. Lee, A. Moody, B.R. De Supinski,
S. Futral, The Spack package manager: bringing order to HPC software chaos, in:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2015, pp. 1–12.

[8] S. Abdulah, H. Ltaief, Y. Sun, M.G. Genton, D.E. Keyes, ExaGeoStat: A high
performance unified software for geostatistics on manycore systems, IEEE Trans.
Parallel Distrib. Syst. 29 (12) (2018) 2771–2784.

[9] S. Abdulah, Y. Li, J. Cao, H. Ltaief, D.E. Keyes, M.G. Genton, Y. Sun, Large-scale
environmental data science with ExaGeoStatR, Environmetrics (2022) e2770.

[10] Chameleon, a dense linear algebra software for heterogeneous architectures,
2023, https://project.inria.fr/chameleon, (Accessed 01 March 2023).

[11] S. Abdulah, K. Akbudak, W. Boukaram, A. Charara, D.E. Keyes, H. Ltaief, A.
Mikhalev, D. Sukkari, G. Turkiyyah, Hierarchical computations on manycore
architectures (HiCMA), 2019, See http://github.com/ecrc/hicma.

[12] C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier, StarPU: a unified platform
for task scheduling on heterogeneous multicore architectures, in: Euro-Par
2009 Parallel Processing: 15th International Euro-Par Conference, Delft, the
Netherlands, August 25-28, 2009. Proceedings 15, Springer, 2009, pp. 863–874.

[13] L. Youseff, R. Wolski, B. Gorda, C. Krintz, Evaluating the performance impact
of Xen on MPI and process execution for HPC systems, in: First International
Workshop on Virtualization Technology in Distributed Computing, VTDC 2006,
IEEE, 2006, p. 1.

[14] J.P. Walters, V. Chaudhary, M. Cha, S. Guercio, S. Gallo, A comparison
of virtualization technologies for HPC, in: 22nd International Conference on
Advanced Information Networking and Applications, Aina 2008, IEEE, 2008, pp.
861–868.

[15] J.N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos, G. Hamilton,
M. McCabe, J. Owens, Quantifying the performance isolation properties of
virtualization systems, in: Proceedings of the 2007 Workshop on Experimental
Computer Science, 2007, pp. 6–es.

[16] M.F. Mergen, V. Uhlig, O. Krieger, J. Xenidis, Virtualization for high-performance
computing, ACM SIGOPS Oper. Syst. Rev. 40 (2) (2006) 8–11.

[17] G. Somani, S. Chaudhary, Application performance isolation in virtualization, in:
2009 IEEE International Conference on Cloud Computing, IEEE, 2009, pp. 41–48.

[18] M.G. Xavier, M.V. Neves, F.D. Rossi, T.C. Ferreto, T. Lange, C.A. De Rose,
Performance evaluation of container-based virtualization for high performance
computing environments, in: 2013 21st Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, IEEE, 2013, pp. 233–240.

[19] O. Rudyy, M. Garcia-Gasulla, F. Mantovani, A. Santiago, R. Sirvent, M. Vázquez,
Containers in hpc: A scalability and portability study in production biological
simulations, in: 2019 IEEE International Parallel and Distributed Processing
Symposium, IEEE, 2019, pp. 567–577.

[20] G.M. Kurtzer, V. Sochat, M.W. Bauer, Singularity: Scientific containers for
mobility of compute, PLoS One 12 (5) (2017) e0177459.

[21] L. Gerhardt, W. Bhimji, S. Canon, M. Fasel, D. Jacobsen, M. Mustafa, J. Porter,
V. Tsulaia, Shifter: Containers for HPC, in: Journal of Physics: Conference Series,
Vol. 898, IOP Publishing, 2017, 082021.
257
[22] C. Ruiz, E. Jeanvoine, L. Nussbaum, Performance evaluation of containers
for HPC, in: European Conference on Parallel Processing, Springer, 2015, pp.
813–824.

[23] S. Abraham, A.K. Paul, R.I.S. Khan, A.R. Butt, On the use of containers in
high performance computing environments, in: 2020 IEEE 13th International
Conference on Cloud Computing, CLOUD, IEEE, 2020, pp. 284–293.

[24] H. Gantikow, S. Walter, C. Reich, Rootless containers with Podman for HPC,
in: High Performance Computing: ISC High Performance 2020 International
Workshops, Frankfurt, Germany, June 21–25, 2020, Revised Selected Pa-
pers, Springer-Verlag, Berlin, Heidelberg, ISBN: 978-3-030-59850-1, 2020, pp.
343–354.

[25] J. Higgins, V. Holmes, C. Venters, Orchestrating docker containers in the HPC
environment, in: International Conference on High Performance Computing,
Springer, 2015, pp. 506–513.

[26] A. Torrez, T. Randles, R. Priedhorsky, HPC container runtimes have minimal
or no performance impact, in: 2019 IEEE/ACM International Workshop on
Containers and New Orchestration Paradigms for Isolated Environments in HPC,
CANOPIE-HPC, IEEE, 2019, pp. 37–42.

[27] J. Ejarque, R.M. Badia, L. Albertin, G. Aloisio, E. Baglione, Y. Becerra, S.
Boschert, J.R. Berlin, A. D’Anca, D. Elia, et al., Enabling dynamic and intelligent
workflows for HPC, data analytics, and AI convergence, Fut. Gen. Comput. Syst.
134 (2022) 414–429.

[28] G. Li, J. Woo, S.B. Lim, HPC cloud architecture to reduce HPC workflow
complexity in containerized environments, Appl. Sci. 11 (3) (2021) 923.

[29] S. McMillan, Making containers easier with hpc container maker, in: Proceedings
of the SIGHPC Systems Professionals Workshop, HPCSYSPROS 2018, Vol. 10,
Dallas, TX, USA, 2018.

[30] Q. Cao, S. Abdulah, R. Alomairy, Y. Pei, P. Nag, G. Bosilca, J. Dongarra,
M.G. Genton, D.E. Keyes, H. Ltaief, et al., Reshaping geostatistical modeling
and prediction for extreme-scale environmental applications, in: 2022 SC22:
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC, IEEE Computer Society, 2022, pp. 13–24.

[31] S. Abdulah, H. Ltaief, Y. Sun, M.G. Genton, D.E. Keyes, Parallel approximation of
the maximum likelihood estimation for the prediction of large-scale geostatistics
simulations, in: 2018 IEEE International Conference on Cluster Computing,
CLUSTER, IEEE, 2018, pp. 98–108.

[32] L. Benedicic, F.A. Cruz, A. Madonna, K. Mariotti, Sarus: Highly scalable docker
containers for hpc systems, in: High Performance Computing: ISC High Perfor-
mance 2019 International Workshops, Frankfurt, Germany, June 16-20, 2019,
Revised Selected Papers 34, Springer, 2019, pp. 46–60.

[33] M.G. Genton, Separable approximations of space-time covariance matrices,
Environ.: Off. J. Int. Environ. Soc. 18 (7) (2007) 681–695.

[34] E. Anderson, Z. Bai, C. Bischof, L.S. Blackford, J. Demmel, J. Dongarra, J.
Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, et al., LAPACK Users’
Guide, SIAM, 1999.

[35] J. Choi, J.J. Dongarra, R. Pozo, D.W. Walker, Scalapack: A scalable linear algebra
library for distributed memory concurrent computers, in: The Fourth Symposium
on the Frontiers of Massively Parallel Computation, IEEE Computer Society,
1992, pp. 120–121.

Sameh Abdulah is a research scientist at the Extreme
Computing Research Center, King Abdullah University of
Science and Technology, Saudi Arabia. Sameh received his
M.S. and Ph.D. from Ohio State University, Columbus, US, in
2014 and 2016, respectively. His work centers around high-
performance computing applications, especially statistical
modeling and prediction, bitmap indexing in big data,
algorithm based fault tolerance, and machine learning and
data mining algorithms. In 2022, he stood as a finalist for
the ACM Gordon Bell Award as a part of the KAUST team
at the SC conference. He is also a member of the IEEE,

https://eflows4hpc.eu/deliverables/
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb2
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb2
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb2
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb3
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb4
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb4
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb4
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb5
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb5
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb5
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb5
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb5
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb6
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb6
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb6
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb7
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb7
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb7
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb7
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb7
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb7
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb7
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb8
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb8
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb8
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb8
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb8
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb9
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb9
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb9
https://project.inria.fr/chameleon
http://github.com/ecrc/hicma
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb12
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb12
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb12
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb12
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb12
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb12
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb12
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb13
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb13
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb13
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb13
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb13
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb13
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb13
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb14
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb14
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb14
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb14
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb14
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb14
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb14
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb15
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb15
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb15
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb15
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb15
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb15
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb15
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb16
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb16
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb16
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb17
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb17
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb17
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb18
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb18
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb18
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb18
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb18
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb18
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb18
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb19
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb19
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb19
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb19
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb19
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb19
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb19
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb20
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb20
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb20
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb21
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb21
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb21
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb21
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb21
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb22
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb22
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb22
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb22
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb22
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb23
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb23
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb23
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb23
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb23
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb24
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb24
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb24
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb24
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb24
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb24
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb24
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb24
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb24
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb25
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb25
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb25
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb25
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb25
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb26
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb26
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb26
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb26
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb26
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb26
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb26
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb27
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb27
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb27
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb27
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb27
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb27
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb27
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb28
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb28
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb28
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb29
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb29
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb29
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb29
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb29
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb30
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb30
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb30
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb30
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb30
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb30
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb30
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb30
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb30
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb31
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb31
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb31
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb31
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb31
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb31
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb31
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb32
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb32
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb32
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb32
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb32
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb32
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb32
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb33
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb33
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb33
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb34
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb34
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb34
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb34
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb34
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb35
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb35
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb35
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb35
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb35
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb35
http://refhub.elsevier.com/S0167-739X(24)00357-1/sb35

Future Generation Computer Systems 161 (2024) 248–258S. Abdulah et al.
ACM, SIAM, and American Statistical Association (ASA)
communities.

Jorge Ejarque holds Ph.D. on Computer Science (2015)
from the Technical University of Catalonia (UPC). From
2005 to 2008 he worked as research support engineer
at the UPC, and joined Barcelona Supercomputing Center
BSC at the end of 2008. He has contributed in the de-
sign and development of different tools and programming
models for complex distributed computing platforms. He
has published over 30 research papers in conferences and
journals and he has been involved in several National and
European R&D projects (FP6, FP7, H2020 and Horizon
Europe). He is member of a program committee of several
international conferences, reviewer of journal articles and
he was member of the Spanish National Grid Initiative
panel. His current research interests are focused on parallel
programming models for heterogeneous parallel distributed
computing environments and the interoperability between
distributed computing platforms. He is the main architect
of the eFlows4HPC project.

Omar Marzouk is an HPC Senior Software Engineer, part of
the Advanced Computing and AI Team at Brightskies Inc.,
Egypt.

Hatem Ltaief is the Principal Research Scientist of the
Extreme Computing Research Center, King Abdullah Uni-
versity of Science and Technology (KAUST), Saudi Arabia.
He received a Masters in applied mathematics in 2004 and
a Ph.D. in computer science in 2007 from the University of
Houston. His research interests include parallel numerical
algorithms, parallel programming models, high-performance
computing, and performance optimizations for multicore
architectures and hardware accelerators. He received several
best papers awards at ACM PASC’18 and EuroPar’16’20
conferences as well as the GAUSS award for best paper at
ISC’20. He was among the Gordon Bell finalists team at
SC22’23. He is currently the vice chair of SIAM activity
group on supercomputing and the IEEE TCPP coordinator
for Africa, Europe, and Middle East.

Ying Sun is an Associate Professor of Statistics at King
Abdullah University of Science and Technology (KAUST).
She received her Ph.D. degree in statistics from Texas A&M
University in 2011. At KAUST, she established and leads
the Environmental Statistics Research Group, developing
statistical models and methods for complex data to address
important environmental problems. She has made origi-
nal contributions to environmental statistics, in particular
in the areas of spatiotemporal statistics, functional data
analysis, visualization, and computational statistics, with an
exceptionally broad array of applications.

Marc G. Genton is Al-Khawarizmi Distinguished Professor
of Statistics at the King Abdullah University of Science and
Technology (KAUST) in Saudi Arabia. He received the Ph.D.
degree in Statistics (1996) from the Swiss Federal Institute
of Technology (EPFL), Lausanne. He is a fellow of the
258
American Statistical Association (ASA), of the Institute of
Mathematical Statistics (IMS), and the American Association
for the Advancement of Science (AAAS), and is an elected
member of the International Statistical Institute (ISI). In
2010, he received the El-Shaarawi award for excellence
from the International Environmetrics Society (TIES) and
the Distinguished Achievement award from the Section on
Statistics and the Environment (ENVR) of the American
Statistical Association (ASA). He received an ISI Service
award in 2019 and the Georges Matheron Lectureship award
in 2020 from the International Association for Mathematical
Geosciences (IAMG). He led a Gordon Bell Prize finalist
team with the ExaGeoStat software for Super Computing
2022. He received the Royal Statistical Society (RSS) 2023
Barnett Award for his outstanding research in environmental
statistics. His research interests include statistical analysis,
flexible modeling, prediction, and uncertainty quantification
of spatio-temporal data, with applications in environmental
and climate science, as well as renewable energies.

Rosa M. Badia holds a Ph.D. on Computer Science (1994)
from the Technical University of Catalonia (UPC). She is the
manager of the Workflows and Distributed Computing re-
search group at the Barcelona Supercomputing Center (BSC).
She is considered one of the key researchers in Parallel
programming models for multicore and distributed com-
puting due to her contribution to task-based programming
models during the last 15 years. The research group focuses
on PyCOMPSs/COMPSs, a parallel task-based programming
distributed computing, and its application to the develop-
ment of large heterogeneous workflows that combine HPC,
Big Data, and Machine Learning. The group is also doing
research around the dislib, a parallel machine learning
library parallelized with PyCOMPSs. Dr Badia has published
near 200 papers in international conferences and journals
on the topics of her research. She has been very active in
projects funded by the European Commission in contracts
with industry, and currently she is the PI of the EuroHPC
project eFlows4HPC. She is a member of HiPEAC Network of
Excellence. She received the Euro-Par Achievement Award
2019 for her contributions to parallel processing, the Do-
naTIC award, category Academia/Researcher in 2019 and
the HPDC Achievement Award 2021 for her innovations in
parallel task-based programming models, workflow applica-
tions and systems, and leadership in the high performance
computing research community. In 2023, she has been
invited to be a member of the Institut d’Estudis Catalans
(Catalan academy).

David Keyes directs the Extreme Computing Research Cen-
ter at KAUST, where he was a founding Dean in 2009 and is
a professor of Applied Mathematics, Computer Science, and
Mechanical Engineering. He works at the interface between
parallel computing and PDEs and statistics. Before joining
KAUST, Keyes led multi-institutional scalable solver soft-
ware projects in the SciDAC and ASCI programs of the US
Department of Energy (DoE), ran university collaboration
programs at US DoE and NASA institutes, and taught at
Columbia, Old Dominion, and Yale Universities. He is a
Fellow of SIAM, the AMS, and the AAAS. He has been
awarded the Gordon Bell Prize from the ACM, the Sidney
Fernbach Award from the IEEE Computer Society, and the
SIAM Prize for Distinguished Service to the Profession. He
earned a B.S.E. in Aerospace and Mechanical Sciences from
Princeton in 1978 and a Ph.D. in Applied Mathematics from
Harvard in 1984.

	Portability and scalability evaluation of large-scale statistical modeling and prediction software through HPC-ready containers
	Introduction
	Related Work
	Background
	Containerization
	Spack Package Manager
	Singularity Container System

	The eFlows4HPC Project
	ExaGeoStat: The Use Case Software
	ExaGeoStat Software Operations
	Synthetic Geospatial Data Generation
	Geospatial Data Modeling
	Geospatial Data Prediction

	Parallel Linear Algebra Mathematics in ExaGeoStat

	HPC-Ready Containers Creation Mechanism
	Experimental Evaluation
	Experimental Testbed
	Containers Portability on Shared-Memory Systems
	Containers Portability and Scalability on Distributed-Memory Systems

	Discussion
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

