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Abstract: For high-dimensional data with a small sample size, we cannot use

Hotelling’s T 2 test to test the mean vectors because of the singularity problem in

the sample covariance matrix. To overcome this problem, there are three main

approaches but each has limitations and only works well in certain situations.

Inspired by this, we propose a pairwise Hotelling method for testing high-

dimensional mean vectors that provides a good balance between the existing

approaches. To use the correlation information efficiently, we construct the new test

statistics as the sum of Hotelling’s test statistics for the covariate pairs with strong

correlations and the squared t-statistics for the individual covariates that have little

correlation with others. We further derive the asymptotic null distributions and

power functions for the proposed tests under some regularity conditions. Numerical

results show that our tests are able to control the type-I error rates and achieve

a higher statistical power than that of existing methods, especially when the

covariates are highly correlated. Two real-data examples are used to demonstrate

the efficacy of our pairwise Hotelling’s tests.
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1. Introduction

A fundamental problem in multivariate statistics is to test whether a mean

vector is equal to a given vector for the one-sample test, or to test whether two

mean vectors are equal for the two-sample test. To start with, let µ and Σ be

the mean vector and covariance matrix, respectively, of a random vector X. For

the one-sample case, we are interested in testing the hypothesis

H0 : µ = µ0 versus H1 : µ 6= µ0, (1.1)

where µ0 = (µ01, . . . , µ0p)
T is a given vector, p is the dimension, and the

superscript T denotes the transpose of a vector or a matrix. Assume that Xk =

(Xk1, . . . , Xkp)
T

, for k = 1, . . . , n, are independent copies of X = (X1, . . . , Xp)
T ,

where n is the sample size. Then to test hypothesis (1.1) under the assumption
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of data normality, the classical Hotelling’s T 2 test (Hotelling (1931)) is

T 2 = n(X̄ − µ0)
TS−1(X̄ − µ0),

where X̄ =
∑n

k=1Xk/n is the sample mean vector, and S =
∑n

k=1(Xk−X̄)(Xk−
X̄)T/(n− 1) is the sample covariance matrix.

The era of big data has witnessed an increase in high-dimensional data, where

the dimension is usually larger or much larger than the sample size. The resulting

“large p small n” paradigm poses new challenges for testing problem (1.1). For

example, when testing whether two gene sets, or pathways, have equal expression

levels under two experimental conditions the number of genes (p) may be much

larger than the number of samples (n). For high-dimensional data with a small

sample size, Bai and Saranadasa (1996) show that we cannot apply Hotelling’s

T 2 test because of the singularity problem in the sample covariance matrix.

Several methods have been proposed to overcome this problem. There are

three categories of approaches for handling the noninvertible sample covariance

matrix:

(a) In the first category, researchers substitute the sample covariance matrix S

with the p × p identity matrix Ip, leading to the unscaled Hotelling’s tests

(UHTs), with the test statistic

T 2
UHT = n(X̄ − µ0)

T (X̄ − µ0);

see, for example, Bai and Saranadasa (1996), Chen and Qin (2010), Wang,

Peng and Qi (2013), Ahmad (2014), Ayyala, Park and Roy (2017), and

Zhang et al. (2020). In addition, Xu et al. (2016) consider an adaptive

testing procedure with the test statistic T (γ) =
∑p

j=1(X̄j − µ0j)
γ , and He

et al. (2021) use the idea of a UHT to develop a unified U -statistic for testing

mean vectors, covariance matrices, and regression coefficients.

(b) In the second category, researchers replace the sample covariance matrix

with a diagonal covariance matrix, yielding the diagonal Hotelling’s tests

(DHTs). Specifically, by letting D = diag(S) be the diagonal covariance

matrix, Wu, Genton and Stefanski (2006) introduce the test statistic

T 2
DHT = n(X̄ − µ0)

TD−1(X̄ − µ0),

and Srivastava and Du (2008) study the limiting behaviors of this test

statistic under data normality. Cai, Liu and Xia (2014) consider a test based

on the maximum of the squared marginal t-statistics, and Hu, Tong and

Genton (2019) propose a likelihood ratio test based on a diagonal covariance

matrix structure. Feng et al. (2017) assume a block diagonal structure for

the covariance matrix, and apply Hotelling’s T 2 within each block. Further
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studies on DHT include those of Srivastava (2009), Park and Ayyala (2013),

Srivastava, Katayama and Kano (2013), Feng and Sun (2015), Feng et al.

(2015), Gregory et al. (2015), Dong et al. (2016), Cao, Lin and Li (2018),

Chen, Li and Zhong (2019), and Jiang and Li (2021).

(c) In the third category, researchers apply regularization methods to estimate

the covariance matrix to overcome the singularity problem in the sample

covariance matrix, yielding the regularized Hotelling’s tests (RHTs). Here,

Chen et al. (2011) propose a ridge-type regularization with the test statistic

T 2
RHT,1 = n(X̄ − µ0)

T (S + λIp)
−1(X̄ − µ0).

This test statistic is also considered by Li et al. (2020) for the two-sample

testing problem. Lopes, Jacob and Wainwright (2011) propose another

regularized test statistic based on the random projection technique, namely,

T 2
RHT,2 = n(X̄ − µ0)

TP T
R (PRSP

T
R )−1PR(X̄ − µ0),

where PR is a random matrix of size k × p. Further developments on

projection-based techniques include, for example, Thulin (2014), Srivastava,

Li and Ruppert (2016), and Zoh et al. (2018).

The tests in the first two categories do not account for correlations between

the covariates, and thus may not provide a valid test with a controlled type-

I error rate and/or acceptable statistical power. In contrast, the RHT in the

third category is a universal method that attempts to account for all correlations

within the covariance matrix. In other words, the ridge-type and projection-based

statistics do not consider the sparsity of the covariance matrix. Consequently,

the RHT may not provide satisfactory performance when the sample size n is

small relative to the dimension p (Dong et al. (2016)). Li (2017) considers a

composite Hotelling’s test (CHT) to account for the correlations. The author

extracts two-dimensional pairs (Xi, Xj)
T , with i < j, from the p-dimensional

vector X, and then takes the average of the classical Hotelling’s test statistics

for all the bivariate sub-vectors. When the covariance matrix is sparse and the

sample size is small, a CHT may not provide satisfactory performance either.

This is confirmed by Bickel and Levina (2004), who find that if the estimated

correlations are very noisy because of the small sample size, it is probably better

not to estimate them at all.

To overcome the drawbacks of the aforementioned tests, we propose a

new category of testing methods to further advance the existing literature on

testing high-dimensional mean vectors. Our main idea is to find a good balance

between the second and third categories by leveraging the advantages of both

of them. Specifically, to use the correlation information efficiently, we first

construct the classical Hotelling’s statistics for the covariate pairs with strong
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correlations. For individual covariates that have little correlation with others,

we apply the squared t-statistics to account for their respective contributions

to the multivariate testing problem. Our new test statistics are summations

over all of the Hotelling’s statistics and squared t-statistics. Consequently, they

capture sufficient dependence information among the components, while also

accounting for the sparsity of the covariance matrices. We further derive the

asymptotic null distributions and power functions of the proposed statistics, and

investigate the regularity conditions needed to establish their asymptotic results.

The results of simulation studies and real-data analyses show that our proposed

tests outperform existing methods in a wide range of settings.

The rest of the paper is organized as follows. In Section 2, we propose

the pairwise Hotelling’s testing method for the one-sample test, and derive the

asymptotic distributions of the test statistic under the null and local alternative

hypotheses. In Section 3, we propose the pairwise Hotelling’s testing method for

the two-sample test, and derive the asymptotic results, including the asymptotic

null distribution and the power function. In Section 4, we conduct simulation

studies to evaluate the proposed tests and compare them with existing methods.

We then apply the proposed tests to two real-data examples in Section 5, and

conclude the paper in Section 6 with a brief summary and suggestions for possible

future work. All technical details are provided in online Supplementary Material.

2. One-Sample Test

In this section, we consider the one-sample testing problem (1.1) under the

“large p small n” paradigm. Recall that we cannot use Hotelling’s T 2 test when

the dimension is larger than the sample size. To overcome the singularity problem,

one possible approach is to downsize the dimension of the sample covariance

matrix.

To achieve this, we decompose the p-dimensional vector X into a series

of bivariate sub-vectors (Xi, Xj)
T , with i < j. We then apply the bivariate

Hotelling’s test statistic to account for their pairwise correlation as

T 2
ij = (X̄i − µ0i, X̄j − µ0j)

(
sii sij
sji sjj

)−1
(X̄i − µ0i, X̄j − µ0j)

T

= (X̄ − µ0)
TP T

ij (PijSP
T
ij )
−1Pij(X̄ − µ0),

where X̄i =
∑n

k=1Xki/n is the sample mean of the ith covariate, sij is the sample

covariance of the ith and jth covariates, and Pij =

(
0 · · · 1 · · · 0 · · · 0
0 · · · 0 · · · 1 · · · 0

)
is a 2×p

matrix with the (1, i) and (2, j) components being one and all others being zero.

Finally, we can apply the following U -type test statistic to accumulate all the
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pairwise correlations between the covariates:

W1 = n
p∑
j=2

j−1∑
i=1

T 2
ij = n(X̄ − µ0)

T

(
p∑
j=2

j−1∑
i=1

P T
ij (PijSP

T
ij )
−1Pij

)
(X̄ − µ0). (2.1)

The pairwise idea W1 can be traced back to the pairwise likelihood methods.

For likelihood-based inference involving distributions with high-dimensional

dependencies, applying the approximate likelihoods based on the bivariate

marginal distributions can be a powerful approach (Cox and Reid (2004), Varin,

Reid and Firth (2011), Li (2017)). Note that, as long as n ≥ 3, the pairwise

method in (2.1) is always applicable, and so it resolves the singularity problem

in the original Hotelling’s T 2 test.

2.1. Pairwise Hotelling’s test statistic

For high-dimensional data, the covariance matrix is often sparse, with only

a small proportion of non-zero correlations. In such settings, the U -type test

statistic W1 will include many noisy terms, and the test may not provide

sufficiently large power, particularly when n is small relative to p.

To further improve the test statistic (2.1), we propose a thresholding method

that shrinks the small estimates of correlations to zero to reduce the noise level

in W1. Specifically, we consider a screening procedure based on Kendall’s tau

correlation matrix, mainly because it is more robust than Pearson’s correlation.

Moreover, Kendall’s tau correlation is a U -statistic, and so by Hoeffding’s

inequality, it can guarantee higher screening accuracy (Li et al. (2012); Zhang

(2021)). Let R = (rij)1≤i,j≤p ∈ Rp×p be Kendall’s tau correlation matrix, and

Γ = (τij)1≤i,j≤p ∈ Rp×p, with τij = |rij|, where | · | is the absolute value function.

In addition, let

A1 = {(i, j) : τij > τ0 and i < j} and A2 = {i : τij < τ0 for all j 6= i}

be two sets of indices, where τ0 ∈ [0, 1] is a prespecified threshold. Clearly,

covariate pairs with strong correlations fall into A1, and individual covariates

with little correlation with others fall into A2. In practice, R, A1, and A2 are all

unknown, and thus need to be estimated from the sample data.

Assume that R̂ is Kendall’s tau sample correlation matrix. Then, with a

given τ0, the sample estimates of A1 and A2 are, respectively,

Â1 = {(i, j) : τ̂ij > τ0 and i < j} and Â2 = {i : τ̂ij < τ0 for all j 6= i},

where τ̂ij = |r̂ij|. In addition, let Xij;k = (Xki, Xkj)
T ∈ R2 be the kth sample of

(Xi, Xj)
T , X̄{i,j} be the sample mean vector, and S{i,j} be the sample covariance

matrix of Xij;k. Then, to test hypothesis (1.1), the thresholding test statistic can
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be represented as

W1(τ0) = n
∑

(i,j)∈Â1

(
X̄{i,j}−µ0,{i,j}

)T
S−1{i,j}

(
X̄{i,j}−µ0,{i,j}

)
+ n

∑
i∈Â2

(x̄i − µ0i)
2

sii
,

where µ0,{i,j} = (µ0i, µ0j)
T . The test statistic W1(τ0) fully takes into account the

pairwise correlations between the covariates. Specifically, we apply Hotelling’s

test statistics to account for the contributions from the covariate pairs with strong

correlations (i.e., for all (i, j) ∈ Â1), and apply squared t-statistics to account for

the contributions from the individual covariates with little correlation with others

(i.e., for all i ∈ Â2).

Let Pi = (0, . . . , 1, . . . , 0), where the ith component is one and all others are

zero. Let P̂O =
∑

(i,j)∈Â1
P T
ij (PijSP

T
ij )
−1Pij +

∑
i∈Â2

P T
i (PiSP

T
i )−1Pi. Using the

new notation, we can rewrite W1(τ0) as

W1(τ0) = n(X̄ − µ0)
T P̂O(X̄ − µ0).

For simplicity, we also let PO=
∑

(i,j)∈A1
P T
ij (PijΣP

T
ij )
−1Pij +

∑
i∈A2

P T
i (PiΣP

T
i )−1

Pi be the unknown population value of P̂O. Note that W1(τ0) involves the

terms (Xs − µ0)
T P̂O(Xs − µ0), for s = 1, . . . , n, which introduce higher-order

moments in the centering and scaling parameters when establishing the limiting

distributions. Hence, to stabilize the test statistic, we apply the leave-one-out

method, as in Chen and Qin (2010), and propose the new test statistic

T1(τ0) =
1

n(n− 1)

n∑
s=1

n∑
t6=s

(Xs − µ0)
T P̂

(s,t)
O (Xt − µ0), (2.2)

where P̂
(s,t)
O =

∑
(i,j)∈Â1

P T
ij (PijS

(s,t)P T
ij )
−1Pij +

∑
i∈Â2

P T
i (PiS

(s,t)P T
i )−1Pi, and

S(s,t) is the sample covariance matrix without observations Xs and Xt. We refer

to the test statistic in (2.2) as the pairwise Hotelling’s test (PHT) statistic. As

a special case, if we set τ0 = 1, then Â1 = ∅ and Â2 = {1, . . . , p}, in which case,

the PHT statistic reduces to the diagonal Hotelling’s test of Park and Ayyala

(2013). On the other hand, if we set τ0 = 0, then Â1 = {(i, j) : i < j}, for

i, j = 1, . . . , p, and Â2 = ∅; that is, the PHT statistic accounts for all correlations

in the covariance matrix, making it the same as W1 in (2.1).

2.2. Asymptotic results

First, we show that the selected sets Â1 and Â2 based on the sample data

are consistent estimates of A1 and A2, respectively, when the sample sizes tend

to infinity; the proof is given in Appendix C.1.

Theorem 1. Assume that τ0 satisfies lim infi,j=1,...,p{τij|τij > τ0} > τ0 and

lim supi,j=1,...,p{τij|τij < τ0} < τ0. Let Â1 and Â2 be the two sets based on the
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threshold τ0 in the screening procedure. Then, for any given positive integer m0,

if p = O(nm0), we have

P (Â2 = A2) ≥ P (Â1 = A1)→ 1 as (n, p)→∞.

Next, following the assumptions in Chen and Qin (2010), we assume that the

random vector X = (X1, . . . , Xp)
T follows the linear model

X = C1Z + µ, (2.3)

where C1 ∈ Rp×q, with q ≥ p, such that Σ = C1C
T
1 , µ = (µ1, . . . , µp)

T , and the

random vector Z satisfies E(Z) = 0 and Var(Z) = Iq. In addition for Z =

(Z1, . . . , Zq)
T , we assume that the following moment conditions hold: E(Z4

j ) =

3 + ∆1 <∞, where ∆1 is a positive constant, and

E(Zα1

l1
Zα2

l2
· · ·Zαklk ) = E(Zα1

l1
)E(Zα2

l2
) · · ·E(Zαklk ),

where k is a positive integer such that α1 + · · ·+ αk ≤ 8, and l1 6= l2 6= · · · 6= lk.

We further assume that {(Xi, Xj) : i, j = 1, 2, . . . , p with i 6= j} is a two-

dimensional random field, and define the ρ-mixing coefficient for X = {Xj, j =

1, 2, . . . , p} as

ρ(s) = sup
{
|Corr(g1, g2)| : g1 ∈ L2(X(A3)), g2 ∈ L2(X(A4)), dist(A3, A4) ≥ s

}
over any possible sets A3, A4 ⊂ {1, 2, . . . , p}, with card(A3) ≤ 2 and card(A4) ≤ 2,

where card(·) is an operator that counts the number of elements in a given set,

dist(A3, A4) = mini∈A3,j∈A4
|i− j| is the distance between A3 and A4, Corr(g1, g2)

is the correlation between g1 and g2, and L2{X(E)} is the set of all measurable

functions defined on the σ-algebra generated by X over E ⊂ {1, 2, . . . , p} with

the existence of the second moment.

To establish the asymptotic null and alternative distributions of the proposed

test statistic, we also need the following conditions:

(C1) There exists a finite positive number K̄1 such that 1/K̄1 ≤ λp(Σ) ≤ · · · ≤
λ1(Σ) ≤ K̄1, where λi(Σ) is the ith largest eigenvalue of Σ.

(C2) Assume that {Xj : j ≥ 1} is a ρ-mixing sequence such that ρ(s) ≤
$0 exp (−s), where $0 > 0 is a constant.

(C3) There exists an oracle constant τ ∗ ∈ (0, 1) such that, for a finite positive

integerK0, supi≤pcard(A∗i ) ≤ K0, where A∗i = {j : τij > τ ∗}. In addition, we

assume that lim inf i,j=1,...,p{τij|τij > τ ∗} > τ ∗ and lim supi,j=1,...,p{τij|τij <
τ ∗} < τ ∗.

(C4) There exists a positive integer m0 > 4 such that the higher-order moments

E(X4m0+2
1 ), . . . , E(X4m0+2

p ) are bounded uniformly, indicating that there
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exists a constant $1 > 0 such that E(X4m0+2
kj ) < $1 holds for j = 1, . . . , p.

In addition, we assume that E
∥∥S−1{i,j}∥∥8 for (i, j) ∈ A1 and E(s−8jj ) for j ∈ A2

are bounded uniformly, where
∥∥ · ∥∥ is the Frobenius norm.

(C5) Assume that µTPOµ = o(
√
p/n). There exists a constant $2 > 0 such

that |µj − µ0j|2 ≤ $2/
√
n.

Condition (C1) assumes that the eigenvalues are bounded uniformly away

from zero and infinity, which is the same condition as in Cai, Liu and Xia (2014)

and Xu et al. (2016). Condition (C2) is the so-called ρ-mixing condition, which

follows from Lin and Lu (1997) and implies a weak dependence structure of the

data, commonly assumed in many genome-wide association studies. For example,

single nucleotide polymorphisms (SNPs) have a local dependence structure in

which the correlations between SNPs often decay rapidly as the distances between

the gene loci increase. Condition (C3) assumes that our PHT statistic allows the

number of covariate pairs with strong correlations to increase at the same order

of p. Conditions (C4) and (C5) are technical conditions needed to derive the

asymptotic results of the proposed test statistic.

Theorem 2. Assume that τ0 ≥ τ ∗, lim infi,j=1,...,p{τij|τij > τ0} > τ0, and

lim supi,j=1,...,p{τij|τij < τ0} < τ0. Then, under model (2.3) and conditions (C1)–

(C5), if p = o(n(m0−3)/2) with m0, as defined in (C4), we have

T1(τ0)− δT1 POδ1√
2n−2tr(Λ2

1)

D−→ N(0, 1) as (n, p)→∞,

where δ1 = µ−µ0, Λ1 = Σ1/2POΣ1/2, tr(·) is the trace function, and
D−→ denotes

convergence in distribution.

The proof of Theorem 2 is given in Appendix C.2. This theorem shows

that, despite not knowing the exact threshold τ ∗, we can select a larger

threshold τ0 > τ ∗, such that if τ0 satisfies lim inf i,j=1,...,p{τij|τij > τ0} > τ0 and

lim infi,j=1,...,p{τij|τij < τ0} < τ0, then the test statistic T1(τ0) still converges to

the standard normal distribution after proper centering and scaling.

To apply Theorem 2, we need a ratio-consistent estimator for the unknown

tr(Λ2
1). For this purpose, we establish the following lemma, with the proof

provided in Appendix C.3.

Lemma 1. Assume that τ0 satisfies the assumptions in Theorem 2. Then, under

model (2.3) and conditions (C1)–(C5), we have that

(i) if p = o(n3), then

t̂r(Λ2
1) =

1

n(n− 1)

n∑
s 6=t

(Xs − X̄(s,t))T P̂
(s,t)
O Xt(Xt − X̄(s,t))T P̂

(s,t)
O Xs
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is a ratio-consistent estimator of tr(Λ2
1), where X̄(s,t) is the sample mean

vector without observations Xs and Xt;

(ii) if p = o(min(n3, n(m0−3)/2)), then under the null hypothesis of (1.1),

T1(τ0)√
2n−2t̂r(Λ2

1)

D−→ N(0, 1) as (n, p)→∞.

By Theorem 2, the power function of the PHT statistic for the one-sample

test is

Power(δ1) = Φ

(
− zα +

δT1 POδ1√
2n−2tr(Λ2

1)

)
, (2.4)

where Φ(x) is the cumulative distribution function of the standard normal

distribution. The performance of the new test depends on the quantities δT1 POδ1
and tr(Λ2

1). Theoretically, a reasonable choice of the threshold τ0 maximizes

Power(δ1) so that PHT achieves the highest asymptotic power. However,

this maximization procedure is infeasible in practice, because δT1 POδ1/
√

tr(Λ2
1)

involves unknown quantities δ1 and Σ. We further examine a practical choice of

τ0 in Section 4.3.

3. Two-Sample Test

This section considers the two-sample test for mean vectors with equal covari-

ance matrices. Let {Xs = (Xs1, . . . , Xsp)
T}n1

s=1 and {Yt = (Yt1, . . . , Ytp)
T}n2

t=1 be

two groups of independent and identically distributed (i.i.d.) random vectors

from two independent multivariate populations. Furthermore, let E(Xs) =

µ1 = (µ11, . . . , µ1p)
T be the mean vector of the first population, E(Yt) = µ2 =

(µ21, . . . , µ2p)
T be the mean vector of the second population, and Σ be the

common covariance matrix for both populations. For the two-sample test, we

are interested in testing the hypothesis

H0 : µ1 = µ2 versus H1 : µ1 6= µ2. (3.1)

3.1. Pairwise Hotelling’s test statistic

Following similar notation as that for the one-sample test, we let Kendall’s

tau correlation matrix be R = (rij)1≤i,j≤p ∈ Rp×p, and Γ = (τij)1≤i,j≤p ∈ Rp×p,
with τij = |rij|. Furthermore, let

A1 = {(i, j) : τij > τ0 and i < j} and A2 = {i : τij < τ0 for all j 6= i}

be two sets of indices, where τ0 ∈ [0, 1] is a prespecified threshold, and denote

PO =
∑

(i,j)∈A1

P T
ij (PijΣP

T
ij )
−1Pij +

∑
i∈A2

P T
i (PiΣP

T
i )−1Pi.
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Assume that R̂1 = (r̂ij,1)1≤i,j≤p ∈ Rp×p and R̂2 = (r̂ij,2)1≤i,j≤p ∈ Rp×p are

the respective Kendall’s tau sample correlation matrices for the two groups. For

simplicity, let N = n1 + n2, and assume n1/N → ϕ0 ∈ (0, 1) as N → ∞. Then,

with a given τ0, the sample estimates of A1 and A2 are, respectively,

Â1 = {(i, j) : τ̂ij > τ0 and i < j} and Â2 = {i : τ̂ij < τ0 for all j 6= i},

where τ̂ij = (n1τ̂ij,1 + n2τ̂ij,2)/N , τ̂ij,1 = |r̂ij,1|, and τ̂ij,2 = |r̂ij,2|. In addition, we

need the following notation related to the sample covariance matrices:

(a) Let S1 (or S2) be the sample covariance matrix of group 1 (or group 2), S
(s)
1

(or S
(s)
2 ) be the sample covariance matrix of group 1 (or group 2) without

observationXs (or Ys), and S
(s,t)
1 (or S

(s,t)
2 ) be the sample covariance matrix

of group 1 (or group 2) without observations Xs and Xt (or Ys and Yt).

(b) Let s1,jj (or s2,jj) be the sample variance of Xkj (or Ykj), and S1,{ij} and

S2,{ij} be the sample covariance matrices of (Xki, Xkj)
T and (Yki, Ykj)

T ,

respectively. Furthermore, let s
(s,t)
1,jj (or s

(s,t)
2,jj ) be the sample variance of

Xkj (or Ykj) without observations Xsj and Xtj (or Ysj and Ytj).

(c) Let S
(s,t)
1∗ = [(n1− 2)S

(s,t)
1 +n2S2]/(N − 2) be the pooled sample covariance

matrix without observations Xs and Xt in group 1, and S
(s,t)
2∗ = [n1S1 +

(n2 − 2)S
(s,t)
2 ]/(N − 2) be the pooled sample covariance matrix without

observations Ys and Yt in group 2.

(d) Let S12 = {(n1−1)S1+(n2−1)S2}/(N−2) be the pooled sample covariance

matrix of the two groups, and S
(s,t)
12,∗ = {(n1− 1)S

(s)
1 + (n2− 1)S

(t)
2 }/(N − 2)

be the pooled sample covariance matrices without Xs and Yt in groups 1

and 2, respectively.

Following similar arguments as in (2.1), we propose the following U -type test

statistic for the two-sample test:

W2 =
n1 + n2

n1n2

(X̄ − Ȳ )T
{

p∑
j=2

j−1∑
i=1

P T
ij (PijS12P

T
ij )
−1Pij

}
(X̄ − Ȳ ), (3.2)

where X̄ and Ȳ are the sample mean vectors of the two groups. In addition,

using the screening procedure and the leave-one-out method, our PHT statistic

for the two-sample test is given by

T2(τ0) =
1

n1(n1 − 1)

n1∑
s=1

n1∑
t 6=s

XT
s P̂

(s,t)
1,O Xt +

1

n2(n2 − 1)

n2∑
s=1

n2∑
t6=s

Y T
s P̂

(s,t)
2,O Yt

− 2

n1n2

n1∑
s=1

n2∑
t=1

XT
s P̂

(s,t)
12,OYt, (3.3)
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where P̂
(s,t)
1,O , P̂

(s,t)
2,O , and P̂

(s,t)
12,O are three sample-based estimates of PO, with

P̂
(s,t)
1,O =

∑
(i,j)∈Â1

P T
ij (PijS

(s,t)
1∗ P T

ij )
−1Pij +

∑
i∈Â2

P T
i (PiS

(s,t)
1∗ P T

i )−1Pi,

P̂
(s,t)
2,O =

∑
(i,j)∈Â1

P T
ij (PijS

(s,t)
2∗ P T

ij )
−1Pij +

∑
i∈Â2

P T
i (PiS

(s,t)
2∗ P T

i )−1Pi,

P̂
(s,t)
12,O =

∑
(i,j)∈Â1

P T
ij (PijS

(s,t)
12,∗P

T
ij )
−1Pij +

∑
i∈Â2

P T
i (PiS

(s,t)
12,∗P

T
i )−1Pi.

When τ0 = 1, we have Â1 = ∅ and Â2 = {1, . . . , p}, so that the PHT statistic

reduces to the diagonal Hotelling’s test in Park and Ayyala (2013). In contrast,

when τ0 = 0, we have Â1 = {(i, j) : i < j}, for i, j = 1, . . . , p and Â2 = ∅. Thus,

the PHT statistic is the U -type test statistic (3.2) for the two-sample test.

3.2. Asymptotic results

First, we show that the selected sets Â1 and Â2 based on the sample data

converge to A1 and A2, respectively, when the sample sizes tend to infinity; see

Appendix D.1 for the proof.

Theorem 3. Assume that τ0 satisfies lim infi,j=1,...,p{τij|τij > τ0} > τ0 and

lim supi,j=1,...,p{τij|τij < τ0} < τ0. Let Â1 and Â2 be the two sets based on the

threshold τ0 in the screening procedure. Then, for any given positive integer m0,

if p = O(Nm0), we have

P (Â2 = A2) ≥ P (Â1 = A1)→ 1 as (N, p)→∞.

For ease of notation, we assume that the random vectors X = (X1, . . . , Xp)
T

and Y = (Y1, . . . , Yp)
T follow the two models

X = C2Z
(1) + µ1 and Y = C2Z

(2) + µ2, (3.4)

respectively, where C2 ∈ Rp×q, with q ≥ p, such that Σ = C2C
T
2 , and the random

vector Z(i) satisfies E(Z(i)) = 0 and Var(Z(i)) = Iq, for i = 1, 2. In addition,

we assume that the following moment conditions hold: E
(
Z

(i)
j

)4
= 3 + ∆2 <∞,

where ∆2 is a positive constant, and

E
{

(Z
(i)
l1

)α1(Z
(i)
l2

)α2 · · · (Z(i)
lk

)αk
}

= E
{

(Z
(i)
l1

)α1

}
E
{

(Z
(i)
l2

)α2

}
· · ·E

{
(Z

(i)
lk

)αk
}
,

(3.5)

where k a positive integer such that α1 + · · ·+ αk ≤ 8, and l1 6= l2 6= · · · 6= lk.

We further assume that {(Xi, Xj) : i, j = 1, 2, . . . , p with i 6= j} and

{(Yi, Yj) : i, j = 1, 2, . . . , p with i 6= j} are two random fields. Analogous to

conditions (C1)–(C5), to derive the asymptotic properties of the two-sample PHT
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statistic, we need the following conditions:

(C1′) There exists a finite positive number K̄2 such that 1/K̄2 ≤ λp(Σ) ≤ · · · ≤
λ1(Σ) ≤ K̄2.

(C2′) Assume that {Xj : j ≥ 1} and {Yj : j ≥ 1} are two ρ-mixing sequences,

with the corresponding ρ-mixing coefficients ρX(s) and ρY (s), respectively.

There exists a constant $3 > 0 such that ρX(s) ≤ $3 exp (−s) and ρY (s) ≤
$3 exp (−s).

(C3′) There exists an oracle constant τ ∗ > 0 such that, for a finite positive

integerK0, supi≤pcard(A∗i ) ≤ K0, where A∗i = {j : τij > τ ∗}. In addition, we

assume that lim inf i,j=1,...,p{τij|τij > τ ∗} > τ ∗ and lim supi,j=1,...,p{τij|τij <
τ ∗} < τ ∗.

(C4′) There exists a positive integer m0 > 4 such that the higher-order moments

E(X4m0+2
j ) and E(Y 4m0+2

j ) are bounded uniformly for j = 1, . . . , p. In

addition, we assume that E
∥∥S−11,{ij}

∥∥8 and E
∥∥S−12,{ij}

∥∥8 are bounded uniformly

for (i, j) ∈ A1, and E(s−81,jj) and E(s−82,jj) are bounded uniformly for j ∈ A2.

(C5′) Assume that (µ1−µ2)
TPO(µ1−µ2) = o(

√
p/N) and µT1 POµ1 = o(

√
p/N).

There exists a constant $4 > 0 such that µ2
1j + µ2

2j ≤ $4/
√
N .

Note that conditions (C1′)–(C5′) are analogous to conditions (C1)–(C5),

respectively. Condition (C1′) assumes that the eigenvalues are bounded uniformly

away from zero and infinity. Condition (C2′) implies a weak dependence structure

among the data. Condition (C3′) assumes that our PHT statistic allows the

number of covariate pairs with strong correlations to increase at the same order

of p. Conditions (C4′) and (C5′) are technical conditions to derive the asymptotic

results of the proposed test statistic.

Theorem 4. Assume that τ0 ≥ τ ∗, lim infi,j=1,...,p{τij|τij > τ0} > τ0, and

lim supi,j=1,...,p{τij|τij < τ0} < τ0. Then, under model (3.4) and conditions (C1′)–

(C5′), if p = o(N (m0−3)/2) with m0 as defined in (C4′), we have

T2(τ0)− δT2 POδ2√
φ(n1, n2)tr(Λ2

1)

D−→ N(0, 1) as (N, p)→∞,

where δ2 = µ2−µ1 and φ(n1, n2) = 2/{n1(n1− 1)}+ 2/{n2(n2− 1)}+ 4/(n1n2).

The proof of Theorem 4 is given in Appendix D.2. This theorem shows that,

for a larger threshold τ0 > τ ∗, if τ0 satisfies lim inf i,j=1,...,p{τij|τij > τ0} > τ0
and lim inf i,j=1,...,p{τij|τij < τ0} < τ0, then the test statistic T2(τ0) still converges

to the standard normal distribution, after proper centering and scaling. Hence,

despite not knowing the exact threshold τ ∗ that satisfies condition (C3′), we can

always select a larger threshold when performing the test.
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To apply Theorem 4, we have the following lemma that derives a ratio-

consistent estimator for tr(Λ2
1); the proof is given in Appendix D.3.

Lemma 2. Assume that τ0 satisfies the assumptions in Theorem 4. Under model

(3.4) and conditions (C1′)–(C5′), we have that

(i) if p = o(N3), then

t̂r(Λ2
1) =

1

2n1(n1 − 1)

n1∑
s=1

n1∑
t6=s

(Xs − X̄(s,t))T P̂
(s,t)
1,O Xt(Xt − X̄(s,t))T P̂

(s,t)
1,O Xs

+
1

2n2(n2 − 1)

n2∑
s=1

n2∑
t6=s

(Ys − Ȳ (s,t))T P̂
(s,t)
2,O Yt(Yt − Ȳ (s,t))T P̂

(s,t)
2,O Ys

is a ratio-consistent estimator of tr(Λ2
1), where X̄(s,t) (or Ȳ (s,t)) is the

sample mean vector of group 1 (or group 2) without observations Xs and

Xt (or Ys and Yt);

(ii) if p = o{min(N3, N (m0−3)/2)}, then under the null hypothesis of (3.1),

T2(τ0)√
φ(n1, n2)t̂r(Λ2

1)

D−→ N(0, 1) as (N, p)→∞.

By Theorem 4, the power function of the PHT statistic for the two-sample

test is

Power(δ2) = Φ

{
− zα +

δT2 POδ2√
φ(n1, n2)tr(Λ2

1)

}
. (3.6)

The performance of the new test depends on the quantities δT2 POδ2 and

tr(Λ2
1). Theoretically, for the PHT statistic to achieve the highest asymptotic

power, a reasonable choice for the threshold τ0 is to maximize Power(δ2).

However, this maximization procedure may not be feasible in practice, because

δT2 POδ2/
√

tr(Λ2
1) involves unknown quantities, including δ2 and Σ. In Section

4.3, we provide a data-driven procedure for selecting τ0 when there is no prior

information available for the signals or the structure of the covariance matrix.

Additional results on the power analysis are available in Appendix A.

4. Monte Carlo Simulation Studies

In this section, we assess the finite-sample performance of our proposed

testing method. For ease of presentation, we conduct simulation studies for the

two-sample test only. We also consider eight other tests for comparison: the

unscaled Hotelling’s tests CQ of Chen and Qin (2010) and aSUP of Xu et al.

(2016), the diagonal Hotelling’s tests PA of Park and Ayyala (2013), GCT of

Gregory et al. (2015), and DLRT of Hu, Tong and Genton (2019), the composite



242 HU, TONG AND GENTON

Hotelling’s test CHT of Li (2017), and the regularized Hotelling’s tests RMPBT

of Zoh et al. (2018) and RHT of Li et al. (2020).

For each simulation, we generate observations Xs, for s = 1, . . . , n1, and Yt,

for t = 1, . . . , n2, from model (3.4). Without loss of generality, we let µ1 = 0

and Σ ∈ Rp×p be the common covariance matrix. Then, Xs = Σ1/2Z(1)
s and

Yt = Σ1/2Z
(2)
t +µ2, where all the components of Z(1)

s and Z
(2)
t are i.i.d. random

variables with zero mean and unit variance. Under the null hypothesis, we set

µ2 = 0. Under the alternative hypothesis, we set µ2 = (µ21, . . . , µ2p0 , 0, . . . , 0)T ,

where p0 = bβpc, with β ∈ [0, 1] a tuning parameter that controls the degree of

sparsity in the signals, and bxc is the largest integer equal to or less than x.

4.1. Normal data

In the first simulation, we generate Z(1)
s and Z

(2)
t from the p-dimensional

multivariate normal distribution Np(0, Ip). Let Dp = diag(d211, . . . , d
2
pp) be a

diagonal matrix, with dii sampled randomly from the uniform distribution on

[0.5, 1.5]. For the common covariance matrix Σ, we consider the following four

structures:

(M1) Σ1 = D1/2
p R1D

1/2
p , where R1 = (0.9|i−j|)p×p;

(M2) Σ2 = D1/2
p R2D

1/2
p , where R2 = ((−0.9)|i−j|)p×p;

(M3) Σ3 = D1/2
p R3D

1/2
p , where R3 is a block diagonal matrix with the same

block as B = (0.9I(i 6=j))5×5, and I(·) is the indicator function;

(M4) Σ4 = D1/2
p R4D

1/2
p , where R4 = Ip is the identity matrix.

Table 1 summarizes the empirical size for the nine tests over 2,000 simulations

with the given covariance matrices. The threshold for PHT is set as τ0 = 0.8. As

shown in Table 1, PHT, aSUP, and RHT provide a more stable test statistic with

a better controlled type-I error rate under most settings. When the dimension

is large and the correlations between the covariates are strong, DLRT, GCT,

and RMPBT suffer from significantly inflated type-I error rates compared with

those of CQ and PA. When the covariates are weakly correlated, for example,

the diagonal structure, most tests have a reasonable type-I error rate, except for

CHT. CHT always risks an inflated type-I error rate compared with the nominal

level at α = 0.05, and so may not provide a perfect test.

To assess the power performance of the nine tests, we set the jth nonzero

component in µ2 as µ2j = κδj, where κ controls the signal strength, and δj ∼
N(1.5, 1), for j = 1, . . . , p0. The other parameters are n1 = 30, n2 = 25, and

(κ = 0.1, p = 100) or (κ = 0.075, p = 500). We then randomly generate 1,000

data sets under each scenario, and plot the simulation results in Figures 1 and 2.

As shown in the figures, when the true covariance matrix has a complex

structure (including Σ1, Σ2, and Σ3), our proposed PHT exhibits a significant
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Table 1. Type-I error rates for PHT and eight competitors with normal data, where the
sample sizes are n1 = 30 and n2 = 25, and the nominal level is α = 0.05.

p PHT DLRT GCT PA RMPBT aSUP CQ CHT RHT

Σ1
100 0.066 0.134 0.231 0.072 0.083 0.047 0.057 0.289 0.056

500 0.061 0.142 0.170 0.060 0.162 0.056 0.062 0.376 0.064

Σ2
100 0.065 0.127 0.257 0.068 0.095 0.055 0.086 0.296 0.059

500 0.058 0.148 0.160 0.067 0.163 0.070 0.067 0.369 0.068

Σ3
100 0.052 0.077 0.172 0.076 0.116 0.056 0.074 0.342 0.055

500 0.045 0.093 0.068 0.059 0.181 0.054 0.053 0.408 0.068

Σ4
100 0.056 0.073 0.107 0.056 0.057 0.079 0.072 0.375 0.059

500 0.057 0.045 0.068 0.048 0.072 0.078 0.053 0.373 0.066

improvement in terms of power performance. Specifically, as long as the signals

are not too sparse, PHT always has higher power than that of the other tests.

When the covariates are independent of each other, aSUP achieves the highest

power when the dimension is large. PHT also exhibits high power for detection

that is nearly as good as that of PA. RMPBT shows good power performance

when the dimension is not large. However, if the dimension becomes large,

RMPBT suffers from low power, especially when the covariance matrix follows a

diagonal structure. DLRT, GCT, and CQ also suffer from low power for detection

especially when some covariates are highly correlated. Finally, RHT is not able

to provide stable and comparable power compared with that of PHT and aSUP,

especially when the dimension is large.

4.2. Heavy-tailed data

In the second simulation, we generate Z(1)
s and Z

(2)
t from a heavy-tailed

distribution to examine the robustness of the proposed tests. Following Gregory

et al. (2015) and Hu, Tong and Genton (2019), we consider a “double” Pareto

distribution with parameters a > 0 and b > 0. The detailed algorithm is as

follows:

Step 1: Generate two independent random variables U and V , where U is from

the Pareto distribution with the cumulative distribution function F (x) = 1−
(1 +x/b)−a, for x ≥ 0, and V is a binary random variable with P (V = 1) =

P (V = −1) = 0.5. Then, Z = UV follows the double Pareto distribution

with parameters a and b.

Step 2: Generate random vectors Z̃(1)
s = (z̃

(1)
s1 , z̃

(1)
s2 , . . . , z̃

(1)
sp )T , for s = 1, . . . , n1,

and Z̃
(2)
t = (z̃

(2)
t1 , z̃

(2)
t2 , . . . , z̃

(2)
tp )T , for t = 1, . . . , n2, where all the components

of Z̃(1)
s and Z̃

(2)
t are sampled independently from the double Pareto

distribution with parameters a = 16.5 and b = 8.
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Figure 1. Power comparison between PHT and eight competitors, with n1 = 30, n2 = 25,
and p = 100. The horizontal dashed lines represent the nominal level of α = 0.05, and
the results are based on normal data.

Step 3: Let Z(1)
s = Z̃(1)

s /c0 and Z
(2)
t = Z̃

(2)
t /c0, where c20 = 512/899 is the

variance of the double Pareto distribution with parameters a = 16.5 and

b = 8.

Given Z(1)
s and Z

(2)
t , we use the same settings as those in Section 4.1 to generate

the observations of Xs and Yt for each simulation.

Table 2 and Figures 3 and 4 present the empirical size and power for

the nine tests with heavy-tailed data at the nominal level of α = 0.05. The
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Figure 2. Power comparison between PHT and eight competitors, with n1 = 30, n2 = 25,
and p = 500. The horizontal dashed lines represent the nominal level of α = 0.05, and
the results are based on normal data.

simulations used to compute the empirical size and power are over 2,000 and

1,000 simulations, respectively. In particular, when the dimension is large and

the correlations between the covariates are strong, PHT controls the type-I error

rate, and achieves a higher power for detection. RMPBT exhibits good power

performance when the dimension is not large and the covariance matrix has

a complex structure, but it suffers from a slightly inflated type-I error rate.

When the dimension is large and the covariance matrix has a complex structure

(including Σ1, Σ2, and Σ3), RMPBT exhibits a substantially inflated type-I error
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Table 2. Type-I error rates for PHT and eight competitors, with heavy-tailed data,
where the sample sizes are n1 = 30 and n2 = 25, and the nominal level is α = 0.05.

p PHT DLRT GCT PA RMPBT aSUP CQ CHT RHT

Σ1
100 0.064 0.145 0.257 0.067 0.105 0.062 0.071 0.305 0.078

500 0.051 0.153 0.145 0.061 0.189 0.057 0.069 0.364 0.075

Σ2
100 0.071 0.116 0.254 0.074 0.080 0.050 0.069 0.308 0.074

500 0.061 0.139 0.176 0.069 0.180 0.048 0.053 0.363 0.070

Σ3
100 0.060 0.082 0.180 0.079 0.093 0.050 0.070 0.382 0.065

500 0.051 0.076 0.096 0.054 0.137 0.048 0.046 0.390 0.069

Σ4
100 0.056 0.058 0.141 0.077 0.052 0.051 0.057 0.383 0.059

500 0.055 0.050 0.113 0.051 0.085 0.051 0.059 0.356 0.062

rate, and suffers from low power. RHT exhibits similar power performance to that

of RMPBT, but is inferior to PHT, especially when the dimension is large and

the correlations between the covariates are strong. In addition, aSUP exhibits a

well-controlled type-I error rate in most settings. However, its power performance

may be sensitive to the structure of the covariance matrix; for example, it suffers

from low power under Σ1 and Σ3, but exhibits good power under Σ2. DLRT

has a well-controlled type-I error rate under the diagonal covariance matrix, but

suffers from low power. Finally, GCT and CHT always suffer from a significantly

inflated type-I error rate.

4.3. A data-driven threshold for τ0

In this section, we provide a data-driven method for selecting the threshold

τ0. When there is no prior information on the covariance matrix structure, a

reasonable choice for the threshold τ can be to maximize the empirical estimator

for the signal-to-noise ratio that determines the power of the PHT statistic.

From (2.4) and (3.6), we have SNR1(τ0) = (µ− µ0)
TPO(µ− µ0)/

√
tr(Λ2

1) and

SNR2(τ0) = (µ2 − µ1)
TPO(µ2 − µ1)/

√
tr(Λ2

1) for the one- and two-sample tests,

respectively. We then estimate the two ratios by

ŜNR1(τ0) =
T1(τ0)√
t̂r(Λ2

1)

and ŜNR2(τ0) =
T2(τ0)√
t̂r(Λ2

1)

.

From Lemmas 1 and 2, we have ŜNR1(τ0)
P−→ SNR1(τ0) as n → ∞, and

ŜNR2(τ0)
P−→ SNR2(τ0) as N → ∞, where

P−→ denotes convergence in

probability. For simplicity, we present the selection procedure of the threshold τ0
for the two-sample test only. The same procedure can be readily adapted for the

one-sample test.

Step 1: Randomly generate two subsets Set∗X = {Xk, k = 1, . . . , n∗1} and

Set∗Y = {Yl, l = 1, . . . , n∗2}, where n∗1 < n1 and n∗2 < n2, and X∗l and
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Figure 3. Power comparison between PHT and eight competitors, with n1 = 30, n2 = 25,
and p = 100. The horizontal dashed lines represent the nominal level of α = 0.05, and
the results are based on heavy-tailed data.

Y ∗k are selected randomly without replacement from {X1, . . . ,Xn1
} and

{Y1, . . . ,Yn2
}, respectively.

Step 2: Given the grid points Tτ0 = {τ01, . . . , τ0H}, for each point τ0h ∈ Tτ0 ,
compute ŜNR2(τ0h) using Set∗X and Set∗Y , and then select τ̂0 = argmaxτ0h∈Tτ0
ŜNR2(τ0h).
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Figure 4. Power comparison between PHT and eight competitors, with n1 = 30, n2 = 25,
and p = 500. The horizontal dashed lines represent the nominal level of α = 0.05, and
the results are based on heavy-tailed data.

Step 3: Repeat Steps 1–2 for B times, and denote the selected τ̂0 as τ̂
(b)
0 for the

bth time. The optimal τ0 is defined as the median of {τ̂ (1)0 , . . . , τ̂
(B)
0 }.

When the sample size is not large, our simulations show that the median of

{τ̂ (1)0 , . . . , τ̂
(B)
0 } provides a more robust estimate than the mode does for the

true value that maximizes the signal-to-noise ratio. In addition, to balance the

computation time and the detection ability of our PHT statistic, we recommend

to use n∗1 = b2n1/3c, n∗2 = b2n2/3c, B = 10, and Tτ0 = {0.7, 0.8, 0.9, 1}.
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Table 3. Type-I error rates for PHT and eight competitors, with normal data, where
the sample sizes are n1 = 30 and n2 = 25, and the nominal level is α = 0.05.

p PHT DLRT GCT PA RMPBT aSUP CQ CHT RHT

Σ1
100 0.085 0.134 0.231 0.072 0.083 0.047 0.057 0.289 0.056

500 0.092 0.142 0.170 0.060 0.162 0.056 0.062 0.376 0.064

Σ2
100 0.081 0.127 0.257 0.068 0.095 0.055 0.086 0.296 0.059

500 0.094 0.148 0.160 0.067 0.163 0.070 0.067 0.369 0.068

Σ3
100 0.081 0.077 0.172 0.076 0.116 0.056 0.074 0.342 0.055

500 0.088 0.093 0.068 0.059 0.181 0.054 0.053 0.408 0.068

Σ4
100 0.049 0.073 0.107 0.056 0.057 0.079 0.072 0.375 0.059

500 0.059 0.045 0.068 0.048 0.072 0.078 0.053 0.373 0.066

To assess the usefulness of the selection procedure for τ0, we compare the

results of PHT with those of the other tests. For the common covariance matrix,

we also consider the four structures Σ1, Σ2, Σ3, and Σ4. The other parameters

are the same as in the previous simulations. Table 3 summarizes the empirical

size for the nine tests over 2,000 simulations with the given covariance matrices.

When the correlations between the covariates are strong, PHT exhibits some

inflated type-I error rates compared with CQ, aSUP, and RHT. This may be the

price that PHT pays for the unknown prior information of the covariance matrix,

or perhaps a better estimate of the optimal threshold is required.

Figures 5 and 6 display the power performance for the nine tests with normal

data at the nominal level of α = 0.05. Specifically, if the covariance matrix has

a complex structure (including Σ1, Σ2, and Σ3), PHT always possesses higher

power than that of the other methods, as long as the signals are not too sparse.

When the covariance matrix follows a diagonal structure, aSUP achieves the

highest power as the dimension becomes large; PHT also exhibits high power

for detection that is nearly the same as that of PA. PMPBT and RHT suffer

from low power when the dimension is large. In addition, when the correlations

between the covariates are strong, DLRT, GCT, and CQ usually also suffer from

low power for detection.

5. Applications

5.1. Small round blue-cell tumor data

We apply our proposed PHT to analyze two microarray data sets. The

first contains data on the small round blue-cell tumors (SRBCTs), studied by

Khan et al. (2001), including 2,308 genes for four types of childhood tumors.

The data set is from http://www.biolab.si/supp/bi-cancer/projections/

info/SRBCT.html. As in Zoh et al. (2018), we are interested in testing the

differential expression of genes between the Burkitt lymphoma (BL) tumor and

the neuroblastoma (NB) tumor. The sample sizes of the BL and NB tumors

http://www.biolab.si/supp/bi-cancer/projections/info/SRBCT.html
http://www.biolab.si/supp/bi-cancer/projections/info/SRBCT.html
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Figure 5. Power comparison between PHT and eight competitors, with n1 = 30, n2 = 25,
and p = 100. The horizontal dashed lines represent the nominal level of α = 0.05, and
the results are based on normal data.

are 11 and 18, respectively. Owing to the small sample sizes, we perform PHT

with a fixed threshold of τ0 = 0.8, and then compare the results with those of

DLRT, GCT, PA, RMPBT, aSUP, CQ, CHT, and RHT. The p-values of the nine

tests are all smaller than 0.0001. Thus, all the tests significantly reject the null

hypothesis of the two-sample test at the nominal level of α = 0.05.
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Figure 6. Power comparison between PHT and eight competitors, with n1 = 30, n2 = 25,
and p = 500. The horizontal dashed lines represent the nominal level of α = 0.05, and
the results are based on normal data.

5.2. Leukemia data

The second data set contains leukemia data from two groups of patients,

namely, those with acute lymphoblastic leukemia (ALL), and those with acute

myeloid leukemia (AML). The data set contains 7,129 genes and 72 samples,

with 47 ALL patients and 25 AML patients, and is publicly available in the R

package “golubEsets”. To compare the performance of the tests, we first perform

two-sample t-tests to screen the top 250 significant genes. We then apply our
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Table 4. False (F) and true (T) positive rates of our data-driven PHT and eight compe-
titors for leukemia data at the nominal level of 0.05.

PHT DLRT GCT PA RMPBT aSUP CQ CHT RHT

F 0.089 0.229 0.587 0.082 0.101 0.221 0.078 0.573 0.056

T 0.887 0.968 0.027 0.841 0.998 0.972 0.773 1.000 0.802

data-driven PHT to the selected gene set with the threshold on the grid points

{0.7, 0.8, 0.9, 1}, and compare the results with those of the other eight tests.

The p-values of the nine tests are all smaller than 0.0001, indicating that the

mean expression levels of the gene set between the ALL and AML groups are

significantly different.

To further compare the performance of the tests, we select the top 50

significant genes and the last 200 nonsignificant genes to form a new gene set. The

signal strength of the new gene set is weaker than that with the top 250 significant

genes. We then apply the permutation method to create two artificial groups

for the new gene set to mimic the null and alternative hypotheses, respectively.

Specifically, we randomly sample two distinct subclasses, without replacement,

from the pooled data with sample sizes 30 and 17, respectively. Because both

classes are partitioned from the pooled data, the null hypothesis can be regarded

as true. Finally, we repeat the procedure 1,000 times, and perform the nine tests

at the nominal level of 0.05. The rejection rate is computed to represent the false

positive rate. Similarly, to mimic the alternative hypothesis, we randomly sample

one class from the ALL group with sample size 30, and another class from the

AML group with sample size 17. Then, based on 1,000 simulations for each test

method, we compute the rejection rates at the nominal level of 0.05. For each

test method, the rejection rate is computed to represent the true positive rate.

Table 4 shows that DLRT, GCT, RMPBT, aSUP, and CHT suffer from

inflated false positive rates, particularly GCT and CHT. In contrast, PHT, PA,

CQ, and RHT provide a reasonable type-I error rate and can serve as valid tests.

6. Conclusion

We provide a pairwise Hotelling method for testing whether a mean vector is

equal to a given vector for a one-sample test, or testing whether two mean vectors

are equal for a two-sample test in a high-dimensional setting with a low sample

size. Our proposed PHT statistics differ from those of existing tests, including

UHT, DHT, and RHT. Specifically, UHT and DHT both ignore correlations

between covariates. When some covariates exhibit strong correlations in the data,

neither of the two methods provide satisfactory performance. In contrast, RHT

does account for the correlations, but it involves a regularized covariance matrix.

When the sample size is small relative to the dimension, the regularized covariance

matrix can be very noisy, especially when the covariance matrix is sparse.
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Consequently, the test statistics involving the sample covariance matrix may

lead to inflated type-I error rates and/or suffer from low statistical power. Our

proposed pairwise Hotelling method overcomes the drawbacks of DHT and RHT.

Specifically, we first perform a screening procedure to identify covariate pairs

that exhibit strong correlations, and then construct the classic Hotelling’s test

statistics for these covariate pairs. For the remaining covariates that are weakly

correlated with others, we construct the squares of the componentwise t-statistics

for each of the individual covariates. Our proposed PHT statistics are then the

sum of all the Hotelling’s test statistics and the squared t-statistics. Simulation

results show that our new tests improve the statistical power significantly when

some covariates are highly correlated. Furthermore, even when most covariates

are weakly correlated, our proposed tests still maintain high power compared

with that of the existing tests in the literature.

Here, we assume that the eigenvalues of the covariance matrix are bounded

by constants through 1/K̄1 and K̄1. This assumption is widely adopted in the

literature; see, for example, Cai, Liu and Xia (2014), Xu et al. (2016), and Cui

et al. (2020). For a fair comparison, we follow the same condition. However,

allowing K̄1 to grow with p is an interesting topic and deserves further research.

In particular, when some correlations go to one as p increases, or when some

eigenvalues of the covariance matrix are large, the covariance matrix will tend to

be a singular matrix, or even a spiked matrix (Johnstone (2001)). Under such

a structure, Aoshima and Yata (2018) and Xie, Zeng and Zhu (2021) show that

additional restrictive conditions on the eigenvalues are required in order to ensure

the convergence of the test statistics.

Finally, we note that, when the covariance matrices of the two samples are

unequal, our PHT statistic will encounter the high-dimensional Behrens–Fisher

problem, as in Feng et al. (2015). To deal with this situation, one may adopt

the ideas of Anderson (2003) and Ishii, Yata and Aoshima (2019) to construct a

two-sample PHT statistic. Without loss of generality, we assume n1 ≤ n2 and let

Vi = Xi − Yi, for i = 1, . . . , n1, with µV = µ1 − µ2. Then, to test H0 : µV = 0

versus H1 : µV 6= 0, we can apply our newly proposed one-sample PHT based on

the data V1,. . . ,Vn1
. The limitation of this method is that the remaining samples

Yn1+1, . . . ,Yn2
are ignored when the sample sizes are not balanced. To conclude,

it remains challenging to construct efficient tests for solving the high-dimensional

Behrens–Fisher problem. We leave this to future research.

Supplementary Material

This supplement contains 4 web appendices. In Appendix A, we provide some

additional comparisons on the statistical power. In Appendix B, we provide some

useful lemmas as the preliminary results. In Appendix C, we provide the proofs

of Theorems 1 and 2, and Lemma 1. In Appendix D, we provide the proofs of



254 HU, TONG AND GENTON

Theorems 3 and 4, and Lemma 2.
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