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Abstract
Spatial statistical modeling involves processing an n × n symmetric positive def-
inite covariance matrix, where n denotes the number of locations. However,
when n is large, processing this covariance matrix using traditional methods
becomes prohibitive. Thus, coupling parallel processing with approximation can
be an elegant solution by relying on parallel solvers that deal with the matrix as
a set of small tiles instead of the full structure. The approximation can also be
performed at the tile level for better compression and faster execution. The tile
low-rank (TLR) approximation has recently been used to compress the covari-
ance matrix, which mainly relies on ordering the matrix elements, which can
impact the compression quality and the efficiency of the underlying solvers.
This work investigates the accuracy and performance of location-based order-
ing algorithms. We highlight the pros and cons of each ordering algorithm and
give practitioners hints on carefully choosing the ordering algorithm for TLR
approximation. We assess the quality of the compression and the accuracy of
the statistical parameter estimates of the Matérn covariance function using TLR
approximation under various ordering algorithms and settings of correlations
through simulations on irregular grids. Our conclusions are supported by an
application to daily soil moisture data in the Mississippi Basin area.
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1 INTRODUCTION

Spatial statistics is an important branch of statistics that has applications in various research fields, for instance, environ-
mental science (Sun et al., 2015), geography (Kim et al., 2023), economics (Elhorst et al., 2021), epidemiology (Moraga
& Montes, 2011), and neuroscience (Ombao et al., 2008), to name but a few. A common way to model spatial data is to
consider them as realizations of a Gaussian random field. Suppose we have n spatial locations s1, … , sn ∈ Rd for some
d ∈ Z+, with n ∈ Z+. Denote the observations at these n locations by Z = {Z(s1), … ,Z(sn)}⊤. We assume that the dis-
tribution of these observations is jointly Gaussian with mean E{Z(s)} = 𝜇(s) and covariance parametrized by 𝜽 ∈ Rq
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for some q ∈ Z+: Cov{Z(s1),Z(s2)} = C(s1, s2;𝜽). There are many valid methods established for modeling the covari-
ance function C(s1, s2;𝜽); see, for example, Gneiting et al. (2007), Wiens et al. (2020), Chen et al. (2021) and Porcu and
White (2022).

Maximum Likelihood Estimation (MLE) is an essential technique for parameter estimation in geospatial data mod-
eling. It hinges on maximizing a likelihood function, which measures how accurately the model reflects observed data.
The MLE methodology entails constructing an n × n covariance matrix,𝚺(𝜽), pivotal in defining the correlations between
observations at different spatial locations across single or multiple time slots. Under the setting of a Gaussian random
field with a single time slot, we form the covariance matrix 𝚺(𝜽) by letting

𝚺i,j(𝜽) = C(si, sj;𝜽), (1)

where 𝚺i,j(𝜽) denotes the (i, j)th entry of 𝚺(𝜽) for any 1 ≤ i, j ≤ n. Thus, we have the following expression of the Gaussian
log-likelihood function for the observation vector Z:

𝓁(𝜽) = −n
2

log(2𝜋) − 1
2

log |𝚺(𝜽)| − 1
2

Z⊤𝚺(𝜽)−1Z. (2)

Here |𝚺(𝜽)| denotes the determinant of 𝚺(𝜽), and the MLE is obtained by maximizing the log-likelihood function 𝓁(𝜽)
with respect to 𝜽.

However, as we can see from the expression, evaluating the function 𝓁(𝜽) requires computing the inverse of the covari-
ance matrix 𝚺(𝜽), with the time complexity O(n3). Although estimating the parameter 𝜽 using the MLE is a classical
way to understand the correlation structure of spatial data, the cubic computational complexity associated with the MLE
renders its dense computation impractical with large n. This challenge is amplified by the availability of large-scale spa-
tial data, where the location count can soar into millions or even hundreds of millions, particularly in cases involving
high-resolution data.

Consequently, recent research has focused on developing advanced approximation methods capable of handling
large geospatial datasets while maintaining acceptable accuracy in the modeling process. These methods aim to offer
more efficient alternatives for working with extensive spatial data without significantly compromising the quality of
the results. For example, the covariance tapering method (Kaufman et al., 2008) sparsifies the covariance matrices by
ignoring the correlations between locations with large distances and setting them to zero to accelerate the computa-
tion; Cressie and Johannesson (2008) proposed a method that uses several nonstationary covariance functions to perform
spatial prediction for large-scale spatial data; Banerjee et al. (2008) proposed the Gaussian Predictive Processes (GPP),
which projects the original problem to a subspace containing a set of spatial locations, to reduce the dimensionality
of the spatial covariance matrix; the Mixed-Precision (MP) method (Cao et al., 2022) aims to accelerate the computa-
tion by keeping the most important values with the highest level of precision, while truncating the rest of the values to
lower levels of precision, so that the computation can be faster without affecting the accuracy too much. Some other
approximation methods can also be found in the literature, such as Gaussian Markov random field approximations
(Rue & Held, 2005 & Rue & Tjelmeland, 2002), Kalman filtering (Sinopoli et al., 2004) and low-rank splines (Kim &
Gu, 2004), to name but a few. Sun et al. (2012) provide a comprehensive overview of approximation methods on large-scale
spatial data.

Tile Low-Rank (TLR) approximation (Akbudak et al., 2017) is one of the novel approximation methods. It employs
low-rank approximation to the covariance matrix and facilitates parallel processing via a task-based parallelism mech-
anism. This approach significantly accelerates the evaluation of the likelihood function for a large number of locations
on modern parallel hardware architectures where these task-based algorithms are optimized. In the TLR framework,
low-rank compression is applied on individual tiles rather than the entire matrix. This strategy enables the distribution
of both compression and computational tasks across various processing units, for example, CPUs or GPUs, enhancing
efficiency and scalability. The TLR approximation approach exploits the data sparsity of a given covariance matrix by
compressing the off-diagonal tiles up to a user-defined accuracy threshold. In TLR approximation, the diagonal and
off-diagonal tiles of the covariance matrices are stored and processed differently. The maximum rank among all the
off-diagonal tiles is decisive on the performance, where smaller ranks lead to faster computations and less memory
consumption. Since the approximation is applied at the tile level, ordering the covariance matrix elements can impact
the compression level per tile. Therefore, one of the main requirements of TLR approximation is to spatially order the
locations so that more correlated locations are stored together to allow better compression at the tile level.
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Our work explores the accuracy and performance of geospatial data modeling using TLR approximation under vary-
ing orderings of locations. We use the ExaGeoStat software (Abdulah et al., 2018a) along with its corresponding R version
ExaGeoStatR (Abdulah et al., 2023), which are developed to enable high-performance computing and analysis of spa-
tial and spatio-temporal data on multicore and manycore systems. The ranks of the off-diagonal tiles can be affected
by how we order the locations of the spatial data. Several multi-dimensional ordering methods have been proposed
to sort the elements in a given n × n-dimensional covariance matrix in the literature. Herein, we implemented several
multi-dimensional ordering algorithms and assessed their quality for different covariance functions through an empiri-
cal study. We assess and compare the performance of TLR approximation method in estimating the Matérn covariance
parameters using orderings with the Morton curve (Morton, 1966), the Hilbert curve (Hilbert, 1935), the k-dimensional
(k-d) tree (Bentley, 1975), as well as the Maximum-Minimum Degree (MMD) Algorithm (Guinness, 2018), the Reversed
Cuthill–McKee (RCM) Algorithm (Cuthill & McKee, 1969), and the Minimum Degree Algorithm (George & Liu, 1989),
which we will describe in detail.

The rest of this article is organized as follows. Section 2 provides an overview of the TLR approximation method.
Section 3 details the various ordering algorithms implemented in ExaGeoStat, along with the experiments conducted
using them. Section 4 introduces the statistical models under consideration, which describe the parametrization of the
covariance matrix and the log-likelihood function. Section 5 presents our experimental results, analyzing the performance
of parameter estimation using the TLR algorithm and various ordering algorithms. This analysis focuses on estimation
accuracy, ranks of the off-diagonal tiles in the covariance matrices, and execution time for Cholesky factorization on these
matrices. An application to soil moisture data is also demonstrated, comparing results obtained with different ordering
algorithms. The conclusion and discussion are provided in Section 6.

2 TILE LOW-RANK (TLR) APPROXIMATION

Parallel processing, an advanced computing paradigm, leverages modern parallel architectures to accelerate computation.
This is achieved by employing multiple processing units simultaneously executing different parts of a single algorithm.
In most of the existing parallel linear algebra libraries, task-based parallelism is a prevalent approach for enhancing the
efficiency of linear solvers. This method involves dividing the computational workload into discrete tasks that can be
executed simultaneously. The central strategy is to divide the target matrix into smaller tiles, allowing each processing
unit to handle a specific tile independently. The algorithm is thus conceptualized as a directed acyclic graph (DAG), where
each node represents an individual task, and the connecting arrows indicate task dependencies. By utilizing runtime
system libraries like OmpSs (Duran et al., 2011), StarPU (Augonnet et al., 2009), Charm++ (Kale & Krishnan, 1993),
PaRSEC (Bosilca et al., 2013), and Kokkos (Edwards et al., 2014), a scheduler adeptly assigns work to various processing
units, ensuring no dependencies are violated during execution.

In Akbudak et al. (2017), the proposal of the tile low-rank (TLR) approach for compressing the covariance matrix
specifically in climate/weather applications was presented. This study aimed to synergize fast, parallel processing,
task-based linear algebra solvers with approximation techniques on manycore systems. Its application and evalua-
tion in spatial statistics have been discussed in Abdulah et al. (2018b) with accuracy evaluation for synthetic and
real datasets.

TLR approximation is based on approximating each off-diagonal tile using a low-rank approximation method. The
approach in Akbudak et al. (2017) utilizes Singular Value Decomposition (SVD) to derive two matrices, U and V, repre-
senting the original tile’s singular vectors. Each tile is compressed to a specific rank denoted by r, defining one dimension
of these matrices, while the other dimension corresponds to the tile size, nb. Practically, the tile size not only impacts the
accuracy of the compression but also plays a critical role in the performance of linear solvers during runtime. Figure 1
illustrates an example of compressing a dense tile into the two matrices U and V.

Rank distribution also depends on how the coordinates in the covariance matrix are ordered. The ordering strategy
can significantly influence the effectiveness of the TLR approximation, as it determines the structure and pattern of inter-
actions within the matrix. Different ordering techniques can lead to varying compression efficiencies and ranks in the
resulting tiles, thereby impacting the overall performance and accuracy of the TLR approximation. It is crucial to choose
an appropriate ordering method that aligns with the specific characteristics and requirements of the data and the com-
putational objectives at hand. In the subsequent section, we summarize various ordering algorithms from the literature
studied in this work.
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F I G U R E 1 An illustration of the tile low-rank compression. The diagonal tiles are kept unchanged, while the off-diagonal tiles are
compressed via singular value decomposition and then stored into smaller matrices, U and V, instead of the original dense matrix tiles of size
nb × nb. The rank of the tile T21 in this figure is r21.

3 SPATIAL ORDERING METHODS

Spatial ordering is crucial for ordering spatial data in many fields, including spatial statistics (Cerioli & Riani, 1999),
computer science (Asano et al., 1997), and geography (Guo & Gahegan, 2006), to efficiently organize and manage spa-
tial data. The main goal is to transform the spatial relations into a one-dimensional structure while preserving the
spatial locality. In one-dimensional coordinate systems, such as those used for time series data, a natural order is dic-
tated by the progression along the real line. This inherent ordering means that adjacent data points in a time series
are typically more correlated, following a sequential arrangement based on time. However, this natural ordering does
not exist in multi-dimensional coordinate systems. In these systems, coordinates extend across multiple dimensions
and lack a straightforward, inherent sequence like their one-dimensional counterparts. Assuming creating a covari-
ance matrix based on these data, large values will be mostly located near the diagonal, and the off-diagonal elements
will tend to become closer to zero. However, for spatial data with multi-dimensional coordinates, such property is not
granted if we order the locations randomly, and there is a risk of having many large values in the off-diagonal part
of the covariance matrix. Therefore, choosing the order of the locations wisely can be a crucial step in optimizing the
computation.

The TLR approximation operates based on a user-defined accuracy threshold, which dictates how many singular val-
ues are used for off-diagonal tile compression. TLR assumes that diagonal tiles are kept in a dense format. A smaller
number of singular values results in more compressed tiles, albeit with a greater loss of information. This chosen number
of singular values is termed “rank”, denoted by r. Reducing r compresses the matrix, balancing compression and infor-
mation retention. For the TLR approximation to be effective in terms of memory and computation, assuming that all tiles
in the matrix are square and of size nb × nb, the rank r should ideally be less than 2 × (nb∕2), to ensure that the number
of elements in both U and V are less than (nb × nb)∕2.

Given a specific user-defined threshold, the arrangement of elements in the covariance matrix significantly impacts
the ranks of off-diagonal tiles when using TLR approximation. Typically, there are two methods to decrease the ranks of
the off-diagonal tiles:

• To reorder the n-dimensional locations before generating the covariance matrix. The goal is to ensure that loca-
tions adjacent in the final one-dimensional order are also neighboring in the original multi-dimensional space. As a
result, the larger values in the covariance matrix will be clustered around the diagonal, leading to lower ranks for the
off-diagonal tiles.

• To directly reorganize the covariance matrix based on the value of each entry. This approach will result in lower ranks
for the off-diagonal tiles of the covariance matrix.

In this study, we integrated various ordering algorithms into the ExaGeoStat software to examine their effects on the
accuracy and performance of the TLR approximation. Our evaluation is based on a range of spatial statistics covariance
functions. The subsequent subsections provide a concise overview of the different ordering methods employed.
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3.1 Space-filling curves

Space-filling curves are unique in their ability to occupy any given space using a one-dimensional line, regard-
less of its dimension. This concept has been utilized for decades to transform points in high-dimensional
spaces into a one-dimensional arrangement. Here, we consider a set of randomly selected points within a unit
hypercube of dimension d, where d ∈ Z+. By applying a space-filling curve to encompass this unit hypercube,
each point becomes associated with a specific position on the curve. Now, envision straightening this curve
into a one-dimensional line. As the curve transforms, the points align along this line, establishing a sequen-
tial order. The Morton and Hilbert curves are notable examples of space-filling curves used for this ordering
process.

3.1.1 Morton curve

The Morton curve (Morton, 1966), or the Z-order curve, is a curve that covers all integers in the interior of the
d-dimensional hypercube [0, 2p)d of size 2p. The curve is constructed by interleaving the binary representation of the coor-
dinates of each point in the d-dimensional space. Each point is converted to a single scalar value and can be easily sorted
using traditional algorithms.

An illustration of the Morton curve in the two-dimensional case is shown in Figure 2, which is a recursively Z-shaped
curve linking the integer-valued coordinates in the two-dimensional plane. Higher-dimensional Morton curves are
designed similarly.

As shown in Figure 2, it is evident that most adjacent points on the original two-dimensional grid are
similarly positioned nearby along the Morton curve. This alignment underscores the objective of maintaining
spatial ordering in the transformation process. Figure 2 also illustrates that the ‘Z’ patterns divide the space
into 2 × 2 grids in the two-dimensional scenario. For any given location in this two-dimensional space, its
corresponding one-dimensional index on the Morton curve can be determined by interleaving the binary val-
ues of its coordinates. This technique is adaptable for implementing Morton ordering in various dimensional
spaces.

F I G U R E 2 An illustration of the 2-d Morton curve that covers the interior of the two-dimensional hypercube [0, 2p)2, with p = 3, as
well as its encoding with binary numbers. In our implementation, for each 2-d location, we find its corresponding 1-d index on the Morton
curve by interleaving the binary digits of its 2-d coordinates, as shown above.
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3.1.2 Hilbert curve

Similar to the Morton curve, the Hilbert curve (Hilbert, 1935) is another curve that covers all integers in the interior of
the d-dimensional hypercube [0, 2p)d of size 2p. The curve starts at one corner of the space grid and snakes through each
element in a specific pattern. As the order of the curve increases, it becomes more complex, filling the space more densely.
Hilbert curve aims to minimize the distance between the points close to each other in the multi-dimensional space. An
illustration of the Hilbert curve in a two-dimensional case is shown in Figure 3.

We have integrated the Morton and Hilbert curve ordering algorithms into the ExaGeoStat software. For
two-dimensional spatial locations, our implementations involve the following steps:

1. “Encoding”: Convert the two-dimensional coordinates into integers. Specifically, if the location coordinates are ini-
tially in single-precision floating-point format (16 bits), we convert these into 16-bit unsigned integers. This is achieved
by multiplying the coordinates by the maximum value allowable for unsigned integers in the system and then rounding
the result to the nearest integer;

2. “Sorting”: We compute their respective one-dimensional indices for each two-dimensional coordinate point on either
the Morton or Hilbert curve. Following this calculation, we sort these indices using standard sorting algorithms like
quicksort;

3. “Decoding”: Convert the 1-d coordinates back into 2-d coordinates, then further convert back to floating point values
in the unit square by dividing them by the maximum value of unsigned integers.

The time complexity for ordering n spatial locations using both Morton and Hilbert curves is identical. The encoding
and decoding steps each have a time complexity of O(n), while the sorting step incurs a time complexity of O(n log n).
Consequently, the total time complexity for Morton and Hilbert orderings is O(n log n).

Moreover, it is important to acknowledge that when employing Morton and Hilbert orderings, converting
floating-point values to integers through rounding and then reconverting them back to floating points results in coordi-
nates that do not precisely match their original values. However, as demonstrated in our experimental findings in the
subsequent section, the accuracy of parameter estimation remains largely unaffected by these minor discrepancies.

3.2 K-dimensional (KD) tree

A k-dimensional tree (KD-Tree, Bentley (1975)) is a binary tree data structure that stores k-dimensional data where k > 1,
similar to a binary search tree for 1-dimensional data. It can also be used for other purposes, and it has been widely
applied to many different areas, not only in spatial data analysis. For n spatial locations, both construction and traversal

F I G U R E 3 An illustration of the 2-d Hilbert curve that covers the interior of the two-dimensional hypercube [0, 2p)2, for p = 1, 2, 3
respectively, adapted from Skilling (2004).

 1099095x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2868 by K

ing A
bdullah U

niv. O
f Science &

 T
ech K

aust, W
iley O

nline L
ibrary on [21/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHEN et al. 7 of 28

of a KD-Tree are of time complexity O(n log n). Hence, the overall time complexity for KD-Tree ordering for n spatial
locations is O(n log n).

In a KD-Tree, each non-leaf node stores an index of dimension i and a value m, and it functions as a hyperplane
dividing the k-dimensional space into two half-spaces: all inputs with value v smaller than m on the ith dimension will
be stored in a leaf in the left subtree of this non-leaf node, while inputs with value v larger than m on the ith dimension
will be stored in a leaf in the right subtree of this non-leaf node. Each leaf node stores one input value v. To be specific,
for a set of k-dimensional data denoted by, its KD-Tree is generated as follows:

1. First, denote the root node of the KD-Tree by R, find the range of the data in all of the k dimensions, and record the
following two values in R: the index of the dimension which has the largest range, denoted by 𝜅, and the median of
the data in this dimension, denoted by med.

2. Next, divide intol and r by the dimension and median recorded in the root, such that all the data points whose
value on the dimension 𝜅 is smaller than or equal to med are inl, while the rest are inr.

3. Denote the left and right child of node R as Rl and Rr, respectively. To construct the left (right) subtree of R, repeat
steps 1 & 2 by regardingl (r) as the new, and Rl (Rr) as the new R.

4. Continue with step 3 recursively. When there is only one single data point in the data set , instead of recording the
dimension index and median in the node R as before, the data point itself is stored in R, which becomes a leaf node of
the KD-Tree.

Herein, to order all the k-dimensional locations, we initially create the KD-Tree using these locations. Subsequently,
we perform an in-order traversal of the tree. This entails that, upon reaching any node during the traversal, we first record
the data from its left subtree, followed by the data of the node itself, and then proceed to capture the data from its right
subtree.

3.3 Other ordering methods

Apart from the previous three ordering methods, which are the main focuses of this article, we also implemented some
other ordering methods in ExaGeoStat, which we describe as follows.

3.3.1 Maximum-minimum degree (MMD) ordering

The maximum-minimum degree (MMD, Guinness (2018)) ordering is widely used in solving sparse linear systems. The
primary objective of MMD is to rearrange the rows and columns of a given matrix to ensure that each pair of adjacent
locations in the final sequence is not excessively close to the original grid layout and to enhance the efficiency of core
matrix operations, including matrix-matrix multiplication, factorization, and similar processes. This approach arranges
the spatial locations so that each spatial location is followed by its nearest neighbors in the final order. Therefore, in spatial
statistics, it is mainly applied in Vecchia approximation (Guinness, 2018), where we need to find the distribution of each
spatial location conditioning on its nearest neighbors.

The MMD procedure is as follows: First, the algorithm picks the row or column with the maximum number of nonzero
entries (highest degree). Then, it identifies the row or column with the minimum degree among the remaining ones.
Finally, the algorithm reorders the matrix such that these rows and columns are moved to a position in the matrix, such
as the bottom right corner, where their impact on fill-in is minimized.

The covariance matrix integral to MLE operations is dense, contrasting with the sparse matrices the original
maximum-minimum degree (MMD) ordering algorithm addresses. We tailored the MMD algorithm for implementation
in the ExaGeoStat software to bridge this gap. This adaptation includes defining a user-specified threshold to determine
when elements should be treated as nonzero-like or zero-like elements in the original algorithm.

Our preliminary experiments indicate that the modified MMD algorithm is ineffective for the MLE covari-
ance matrix. It results in higher tile ranks than the coordinate-based ordering algorithms like Morton, Hilbert, and
KD-Tree. Consequently, due to its limited performance in these initial tests, we have excluded it in the detailed
experimental section.
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3.3.2 Graph-based ordering methods

We also consider adopting some existing ordering methods designed for sparse matrices, which can lower the rank of
the matrices. These methods are usually based on the corresponding adjacency graph of the sparse matrix. We cannot
directly apply these methods because the covariance matrices are always dense, and in these cases, all the nodes in the
adjacency graph will be connected. However, we “sparsify” the adjacency graph by setting a threshold on the values in
the matrix and letting the edge in the graph be disconnected if its corresponding value in the matrix is smaller than the
threshold. In addition, the threshold cannot be too large in order not to lose too much correlation information. Here, we
briefly introduce the two graph-based methods that we conducted experiments with within ExaGeoStat:

1. Reversed Cuthill–McKee algorithm
The Reversed Cuthill–McKee (RCM) Algorithm (Cuthill & McKee, 1969) is an algorithm aiming at reducing the

bandwidth of a sparse matrix. It works basically in the following steps:
a. Consider the sparse matrix as an adjacency matrix, then form its corresponding graph and start with an arbitrary

node in the graph;
b. Conduct breadth-first search (BFS) traversal on the graph, starting from the arbitrarily chosen node. For each node

in the graph, define its level as its distance from the starting node;
c. Sort all the nodes based on their levels in descending order while the nodes with the same level are sorted by degree,

with nodes having higher degrees appearing first;
d. Reorder the nodes based on the sorted order and then reverse the order of the reordered nodes to obtain the final

ordering.
Although it cannot be guaranteed that the RCM algorithm can lead to the optimal result, experiments have shown

that it can significantly reduce the bandwidth of sparse matrices.
2. Minimum degree algorithm

Similarly, the minimum degree algorithm (George & Liu, 1989) also aims at reducing the bandwidth of each row
of a sparse matrix, which works in the following steps:

a. Form the graph corresponding to the sparse matrix (considered as an adjacency matrix), then compute the degree
of each node in the graph;

b. Find the node with the minimum degree, then eliminate the selected node by removing it from the graph and
updating the degrees of its neighboring nodes;

c. Update the degrees of the remaining nodes affected by the removal;
d. Repeat the previous two steps until all nodes have been eliminated.

The order in which the nodes are eliminated forms the new ordering of the vertices, thus yielding the new ordering
of the matrix itself.

Our experiments in ExaGeoStat showed that these two algorithms could not help accelerate our computation, with
many different choices of the thresholds while “sparsifying” the covariance matrices. In fact, after reordering the covari-
ance matrices using these two algorithms, the ranks of some of the off-diagonal tiles are still too large, such that the TLR
approximation cannot even proceed.

4 SPATIAL MODELS

4.1 Univariate Matérn model

Most common geostatistical data sets, such as climate and environmental data sets, comprise a collection of locations
that are distributed across a specific geographic area, either regularly or irregularly. Each location is linked to a single
measurement of a particular climate or environmental variable, such as wind speed, air pressure, soil moisture, or humid-
ity. Such data sets are often modeled as realizations of Gaussian spatial random fields, as formulated in the introduction
section. We denote a realization of a Gaussian random field Z(s) by Z = {Z(s1), … ,Z(sn)}⊤, where s1, … , sn are spa-
tial locations in Rd for some d ∈ Z+. Without loss of generality, we assume the random field Z(s) has zero mean and a
stationary covariance function which can be parametrized by a vector 𝜽 ∈ Rq for some q ≥ 1:
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CHEN et al. 9 of 28

C(h;𝜽) = Cov{Z(s),Z(s + h)}, (3)

where h ∈ Rd is the spatial lag vector, and C is symmetric with respect to h. Herein, the expression (3) is further simplified
from (1) due to the stationarity assumption. Therefore, the (i, j)th entry of the covariance matrix 𝚺(𝜽) equals 𝚺ij(𝜽) =
C(si − sj;𝜽), i, j = 1, … ,n. The log-likelihood function for 𝜽 in this case is formulated in (2).

In this work, we mainly focus on the Matérn covariance function (Matérn, 1960) without nugget effects, and
parametrized by 𝜽 = (𝜎2

, 𝛽, 𝜈)⊤:

C(d;𝜽) =
𝜎

2

Γ(𝜈)2𝜈−1

(
d
𝛽

)
𝜈


𝜈

(
d
𝛽

)

, (4)

where d = ||s − s′|| denotes the distance between two locations s and s′, 𝜎2
, 𝛽, 𝜈 are the variance, range and smoothness

parameters, respectively, which all take positive values, and
𝜈

is the modified Bessel function of the second kind of order
𝜈.

4.2 Other spatial models

Apart from the most common univariate Matérn model, we may consider some other common spatial models while
dealing with spatial data. In ExaGeoStat, we also implemented the bivariate Matérn and non-Gaussian models, which we
describe in the following subsections.

4.2.1 Bivariate Matérn model

The univariate Matérn covariance function can also be generalized to the multivariate case. Here we introduce the bivari-
ate case (Apanasovich et al., 2012 & Gneiting et al., 2010), which is also implemented in ExaGeoStat. The parsimonious
bivariate Matérn cross-covariance function between variables i and j is given by

Cij(d;𝜽) =
𝜌ij𝜎ii𝜎jj

Γ(𝜈ij)2𝜈ij−1

(
d
a

)
𝜈ij


𝜈ij

(
d
a

)

. (5)

Similar to (4), here d = ||s − s′|| denotes the distance between two locations s and s′. i, j = 1, 2 denote the indices of
the two components of the bivariate data. The parameter 𝜽 consists of several components. To be specific, 𝜎2

11 > 0 and
𝜎

2
22 > 0 are the marginal variance parameters of the two components; a > 0 is the spatial range parameter; 𝜈11 > 0 and
𝜈22 > 0 are the marginal smoothness parameters of the two components, while 𝜈12 = 1

2
(𝜈11 + 𝜈22) is the cross smoothness;

𝜌ij is the colocated correlation, defined as

𝜌ij = 𝛽ij
Γ(𝜈ii + d∕2)
Γ(𝜈ii)

Γ(𝜈jj + d∕2)
Γ(𝜈jj)

Γ(𝜈ij)
Γ(𝜈ij + d∕2)

,

where 𝛽ii = 𝛽jj = 1 and 𝛽ij = 𝛽ji.
For a bivariate spatial data set with n locations, the size of its corresponding covariance matrix is 2n × 2n, with the

value of each element given by (5).

4.2.2 Non-Gaussian model

In many practical studies of spatial data analysis, high skewness, and heavy tails can be captured from the data, which
makes it important to go beyond the Gaussian random fields while performing statistical inference. In ExaGeoStat, we
implemented the Tukey g-and-h (TGH) random fields (Xu & Genton, 2017), which is a highly flexible non-Gaussian spatial
model. The idea of TGH random fields is to distort Gaussian random fields with two parameters, g and h, to introduce
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10 of 28 CHEN et al.

extra skewness and kurtosis. The TGH random field with location parameter 𝜉 ∈ R and scale parameter 𝜔 > 0 is defined
as follows:

T(s) = 𝜉 + 𝜔𝜏g,h{Z(s)},

where 𝜏g,h is the Tukey’s g-and-h transformation function

𝜏g,h(z) = g−1{exp(gz) − 1} exp(hz2∕2),

and Z(s) denotes a standard Gaussian random field which is the same as what we describe in Section 4.1. When g = h = 0,
the TGH random fields degenerate to Gaussian random fields. The details of implementing statistical inference for TGH
random fields in ExaGeoStat can be found in Mondal et al. (2022).

No matter what spatial model we use, our main target is to find the maximum likelihood estimator (MLE) of 𝜽 by
maximizing the log-likelihood function shown in (2). In the next section, we show by numerical experiments how the
ordering algorithms applied to the covariance matrices affect this parameter estimation process. Our preliminary experi-
ments show that the effect of the ordering algorithms on spatial data generated from bivariate and non-Gaussian models
is similar to those from univariate Matérn models. Therefore, to make it brief, we focus on numerical experiments with
spatial data generated from univariate Matérn models in the next section.

5 NUMERICAL STUDIES

In this section, we assess the performance and accuracy of TLR approximation on the spatial covariance matrix 𝚺(𝜽)
using different ordering algorithms. The experiments on small-scale data are performed using an Intel Xeon Gold 6230
CPU running at 2.10GHz, with memory size equal to 128GB, L1, L2, and L3 cache sizes equal to 32K, 1024K and 36,608K,
respectively; while on medium-scale data, we use Intel Xeon E5-2650 v2 CPUs running at 2.60GHz, with memory size
equal to 128GB, L1, L2, and L3 cache sizes equal to 32K, 256K and 20,480K, respectively.

This section considers spatial data with locations randomly generated within the two-dimensional unit square.

5.1 Parameter estimation accuracy assessment using various ordering algorithms

In this section, we demonstrate the effects of various ordering algorithms on the estimation accuracy of the statistical
parameters using a set of synthetic spatial data, characterized by a Matérn covariance matrix without nugget effect, as
described in equation (4). We first show results from small-scale data (n = 1600 locations, with tile size nb = 320) experi-
ments performed on a 40-core shared-memory machine and from medium-scale data (n = 20,000 locations, with tile size
nb = 1000) experiments performed on Shaheen-II supercomputer, using 4 nodes and 32 CPU cores on each node. Specif-
ically, we report the parameter estimation results using Morton, Hilbert, and KD-Tree ordering methods and compare
them with the accuracy of the estimation if no ordering algorithm is applied. We rely on the same optimization algorithm
BOBYQA (Powell, 2009), which is a bound-constrained algorithm without using derivatives embedded in ExaGeoStat.

5.1.1 Small-scale experiments

This section presents a comparative analysis of the effects of three distinct ordering algorithms – Morton, Hilbert, and
KD-Tree – on the estimation accuracy of the TLR approximation method, utilizing a covariance matrix of size 1600 × 1600.
Figure 4 shows a set of boxplots representing the estimated values of three parameters (variance, range, and smooth-
ness) for a Matérn covariance function under various correlation structures: weak, medium, and strong. In addition, the
root mean squared errors (RMSEs) of the same estimation results are presented in Table 1. The actual values for these
parameters are set at (𝜎2 = 1, 𝛽 = 0.03, 𝜈 = 0.5), (𝜎2 = 1, 𝛽 = 0.1, 𝜈 = 0.5), and (𝜎2 = 1, 𝛽 = 0.3, 𝜈 = 0.5) for each respec-
tive structure. The estimation is based on 100 synthetic datasets, each generated using the ExaGeoStat software. The
estimation employed the TLR method with a compression accuracy set to 10−7 and an optimization tolerance of 10−9.
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CHEN et al. 11 of 28

F I G U R E 4 BoxPlots of TLR estimation accuracy with n = 1600 under either No Order or Morton, Hilbert, KD-Tree orderings. The
horizontal lines in the first four rows denote the true values of the corresponding parameters or the function 𝜅 in (6).
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12 of 28 CHEN et al.

Additional results under other configurations are available in Appendix A.1. In Figure 4, the initial three rows display
the estimated values for variance, range, and smoothness parameters for each setting. The fourth row is dedicated to
illustrating the estimated values of the function 𝜅(𝜎2

, 𝛽, 𝜈) as follows:

𝜅(𝜎2
, 𝛽, 𝜈) = 𝜎2

𝛽

−2𝜈
, (6)

which was proved in Zhang (2004) to be identifiable under infill asymptotics. Moreover, in the fifth row, we plot the
number of iterations needed for the optimization process in ExaGeoStat to converge to the final results.

The results in Figure 4 and Table 1 show that when the correlation structure of spatial data is weak, it is
difficult to tell which ordering methods perform better than the others; however, when the correlation becomes
stronger, the Hilbert ordering method yields the most consistent and effective estimation results, and demon-
strates superior performance in the number of iterations required for convergence. Nevertheless, the accuracy of
parameter estimation using various ordering algorithms is minimally affected by the choice of algorithm. This
outcome is advantageous, as our objective is to speed up the optimization process without significantly altering
the results.

5.1.2 Medium-scale experiments

In this section, we expand the covariance matrix dimensions to 20,000 × 20,000 to examine the impact of different order-
ing algorithms on a medium-sized correlation matrix. Figure 5 compares the outcomes of these algorithms through
boxplots, and Table 2 presents the corresponding RMSEs. As in the small-scale experiments, we use synthetic spatial
data with the Matérn covariance function and weak, medium, and strong correlations under the same settings. Unlike
in Figure 4 and Table 1, Figure 5 and Table 2 omit the “no order” results due to the high ranks of individual tiles,
which slows down the estimation process. The experiments are repeated 100 times, each with independently gener-
ated synthetic datasets for each setting. The first three rows of Figure 5 display the estimation results for the variance,
range, and smoothness parameters, while the fourth row depicts the estimated value of the function 𝜅 as in (6). Addi-
tionally, the fifth row presents the number of iterations required for the optimization process in ExaGeoStat to reach
convergence.

The reported experimental results show that the Hilbert ordering method no longer gives superior results as in
small-scale cases. Instead, the KD-Tree gives the most stable and unbiased estimation results when the correlation struc-
ture of the spatial data is weak or medium. The number of iterations needed to converge is similar among the three
algorithms. Nevertheless, we can still conclude that the choice of ordering algorithm does not significantly affect the
accuracy of parameter estimation, which is what we desire.

T A B L E 1 The RMSEs of TLR estimation accuracy with n = 1600 under either no order or Morton, Hilbert, KD-Tree orderings, over 100
replicates of the experiments.

Correlation Parameter No order Morton Hilbert KD-tree

Weak Variance (𝜎2) 0.0613 0.0586 0.0547 0.0628

Range (𝛽) 0.0047 0.0048 0.0049 0.0052

Smoothness (𝜈) 0.0663 0.0696 0.0703 0.0704

Medium Variance (𝜎2) 0.1614 0.1717 0.1547 0.1657

Range (𝛽) 0.0225 0.0233 0.0214 0.0225

Smoothness (𝜈) 0.0362 0.0346 0.0341 0.0323

Strong Variance (𝜎2) 0.3564 0.3719 0.3327 0.3463

Range (𝛽) 0.1237 0.1174 0.1118 0.1317

Smoothness (𝜈) 0.0306 0.0255 0.0262 0.0264

Note: The lowest value of RMSE is marked in bold for each parameter and each correlation structure.
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CHEN et al. 13 of 28

F I G U R E 5 BoxPlots of TLR estimation accuracy with n = 20,000 under Morton, Hilbert, KD-Tree orderings. The horizontal lines in
the first four rows denote the true values of the corresponding parameters or the function 𝜅 in (6).
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14 of 28 CHEN et al.

T A B L E 2 The RMSEs of TLR estimation accuracy with n = 20, 000 under Morton, Hilbert, KD-Tree orderings, over 100 replicates of
the experiments.

Correlation Parameter Morton Hilbert KD-Tree

Weak Variance (𝜎2) 0.0619 0.0499 0.0537

Range (𝛽) 0.0022 0.0021 0.0018

Smoothness (𝜈) 0.0077 0.0086 0.0068

Medium Variance (𝜎2) 0.1607 0.1734 0.1594

Range (𝛽) 0.0161 0.0186 0.0156

Smoothness (𝜈) 0.0067 0.0065 0.0063

Strong Variance (𝜎2) 0.3742 0.3282 0.3586

Range (𝛽) 0.1090 0.0985 0.1038

Smoothness (𝜈) 0.0068 0.0061 0.0063

Note: The lowest value of RMSE is marked in bold for each parameter and each correlation structure.

5.2 Tile ranks with different ordering algorithms

The quality of TLR compression on individual tiles significantly influences the accuracy, memory usage, and com-
putational time required for the TLR approximation algorithm. In this section, we evaluate the effectiveness of TLR
compression applied to a covariance matrix generated with a Matérn covariance function. This is achieved by determining
the ranks of all matrix tiles while employing various ordering algorithms.

We rely on synthetic datasets generated with true values 𝜎2 = 1, 𝜈 = 0.5 and 𝛽 = 0.03, 0.1, 0.3, focusing on a location
count of n = 10,000 and a tile size of nb = 1000. Additional results under varied settings are shown in Appendix A.2.
Figure 6 shows heatmaps of sample covariance matrices for weak, medium, and strong correlation structures. For each
correlation type, we created 100 spatial datasets. We also present boxplots of the off-diagonal tiles’ minimum, median,
mean, and maximum rank values in the corresponding covariance matrices, as shown in Figure 7. Additionally, Figure 8
presents histograms of these ranks from the 100 datasets. Furthermore, Table 3 outlines the average memory size needed
to store the off-diagonal tiles using different ordering methods for the specified correlation structures.

From the figures and the table, we can highlight the performance of the three ordering algorithms (Hilbert, Morton,
and KD-Tree) in compressing individual off-diagonal tiles as follows:

• Lower off-diagonal tile ranks: All three algorithms successfully reduce off-diagonal tile ranks, which leads to lower
memory consumption and higher computation speed.

• Hilbert’s superiority in weak correlation: Hilbert outperforms Morton and KD-Tree in cases with weak correlation.
This can be shown by the distribution of off-diagonal tile ranks (Figure 8), where Morton and KD-Tree show peaks
around 150, but Hilbert does not.

• Memory efficiency: The memory required to store off-diagonal tiles using Hilbert is smaller than with Morton and
KD-Tree in cases of weak or medium correlation (Table 3). However, in strong correlation cases, the memory usage is
almost identical across all three algorithms.

• Effect of correlation strength on tile ranks: Figure 6 shows that the ranks of off-diagonal tiles become higher when
the correlation becomes weaker. At first, this may seem counter-intuitive, but the explanation is that the covariance
matrix values change more rapidly toward the off-diagonal direction when the correlation is smaller, which results in
higher tile ranks.

5.3 Computation performance assessment

This section assesses the computation performance of Morton, Hilbert, and KD-Tree ordering algorithms under different
correlation scenarios.
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CHEN et al. 15 of 28

F I G U R E 6 Heatmaps of tile ranks for various ordering algorithms for weak, medium, and strong correlation structures. Each small
square symbolizes a 1000 × 1000 tile, annotated with its corresponding rank. Diagonal tiles maintain full rank. Within each heatmap, darker
colors indicate higher ranks.
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16 of 28 CHEN et al.

F I G U R E 7 BoxPlots of the minimum, median, mean, and maximum of off-diagonal tile ranks with different ordering methods with
weak, medium, and strong correlation structures. We generated 100 sets of data with n = 10,000 locations, and they are all divided into
1000 × 1000 tiles.
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CHEN et al. 17 of 28

F I G U R E 8 Histograms of the proportions and curves of the empirical densities of off-diagonal tile ranks with different ordering
methods with weak, medium, and strong correlation structures. We generated 100 sets of data with n = 10,000 locations, and they are all
divided into 1000 × 1000 tiles.
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18 of 28 CHEN et al.

T A B L E 3 The average memory (in MB) for storing all the off-diagonal tiles of a covariance matrix of n = 10,000 to 40,000 spatial
locations divided into 1000 × 1000 tiles, with different ordering methods and correlation structures.

Ordering Weak Medium Strong

n = 10,000 Dense 360

No order 67 65 57

Morton 39 43 40

Hilbert 37 42 40

KD-tree 39 43 40

n = 20,000 Dense 1520

No order 256 250 227

Morton 105 123 122

Hilbert 91 110 113

KD-tree 100 116 115

n = 30,000 Dense 3480

No order 556 549 501

Morton 191 233 237

Hilbert 161 203 211

K D-tree 189 229 232

n = 40,000 Dense 6240

No order NA 955 870

Morton 251 316 328

Hilbert 240 312 331

KD-tree 251 316 328

Note: Here, we also compare with the theoretical storage needed without using TLR approximation, denoted by “dense”, where the storage is the same for
different correlation structures if n is fixed, and we can see the storage is much larger than using TLR approximation. The lowest storage required is marked in
bold for each number n and each correlation structure. The “NA” in this table means that when n = 40,000 with weak correlation, if we use no order, then
some of the off-diagonal tiles of the covariance matrix will be too dense for the TLR approximation to proceed.

5.3.1 Cholesky factorization performance

Recalling the formula of the log-likelihood in (2), the Cholesky factorization of the covariance matrix 𝚺 is the most
time-consuming operation while calculating the log-likelihood in each iteration during the optimization process to find
the MLE. Hence, this process is a key indicator of the overall performance.

To make it brief here, in Figure 9, we compare the execution time of a single TLR Cholesky factorization of a com-
pressed covariance matrix using the three ordering algorithms under different settings. The corresponding TLR accuracy
is 10−7, and the tile size is 1000. We consider the cases where the number of locations n equals to 3600, 6400, 10,000,
14,400, 22,500, 40,000, 62,500, and 90,000, and the corresponding results are shown in each subfigure of Figure 9 from
left to right in the x-axis. A more complete summary of the experiment results can be found in Appendix A.3.

The results indicate that TLR Cholesky factorization using Hilbert ordering outperforms Morton or KD-Tree ordering
in most cases. As the data size increases, the advantage of Hilbert ordering over the other two methods becomes more
consistent in percentage terms, indicating that Hilbert ordering saves more computation time as data size grows. However,
as depicted in the figure, there are two instances where Hilbert ordering does not exhibit the expected linear performance
compared to Morton ordering, that is, at 10,000 and 40,000 locations (although it remains faster in most cases). Upon
further analysis of these two cases, we found that Hilbert ordering still assists in reducing the ranks of the compressed
covariance matrix before Cholesky decomposition. However, the ranks may fluctuate after the factorization process. Due
to an implementation constraint in the current version of the ExaGeoStat software with TLR approximation used in this
study, the tile sizes must be allocated upfront to accommodate the largest anticipated rank of each tile during execution.
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CHEN et al. 19 of 28

F I G U R E 9 TLR Cholesky factorization execution time. Variance set at 𝜎2 = 1. The weak, medium, and strong refer to the range
parameter 𝛽 values of 0.03, 0.1, 0.3, respectively. The words “rough” and “smooth” correspond to the cases where 𝜈 = 0.5 and 𝜈 = 1,
respectively. The left-hand plots show the actual time differences (in seconds) for various orderings, while the right-hand plots present these
differences in percentage terms. The legends for the subfigures on the left apply to the subfigures on the right as well.

Consequently, we observed that in these two cases, the Hilbert-based covariance matrix exhibits higher tile ranks after
factorization than expected but they are still lower than the ranks of the Morton order.

We also note that the difference in the factorization time using different ordering methods is more significant when
the correlation among the spatial data is weaker, which is in line with our finding in Section 5.2 that when the correlation
is weaker, Hilbert ordering can reduce the ranks of off-diagonal tiles as well as the memory size needed to store the covari-
ance matrices. In addition, when the smoothness 𝜈 = 0.5, we observe a larger difference between Hilbert’s performance
and other orderings, compared with the case where 𝜈 = 1.

5.4 Application on soil moisture data

We apply our proposed methods on a daily soil moisture data set from a numerical model, which was organized by Litvi-
nenko et al. (2019), and can be downloaded from https://github.com/litvinen/HLIBCov.git. Soil moisture plays a crucial
role in assessing the condition of hydrological processes and finds widespread applications in weather forecasting, crop
yield prediction, and early detection of flood and drought events. Improving the characterization of soil moisture has
demonstrated a significant enhancement in weather forecasting. However, the high spatial resolution needed often results
in large datasets from numerical models, making the computation of many statistical inference methods impractical. In
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T A B L E 4 Experimental results on soil moisture data for various numbers of locations, n.

n Ordering �̂�
2

𝜷 𝝂

Number of
iterations

Time to
solution (s)

Time per
iteration (s)

2000 Morton 1.1541 0.2335 0.2655 416 80 0.19

Hilbert 1.1549 0.2339 0.2655 383 70 0.18

KD-tree 1.1552 0.2340 0.2655 435 83 0.19

4000 Morton 1.0602 0.2640 0.2350 397 135 0.34

Hilbert 1.0602 0.2640 0.2350 355 118 0.33

KD-tree 1.0600 0.2639 0.2350 310 103 0.33

8000 Morton 1.0637 0.2318 0.2390 566 1807 3.19

Hilbert 1.0638 0.2318 0.2390 531 1707 3.21

KD-tree 1.0636 0.2318 0.2389 493 1558 3.16

16,000 Morton 1.0725 0.2517 0.2353 203 2242 11.04

Hilbert 1.0678 0.2493 0.2353 282 3085 10.94

KD-tree 1.0680 0.2492 0.2354 293 3175 10.84

32,000 Morton 1.0245 0.1577 0.2610 764 20,524 26.86

Hilbert 1.0261 0.1582 0.2610 605 15,550 25.70

KD-tree 1.0257 0.1581 0.2610 519 13,101 25.24

Note: Parameter estimation results are shown in the columns with titles �̂�2, ̂𝛽, and �̂�, respectively, and in the last three columns, we show the number of
iterations needed until the optimization process converges, as well as the average execution time for each iteration and the total execution time of the
optimization, both in seconds. We do not present the results using no order because, in that case, some off-diagonal tiles will be too dense for the TLR
approximation to proceed.

this experiment, we examine high-resolution soil moisture data on January 1, 2014, in the upper soil layer of the Missis-
sippi River basin in the United States. The spatial resolution of the data is 0.0083 degrees, and the distance of one-degree
difference in this region is approximately 87.5 km. The dataset encompasses 2,000, 000 locations, and it does not conform
to a regular grid. In our experiment, subsets of the data with numbers of locations n = 2000, 4000, 8000, 16,000, 32,000
are randomly selected. We apply Morton, Hilbert, and KD-Tree orderings with TLR approximation to perform estima-
tion on the variance parameter 𝜎2, range 𝛽 and smoothness 𝜈 assuming a Gaussian random field with Matérn covariance
function as defined in (4).

In Table 4, we show the estimation results for the parameters 𝜎2, 𝛽, and 𝜈, as well as the number of iterations needed
until the optimization process converges, the average execution time for each iteration, and the total execution time of
the optimization, which are shown in the last three columns. Different ordering methods have almost no influence on
the parameter estimation results. For the time it takes to complete each iteration, there is also no big difference among
these three ordering algorithms. This makes sense since, from the parameter estimation results, we can see the depen-
dence structure of this data set is between medium and strong, closer to the strong side. As we demonstrated in Table 3
and Figure 8, the difference in reduction of off-diagonal tiles among different ordering algorithms is not that much
in this case.

6 CONCLUSION AND DISCUSSION

Maximum likelihood estimation (MLE) is commonly used to estimate the statistical parameters of covariance functions
to model spatial data. It relies on a dense covariance matrix of a size matching the number of spatial locations, hence
making large-scale manipulations complex and often prohibitive. Consequently, approximation methods are commonly
employed to simplify this complexity. These approximation methods can become more effective when paired with par-
allel processing. Our study focused on the Tile Low-rank (TLR) approximation, which approximates the matrix tiles
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in low-rank rather than the entire matrix. Yet, a major challenge with TLR approximation lies in how the ordering of
elements within the covariance matrix can significantly affect the quality of the approximation.

In this work, we implemented several ordering algorithms in the ExaGeoStat framework to reorder the loca-
tions of spatial data before generating the spatial covariance matrices and performing TLR approximation. Some
ordering methods, like Morton, Hilbert, and KD-Tree, can largely reduce computation time and storage while
performing parameter estimation on the data using MLE. We conducted numerical experiments with data gener-
ated from Gaussian random fields with the Matérn covariance function. To be specific, we examined the accu-
racy of parameter estimation and the convergence rate (Figures 4 and 5), the ranks of off-diagonal tiles in TLR
estimation (Figures 6–8) as well as the storage required (Table 3), and the execution time of Cholesky factor-
ization of the covariance matrix (Figure 9). In addition, we applied our methods to a soil moisture data set
(Table 4).

From our conducted numerical experiments, as we desire, the ordering algorithms do not significantly affect the
parameter estimation accuracy. However, some differences can still be observed: in small-scale cases, Hilbert slightly out-
performs the other ordering methods when the correlation structure of the spatial data is medium or strong, for example,
in the medium scenario, the RMSE of estimation results of the variance using Hilbert is 4.3%, 11.0%, and 7.1% lower
than applying no order, Morton and KD-Tree, respectively; while in medium-scale cases, different ordering algorithms
achieve the highest accuracy in different scenarios, for example, in the medium scenario, the RMSE of estimation results
of the variance using KD-Tree is 0.8% and 8.8% lower than using Morton and Hilbert, and in the strong scenario, the
RMSE of estimation results of the variance using Hilbert is 14.0% and 9.3% lower than using Morton and KD-Tree. We
also find that the computation time and storage of the estimation procedure varies depending on the ordering algorithms
employed, especially when the correlation structure is weak; Hilbert can reduce the ranks of off-diagonal tiles to the
largest extent and, therefore, reduce the computation time. For example, when the weakly correlated spatial dataset con-
tains n = 10,000 locations, and we divide the correlation matrix into 1000 × 1000 tiles, the average tile ranks using Hilbert
is 5.4% and 5.5% lower than using other ordering methods, namely Morton and KD-Tree, and it is 79.6% lower than using
no order. However, when the correlation among the spatial data gets stronger and stronger, the advantage of the Hilbert
method gradually vanishes. Under the scenario of a strong correlated spatial dataset, still with n = 10,000 locations and
the correlation matrix divided into 1000 × 1000 tiles, the average tile ranks using Hilbert is still 42.4% lower than using no
order, but 0.4% and 0.3% higher than using Morton and KD-Tree. This observation was also verified by our experiments
on real data.
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APPENDIX . SUPPLEMENTARY EXPERIMENTAL RESULTS

In Sections 5.1 and 5.2, we analyzed the parameter estimation accuracy and the effect of TLR compression to a given
covariance matrix generated using a Matérn covariance kernel, with synthetic data sets generated using rough set-
tings (i.e., the smoothness parameter 𝜈 = 0.5). In the appendix, we show some results using smooth settings (𝜈 = 1),
and in this case, for the weak, medium and strong correlation structures, the true values of the variance, range, and
smoothness parameters are set to be (𝜎2 = 1, 𝛽 = 0.025, 𝜈 = 1), (𝜎2 = 1, 𝛽 = 0.075, 𝜈 = 1), and (𝜎2 = 1, 𝛽 = 0.2, 𝜈 = 1),
respectively.

A.1 Parameter estimation
In Figure A1, we demonstrate the parameter estimation results of small-scale data (n = 1600 locations, with tile size
nb = 320) experiments performed on a normal machine with 40 CPU cores, with data generated from the smooth settings.
As in Section 5.1.1, the experiments are repeated 100 times using different synthetic data sets generated independently
each time for each setting. In the first three rows, we show the estimation results of the variance, range, and smoothness
parameters in each setting, while in the fourth row, we plot the estimated value of the function 𝜅 defined in (6), to give
an overall evaluation of the accuracy of the three parameters.

A.2 Tile ranks
As in Section 5.2, we show the heatmaps of some sample covariance matrices with weak, medium, and strong correlation
structures in the smooth settings in Figure A2. In addition, for each type of correlation structure, we generated 100 sets
of spatial data and made boxplots for the minimum, median, mean, and maximum values of the off-diagonal tiles in the
corresponding covariance matrices, which is shown in Figure A3; we also show the histogram of these ranks from the
100 data sets, which we demonstrate in Figure A4.

A.3 Cholesky factorization performance
In Figure 9, we showed the plots comparing the execution time of Cholesky decomposition using Hilbert ordering with
using Morton or KD-Tree. Here in Figure A5, we, in addition, show the boxplots of the same experiments to make the
experimental results more complete. The conclusion that we can draw from Figure A5 is the same as from Figure 9, that
the computation speed using Hilbert is superior to using the other ordering methods in most cases, except in some cases
when N = 10,000 and N = 40,000.
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F I G U R E A1 BoxPlots of TLR estimation accuracy with n = 1600 under either No Order or Morton, Hilbert, KD-Tree orderings. The
data are generated from smooth settings. The horizontal lines in the first four rows denote the true values of the corresponding parameters or
the function 𝜅 in (6).
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F I G U R E A2 Heatmaps of tile ranks for various ordering algorithms for weak, medium, and strong correlation structures in smooth
settings. Each small square symbolizes a 1000 × 1000 tile, annotated with its corresponding rank. Diagonal tiles maintain full rank. Within
each heatmap, darker colors indicate higher ranks.
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F I G U R E A3 BoxPlots of the minimum, median, mean, and maximum of off-diagonal tile ranks with different ordering methods with
weak, medium, and strong correlation structures in smooth settings. We generated 100 sets of data with n = 10,000 locations, and they are all
divided into 1000 × 1000 tiles.
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F I G U R E A4 Histograms of the proportions and curves of the empirical densities of off-diagonal tile ranks with different ordering
methods with weak, medium, and strong correlation structures in the smooth settings. We generated 100 sets of data with n = 10,000
locations, and they are all divided into 1000 × 1000 tiles.
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F I G U R E A5 TLR Cholesky factorization execution time. Variance set at 𝜎2 = 1. The weak, medium, and strong refer to the range
parameter 𝛽 values of 0.03, 0.1, 0.3, respectively. The words “rough” and “smooth” correspond to the cases where 𝜈 = 0.5 and 𝜈 = 1,
respectively. The total six cases of dependence structures are represented by six different colors in the boxplots, as described in the legends.
For the x-axes, to make it brief, we use the initials to denote the corresponding ordering algorithms, namely “M” for Morton, “H” for Hilbert,
and “K” for KD-Tree.
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