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A B S T R A C T

The family of multivariate unified skew-normal (SUN) distributions has been recently shown
to possess fundamental conjugacy properties. When used as priors for the vector of coefficients
in probit, tobit, and multinomial probit models, these distributions yield posteriors that still
belong to the SUN family. Although this result has led to important advancements in Bayesian
inference and computation, its applicability beyond likelihoods associated with fully-observed,
discretized, or censored realizations from multivariate Gaussian models remains yet unexplored.
This article covers such a gap by proving that the wider family of multivariate unified skew-
elliptical (SUE) distributions, which extends SUNs to more general perturbations of elliptical
densities, guarantees conjugacy for broader classes of models, beyond those relying on fully-
observed, discretized or censored Gaussians. Such a result leverages the closure under linear
combinations, conditioning and marginalization of SUE to prove that this family is conjugate
to the likelihood induced by regression models for fully-observed, censored or dichotomized
realizations from skew-elliptical distributions. This key advancement enlarges the set of models
that enable conjugate Bayesian inference to general formulations arising from elliptical and
skew-elliptical families, including the multivariate Student’s 𝑡 and skew-𝑡, among others.

. Introduction

Conjugacy is a fundamental property in Bayesian statistics. A prior p(𝜷) for the vector of parameters 𝜷 ∈ B ⊂ R𝑝 is conjugate
o the likelihood p(𝐲 ∣ 𝜷) of the observed data 𝐲 ∈ Y ⊂ R𝑛, if the induced posterior p(𝜷 ∣ 𝐲) still belongs to the same class
f distributions of the assumed prior. This important property implies that when p(𝜷) belongs to a known and tractable family,
ayesian inference under the induced posterior distribution can also leverage the tractability of such a family, thereby circumventing
he challenges that arise in Bayesian computation and inference under intractable posterior distributions. Despite the relevance of
his property, identifying known and tractable conjugate priors for the likelihoods induced by commonly-used statistical models is
ften challenging. Remarkably, until recently, conjugacy in regression settings was mainly established for univariate or multivariate
ormal responses 𝐲 with Gaussian priors for the coefficients 𝜷, thus hindering potentials of conjugate Bayesian inference beyond
his specific setting.

To address the aforementioned gap, Durante [1] has recently shown that also general probit models admit conjugate priors,
ith these priors belonging to the known family of unified skew-normal (SUN) distributions [2]. Such a class includes multivariate
aussians as a special case, and extends these symmetric distributions through the perturbation of the corresponding density via
factor that coincides with the cumulative distribution function of a multivariate normal, thereby inducing skewness. Crucially,
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SUNs (i) have a known normalizing constant and moment-generating function, (ii) admit a tractable stochastic representation, and
(iii) preserve the closure under linear combinations, conditioning and marginalization of the original multivariate Gaussians [2–4].
These properties facilitate Bayesian inference under the induced SUN posterior and, consequently, have motivated rapid subsequent
research to establish SUN conjugacy for broader classes of models beyond classical probit representations. Relevant advancements
along these lines include dynamic multivariate probit [5], multinomial probit [6], probit Gaussian processes [7], tobit models [8]
and, more generally, any representation inducing likelihoods proportional to the kernel of a SUN [8]. Such a latter result crucially
includes also important skewed extensions of classical probit, multinomial probit, and tobit [e.g, 9–18], along with earlier conjugacy
results for the parameters of skew-normal distributions [19–21]; see also Fasano et al. [22] and Onorati and Liseo [23] for additional
results in binary regression settings, and Durante et al. [24] for an extension of the Bernstein–von Mises theorem which clarifies
the crucial role played by skewed extensions of multivariate Gaussians in Bayesian approximations and asymptotic theory.

Although the above contributions substantially enlarge the class of routinely-implemented models that admit conjugate priors,
ll these formulations are based on fully-observed, discretized or censored Gaussian or skew-normal representations. As discussed
bove, such a class includes multivariate linear regression along with probit, multinomial probit, and tobit models, among others,
hus covering a core subset of formulations that are often employed within statistics. Nonetheless, in several applications, there is
till interest in extensions of these representations which replace the Gaussian or skew-normal assumption for the error terms with
lternative distributions. Popular examples in applications are generalizations of linear regression, probit, multinomial probit, and
obit models that rely on Student’s 𝑡 or skew-𝑡 error terms to incorporate robustness [e.g., 25–35]. More generally, several important
ontributions [e.g., 36–40] have also focused on multivariate elliptical [41] and skew-elliptical [42–47] distributions, which include
ultivariate Gaussians, skew-normals, Student’s 𝑡 and skew-𝑡 as special cases, thereby providing a large class of practically-relevant

models. Despite the relevance of such a family, there is still a lack of general, unified and tractable solutions for Bayesian inference
within these settings. This is arguably due to the fact that, to date, no general conjugacy results have been established for generic
models arising from fully-observed, censored, or dichotomized realizations from elliptical and skew-elliptical distributions.

Motivated by the above discussion, we cover this gap by proving that multivariate unified skew-elliptical (SUE) distributions [2,
46] are the conjugate priors to the aforementioned class of models. From a technical perspective, the derivation of this result is based
on specifying a general joint SUE distribution for the parameters 𝜷 and the noise vector 𝜺 of the response 𝐲, and then leveraging the
closure under linear combination, marginalization and conditioning of SUE to prove that both p(𝜷) and p(𝜷 ∣ 𝐲) are SUE, whenever
(𝐲 ∣ 𝜷) is proportional to a suitable likelihood induced by a fully-observed, censored or dichotomized elliptical or skew-elliptical

distribution. This focus on the joint distribution serves only as a technical strategy to identify, under a classical Bayesian setting,
which SUE priors are conjugate to specific likelihoods, thereby yielding SUE posterior distributions p(𝜷 ∣ 𝐲) ∝ p(𝜷)p(𝐲 ∣ 𝜷) via
he standard application of the Bayes rule. These novel results are obtained within Section 3, leveraging both available and newly-
erived SUE properties outlined in Section 2. As discussed in Sections 3.1–3.3 (see Examples 1–6), these advancements include, as
special case, the conjugacy properties derived in Anceschi et al. [8] for SUNs, while extending these properties to other models of
otential practical interest, such as, for example, generalizations of linear regression, probit and tobit models to Student’s 𝑡 or skew-𝑡
rror terms. For these formulations, we show that the corresponding conjugate priors are multivariate unified skew-𝑡 (SUT) [46,48].
oncluding remarks can be found in Section 4, where we also clarify that besides the practical consequences for some special cases
f the general results in Section 3, the conjugacy properties we derive are of broader and independent interest in expanding the
heoretical analysis of the SUE family.

. General overview and properties of multivariate unified skew-elliptical (SUE) distributions

Sections 2.1–2.2 provide an overview of the SUE family along with its special cases, whereas Section 2.3 comprises both available
losure properties and newly-derived ones that are required to prove the novel conjugacy results within Section 3. To ease the
resentation, in the following, we adopt a different notation between random variables and the associated realizations only when
he distinction between the two is not clear from the context.

.1. Multivariate unified skew-elliptical distributions

Multivariate unified skew-elliptical (SUE) distributions [e.g., 2,46] arise from the perturbation of elliptical densities [e.g., 41],
efined as

𝑓𝑚(�̄� − 𝝃;𝜴, 𝑔(𝑚)) = |𝜴|

−1∕2𝑔(𝑚)[(�̄� − 𝝃)⊤𝜴−1(�̄� − 𝝃)], �̄� ∈ R𝑚,

here 𝝃 ∈ R𝑚 is a location parameter, 𝜴 ∈ R𝑚×𝑚 denotes a symmetric positive-definite dispersion matrix, and 𝑔(𝑚)(⋅) ∶ R+ → R+

haracterizes the so-called density generator. Recalling Fang et al. [41], different choices of such a density generator 𝑔(𝑚) lead
o a broad class of routinely-implemented elliptical densities, covering multivariate Gaussians, Student’s 𝑡, Cauchy, logistic and
aplace, among others. As such, for a generic vector �̄� from an elliptical distribution it is customary to adopt the general notation
̄ ∼ EC𝑚(𝝃,𝜴, 𝑔(𝑚)), with 𝝃, 𝜴 and 𝑔(𝑚) parameterizing such a distribution. Refer to Chapters 1–3 of Fang et al. [41] for an in-depth
reatment of the multivariate elliptical family, including details on the definition and properties of the density generator 𝑔(𝑚).

Due to its generality, the multivariate elliptical family has been subject of a substantial interest that has led to the development
f broader classes of distributions introducing skewness in the above representation. An important and comprehensive example in
his direction is provided by the SUE family [2,46]. Leveraging a parameterization that agrees with the unified skew-normal (SUN)
2

ub-family introduced by Arellano-Valle and Azzalini [2], and with the general selection representation in Arellano-Valle et al. [49]
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(see also equation 19 in Arellano-Valle and Genton [46] and Section 7.1.3 of Azzalini and Capitanio [3]) a random vector 𝐳 ∈ R𝑚
has a multivariate unified skew-elliptical (SUE) distribution, i.e., 𝐳 ∼ SUE𝑚,𝑞(𝝃,𝜴,𝜟, 𝝉 , �̄� , 𝑔(𝑚+𝑞)), if its density p(𝐳) is defined as

p(𝐳) = 𝑓𝑚(𝐳 − 𝝃;𝜴, 𝑔(𝑚))
𝐹𝑞[𝝉 + 𝜟⊤�̄�−1𝝎−1(𝐳 − 𝝃); �̄� − 𝜟⊤�̄�−1𝜟, 𝑔(𝑞)𝑄(𝐳)]

𝐹𝑞(𝝉; �̄� , 𝑔(𝑞))
, 𝐳 ∈ R𝑚, (1)

where 𝑓𝑚(𝐳−𝝃;𝜴, 𝑔(𝑚)) corresponds to the previously-defined elliptical density – evaluated at 𝐳 – with density generator 𝑔(𝑚), location
∈ R𝑚, and positive-definite dispersion matrix 𝜴 ∈ R𝑚×𝑚 with associated scales and correlations in 𝝎 = diag(𝜴)1∕2 ∈ R𝑚×𝑚 and �̄� =

𝝎−1𝜴𝝎−1 ∈ R𝑚×𝑚, respectively. In addition, 𝝉 ∈ R𝑞 is a truncation parameter, 𝜟 ∈ R𝑚×𝑞 denotes a shape matrix, whereas �̄� ∈ R𝑞×𝑞
corresponds to a positive-definite dispersion matrix. Finally, 𝑄(𝐳) is a quadratic form defined as 𝑄(𝐳) = (𝐳 − 𝝃)⊤𝜴−1(𝐳 − 𝝃) ∈ R+,
whereas 𝑔(𝑞)𝑄(𝐳)(𝑢) = 𝑔(𝑚+𝑞)[𝑢 +𝑄(𝐳)]∕𝑔(𝑚)[𝑄(𝐳)] denotes the elliptical conditional density generator.

In (1), the quantity responsible for inducing skewness is the 𝑞-dimensional centered elliptical cumulative distribution function
𝐹𝑞( ⋅ ; �̄� −𝜟⊤�̄�−1𝜟, 𝑔(𝑞)𝑄(𝐳)) with density generator 𝑔(𝑞)𝑄(𝐳), and dispersion matrix defined in the second argument. As clarified in Lemma 5,
the density in (1) includes as a special case the one of classical elliptical distributions, which can be obtained by setting 𝝉 = 𝟎 and
𝜟 = 𝟎. Such a result highlights that 𝝉 and 𝜟 play a crucial role in inducing skewness. Let us also emphasize that, in this article, the
notation �̄� is used to denote the Pearson-correlation matrix defined as �̄� = 𝜸−1𝜞𝜸−1, where 𝜸 = diag(𝜞 )1∕2.

To further clarify the SUE construction, it shall be emphasized that the density expressed in (1) can be directly obtained from
the selection representation

𝐳
𝑑
= (�̄� ∣ �̄�0 > 𝟎),

[

�̄�
�̄�0

]

∼ EC𝑚+𝑞
([

𝝃
𝝉

]

,
[

𝜴 𝝎𝜟
𝜟⊤𝝎 �̄�

]

, 𝑔(𝑚+𝑞)
)

, (2)

where �̄�0 > 𝟎 indicates the event ‘‘each component of �̄�0 is positive’’. More specifically, under the above representation and leveraging
he closure under marginalization of elliptical distributions, a direct application of the Bayes rule yields

p(𝐳) = p(�̄� = 𝐳)
P(−�̄�0 ≤ 𝟎 ∣ �̄� = 𝐳)

P(−�̄�0 ≤ 𝟎)
= 𝑓𝑚(𝐳 − 𝝃;𝜴, 𝑔(𝑚))

P(−�̄�0 ≤ 𝟎 ∣ �̄� = 𝐳)
P(−�̄�0 ≤ 𝟎)

, 𝐳 ∈ R𝑚. (3)

Letting 𝝎𝜴−1 = �̄�−1𝝎−1 and 𝝎𝜴−1𝝎 = �̄�−1, and recalling again the closure properties of elliptical distributions [3,41], it follows
that −�̄�0 ∼ EC𝑞(−𝝉 , �̄� , 𝑔(𝑞)) and (−�̄�0 ∣ �̄� = 𝐳) ∼ EC𝑞(−𝝉 − 𝜟⊤𝝎𝜴−1(𝐳 − 𝝃), �̄� − 𝜟⊤𝝎𝜴−1𝝎𝜟, 𝑔(𝑞)𝑄(𝐳)); refer also to Arellano-Valle et al.
49]. As a consequence, the two probabilities at the denominator and numerator of (3) coincide with the cumulative distribution
unctions, evaluated at 𝝉 and 𝝉+𝜟⊤�̄�−1𝝎−1(𝐳−𝝃), of the centered elliptical distributions EC𝑞(𝟎, �̄� , 𝑔(𝑞)) and EC𝑞(𝟎, �̄� −𝜟⊤�̄�−1𝜟, 𝑔(𝑞)𝑄(𝐳)),
espectively, thereby allowing to recover (1).

Besides providing additional insights on the quantities defining the joint density p(𝐳) in (1), the selection representation in (2)–(3)
s also useful to derive the cumulative distribution function P(𝐳) of the SUE distribution having density as in (1). More specifically,
ince the SUE random vector 𝐳 ∼ SUE𝑚,𝑞(𝝃,𝜴,𝜟, 𝝉 , �̄� , 𝑔(𝑚+𝑞)) admits the equivalent selection representation in (2), it follows that

P(𝐳) = P(�̄� ≤ 𝐳,−�̄�0 ≤ 𝟎)∕P(−�̄�0 ≤ 𝟎) = P(�̄� − 𝝃 ≤ 𝐳 − 𝝃,−�̄�0 + 𝝉 ≤ 𝝉)∕𝐹𝑞(𝝉; �̄� , 𝑔(𝑞)).

herefore, leveraging again the closure under linear combinations of elliptical distributions [3,41], it is possible to derive the
ollowing closed-form expression for the cumulative distribution function

P(𝐳) =
𝐹𝑚+𝑞

([

𝐳 − 𝝃
𝝉

]

;
[

𝜴 −𝝎𝜟
−𝜟⊤𝝎 �̄�

]

, 𝑔(𝑚+𝑞)
)

𝐹𝑞
(

𝝉; �̄� , 𝑔(𝑞)
) . (4)

Notice that the vector �̄�0 is often called the latent part of the distribution, whereas 𝑞 is the latent dimension.
Before discussing important SUE examples, we shall also emphasize that, as a result of the closure under linear combinations of

lliptical and SUE distributions [41,46], an alternative to representation (2) is

𝐳
𝑑
= 𝝃 + 𝝎𝐳⋆, 𝐳⋆

𝑑
= (�̃� ∣ �̃�0 + 𝝉 > 𝟎),

[

�̃�
�̃�0

]

∼ EC𝑚+𝑞
([

𝟎
𝟎

]

,
[

�̄� 𝜟
𝜟⊤ �̄�

]

, 𝑔(𝑚+𝑞)
)

. (5)

uch a representation is the one adopted by [2] for the sub-family of SUN distributions and is particularly convenient for deriving the
ean vector and covariance matrix of 𝐳. More specifically, leveraging (5), the law of total expectation, and the previously-discussed

losure properties of elliptical distributions, we have that

E(𝐳) = 𝝃 + 𝝎E(�̃� ∣ �̃�0 + 𝝉 > 𝟎) = 𝝃 + 𝝎𝜟�̄� −1E(�̃�0 ∣ �̃�0 + 𝝉 > 𝟎). (6)

ecalling Arellano-Valle and Genton [46], a related reasoning yields the following covariance matrix

var(𝐳) = 𝜓𝜴 + 𝝎𝜟
[

�̄� −1var(�̃�0 ∣ �̃�0 + 𝝉 > 𝟎)�̄� −1 − 𝜓�̄� −1
]

𝜟⊤𝝎, (7)

here 𝜓 is a scalar whose form can be obtained from the derivations in Arellano-Valle and Genton [46]. The above expressions clarify
hat moments of SUE random vectors can be directly obtained from those of multivariate truncated elliptical distributions [e.g., 50–
4]. Moreover, (7) shows that to enforce a lack of correlation among the entries in 𝐳, it is not sufficient to impose suitable diagonal
r block-diagonal structures within 𝜴. Rather, these constraints should be combined with additional ones, e.g., on the shape matrix
. Such a result is useful in Section 3 to derive examples of practically-meaningful priors and likelihoods inducing SUE posterior
3
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distributions. To this end, Sections 3.1–3.3 state general conjugacy properties and then specialize these results to the two most
popular examples of SUE distributions that are presented in detail in Section 2.2 below, namely, multivariate unified skew-normals
(SUN) [2] and multivariate unified skew-𝑡 (SUT) [48]. The results for SUN clarify that the conjugacy properties derived by Durante
[1], Fasano and Durante [6] and Anceschi et al. [8] can be obtained as a special case, and under a different proof technique, of
the more general SUE framework introduced in the present article. Conversely, the conjugacy results stated for SUT are a novel
contribution that extends to a broader class of models of potential practical interest the findings in Song and Xia [55] and Zhang
et al. [40] on specific Student’s 𝑡 linear regressions and multivariate probit formulations based on skew-elliptical link functions.

.2. Relevant sub-classes of multivariate unified skew-elliptical distributions

The SUN and SUT families arise from skewed perturbations of multivariate Gaussians and Student’s 𝑡 densities, respectively.
As such, these formulations are arguably the most relevant and practically-impactful sub-classes in the SUE family. In addition,
recalling Arellano-Valle and Azzalini [2], Arellano-Valle and Genton [46], and Wang et al. [48], both SUN and SUT admit additive
stochastic representations which allow for i.i.d. sampling under posterior distributions belonging to these two sub-classes, thus
facilitating Bayesian inference; see also Yin and Balakrishnan [56] for a recent extension of these stochastic representations to more
general multivariate skew-elliptical distributions, beyond SUN and SUT. Sections 2.2.1–2.2.2 provide a concise overview of SUN
and SUT sub-classes, respectively. A more extensive treatment can be found in, e.g., [2,48].

2.2.1. Multivariate unified skew-normal distributions
The SUN family has been introduced by Arellano-Valle and Azzalini [2] to provide a single class of distributions capable of

unifying several extensions of the original multivariate skew-normal [57]. Relevant examples of representations that belong to such a
wide class are extended multivariate skew-normals [58,59] and closed skew-normals [60,61], among others. Recalling Arellano-Valle
and Azzalini [2], a random vector 𝐳 ∈ R𝑚 has SUN distribution, i.e., 𝐳 ∼ SUN𝑚,𝑞(𝝃,𝜴,𝜟, 𝝉 , �̄� ), if its density is

p(𝐳) = 𝜙𝑚(𝐳 − 𝝃;𝜴)
𝛷𝑞[𝝉 + 𝜟⊤�̄�−1𝝎−1(𝐳 − 𝝃); �̄� − 𝜟⊤�̄�−1𝜟]

𝛷𝑞(𝝉; �̄� )
, 𝐳 ∈ R𝑚, (8)

where 𝝃, 𝜴, 𝝉, 𝜟 and �̄� have the same role and interpretation of the corresponding quantities within the general SUE representation
in (1), whereas 𝜙𝑚(𝐳 − 𝝃;𝜴), 𝛷𝑞[𝝉 + 𝜟⊤�̄�−1𝝎−1(𝐳 − 𝝃); �̄� − 𝜟⊤�̄�−1𝜟] and 𝛷𝑞(𝝉; �̄� ) denote the density and cumulative distribution
functions, evaluated at 𝐳 − 𝝃, 𝝉 + 𝜟⊤�̄�−1𝝎−1(𝐳 − 𝝃) and 𝝉, respectively, of the centered multivariate Gaussians with covariance

atrices 𝜴 ∈ R𝑚×𝑚, �̄� − 𝜟⊤�̄�−1𝜟 ∈ R𝑞×𝑞 and �̄� ∈ R𝑞×𝑞 . Notice that, when 𝜟 = 𝟎, the above density coincides with that of the
ultivariate Gaussian N𝑚(𝝃,𝜴), which can be therefore recovered as a special case, irrespectively of the value of 𝝉 and �̄� .

Although the above representation is originally derived in Arellano-Valle and Azzalini [2] under a selection representation similar
o (5) applied to an underlying Gaussian, the density in (8) can also be derived directly from (1) under a suitable choice of the density
enerators. In particular, for 𝑢 ≥ 0, define 𝑔(𝑚) = 𝜙(𝑚)(𝑢) = (2𝜋)−𝑚∕2 exp(−𝑢∕2), 𝑔(𝑞) = 𝜙(𝑞)(𝑢) = (2𝜋)−𝑞∕2 exp(−𝑢∕2) and recall also that,
n the particular Gaussian setting, the conditional generator 𝜙(𝑞)

𝑄(𝐲) coincides with the unconditional one 𝜙(𝑞). Then, recalling related
erivations in Arellano-Valle and Genton [46], and replacing these density generators in (1), directly yields expression (8), thus
larifying that SUNs are special cases of SUE distributions.

Recalling Section 1, the SUN family has been at the basis of recent advancements in conjugate Bayesian inference for routinely-
mplemented representations relying on fully-observed, discretized or partially-discretized Gaussian and multivariate skew-normal
odels [1,6,8]. As discussed in Section 3, these conjugacy properties can be obtained as a special case of those we derive for the

UE family, which, in turn, allow us to extend such results to larger classes, including the SUT one introduced in Section 2.2.2.

.2.2. Multivariate unified skew-𝑡 distributions
The success of the SUN family has motivated several extensions aimed at deriving similar skewed representations for other

ub-classes of the elliptical family. A noticeable and natural generalization is provided by the class of SUT distributions [e.g., 48]
hich can be obtained by replacing Gaussians with suitably-defined multivariate Student’s 𝑡 in the original selection representation
f SUNs. Recalling, e.g., Wang et al. [48], this yields a density for the SUT random vector 𝐳 ∼ SUT𝑚,𝑞(𝝃,𝜴,𝜟, 𝝉 , �̄� , 𝜈), defined as

p(𝐳) = 𝑡𝑚(𝐳 − 𝝃;𝜴, 𝜈)
𝑇𝑞[𝛼

−1∕2
𝜈,𝑄(𝐳){𝝉 + 𝜟⊤�̄�−1𝝎−1(𝐳 − 𝝃)}; �̄� − 𝜟⊤�̄�−1𝜟, 𝜈 + 𝑚]

𝑇𝑞(𝝉; �̄� , 𝜈)
, 𝐳 ∈ R𝑚, (9)

here 𝛼𝜈,𝑄(𝐳) = [𝜈 +𝑄(𝐳)]∕(𝜈 + 𝑚), 𝑄(𝐳) = (𝐳 − 𝝃)⊤𝜴−1(𝐳 − 𝝃), and 𝜈 > 0 are the degrees of freedom. The remaining parameters have,
likewise, similar interpretations to those in (1). Analogously, 𝑡𝑚(𝐳− 𝝃;𝜴, 𝜈), 𝑇𝑞[𝛼

−1∕2
𝜈,𝑄(𝐳){𝝉 +𝜟⊤�̄�−1𝝎−1(𝐳− 𝝃)}; �̄� −𝜟⊤�̄�−1𝜟, 𝜈 +𝑚] and

𝑞(𝝉; �̄� , 𝜈) denote the density and cumulative distribution functions, evaluated at the corresponding first argument, respectively, of
he centered multivariate Student’s 𝑡 distributions with scale matrices 𝜴 ∈ R𝑚×𝑚, �̄� − 𝜟⊤�̄�−1𝜟 ∈ R𝑞×𝑞 and �̄� ∈ R𝑞×𝑞 , and degrees
f freedom 𝜈, 𝜈 + 𝑚 and 𝜈, respectively. Notice that, for 𝑞 = 1, one retrieves the multivariate extended skew-𝑡 in [62]. Moreover,
hen 𝝉 = 𝟎 and 𝜟 = 𝟎, the numerator and denominator in (9) coincide, and, therefore, the density reduces to that of a multivariate
tudent’s 𝑡 distribution T𝑚(𝝃,𝜴, 𝜈) with location 𝝃, scale 𝜴, and degrees of freedom 𝜈. This implies that the multivariate Student’s 𝑡

is obtained as a special case of SUT.
As for the SUN, also the SUT density within (9) can be derived from (1) under a suitable choice for the density generators. In

particular, let 𝑔(𝑚) = 𝑡(𝑚)(𝑢) = 𝑐(𝜈, 𝑚)[1 + 𝑢∕𝜈]−(𝜈+𝑚)∕2, and 𝑔(𝑞) = 𝑡(𝑞)(𝑢) = 𝑐(𝜈, 𝑞)[1 + 𝑢∕𝜈]−(𝜈+𝑞)∕2, where the generic quantity 𝑐(𝑎, 𝑏) is
4

𝜈 𝜈
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defined as 𝑐(𝑎, 𝑏) = 𝛤 [(𝑎+𝑏)∕2]∕[𝛤 (𝑎∕2)(𝜋𝑎)𝑏∕2], while 𝛤 (⋅) denotes the usual gamma function. Then, recalling, for example, Arellano-
Valle and Genton [46], by replacing the generic density generators in (1) with those defined above and with the induced conditional
density generator, yields, as a result of straightforward calculations, the SUT density in (9). Interestingly, as clarified in, e.g., Wang
et al. [48], when 𝜈 → ∞, this density reduces to (8), thereby establishing a direct connection between SUT and SUN distributions.
This suggests that the conjugacy properties derived in Durante [1], Fasano and Durante [6] and Anceschi et al. [8] for SUN might
extend to SUT, and, more generally, to SUE distributions. Two promising results in this direction have been derived in Song and
Xia [55] and in Zhang et al. [40], but only with a focus on Student’s 𝑡 linear regression and on specific multivariate binary data
settings. Leveraging the SUE properties in Section 2.3, we prove in Section 3 that SUE conjugacy holds for a substantially larger
class of models which further embraces formulations of potential interest in practice.

2.3. Properties of unified skew-elliptical distributions

Lemmas 1–5 below state several central properties of SUE distributions that are at the core of the novel conjugacy results derived
in Section 3. More specifically, Lemmas 1–2 establish closure under linear combinations, marginalization and conditioning of SUE
distributions. All these properties have appeared also in Arellano-Valle and Genton [46], but under a different parameterization.
Conversely, Lemmas 3–5 state novel results that are useful to study SUE conjugacy under broad classes of models and to derive
special cases of potential interest in practical contexts.

Lemma 1. Let 𝐳 ∼ SUE𝑚,𝑞(𝝃,𝜴,𝜟, 𝝉 , �̄� , 𝑔(𝑚+𝑞)). In addition, denote with 𝐀 ∈ R𝑟×𝑚 a matrix with rank 𝑟 ≤ 𝑚, and let 𝒃 ∈ R𝑟 be a vector of
constants. Then

𝐀𝐳 + 𝒃 ∼ SUE𝑟,𝑞(𝐀𝝃 + 𝒃,𝐀𝜴𝐀⊤,𝜟𝐀, 𝝉 , �̄� , 𝑔(𝑟+𝑞)),

where 𝜟𝐀 = 𝝎−1
𝐀 𝐀𝝎𝜟 with 𝝎𝐀 = diag(𝐀𝜴𝐀⊤)1∕2. Moreover, let 𝐳𝐶 ∈ R|𝐶| be a generic sub-vector comprising the entries in 𝐳 with indexes

in 𝐶 ⊂ {1,… , 𝑚}, and denote with 𝝃𝐶 ∈ R|𝐶|, 𝜴𝐶𝐶 ∈ R|𝐶|×|𝐶| and 𝜟𝐶⋅ ∈ R|𝐶|×𝑞 the associated location sub-vector, dispersion sub-matrix
and shape sub-matrix, respectively. Then

𝐳𝐶 ∼ SUE
|𝐶|,𝑞(𝝃𝐶 ,𝜴𝐶𝐶 ,𝜟𝐶⋅, 𝝉 , �̄� , 𝑔(|𝐶|+𝑞)),

for any 𝐶 ⊂ {1,… , 𝑚}.

Proof. The proof adapts related derivations in Arellano-Valle and Genton [46] to the parameterization considered in the present
article. More specifically, by applying to (2) the linearity properties of elliptical distributions, it follows that

[

𝐀�̄�
−�̄�0

]

∼ EC𝑟+𝑞

(

[

𝐀𝝃
−𝝉

]

,

[

𝐀𝜴𝐀⊤ −𝝎𝐀𝜟𝐀

−𝜟⊤𝐀𝝎𝐀 �̄�

]

, 𝑔(𝑟+𝑞)
)

,

where 𝝎𝐀 = diag(𝐀𝜴𝐀⊤)1∕2 and 𝜟𝐀 = 𝝎−1
𝐀 𝐀𝝎𝜟. Now, as a direct consequence of the selection representation in (2), we have that

𝐀𝐳+ 𝒃 is distributed as (𝐀�̄�+ 𝒃 | �̄�0 > 𝟎). Therefore, leveraging the results and discussions in Section 2.1, the cumulative distribution
function of 𝐀𝐳 + 𝒃 can be expressed as

P(𝐀𝐳 + 𝒃 ≤ 𝐳∗) =
P(𝐀�̄� ≤ 𝐳∗ − 𝒃,−�̄�0 ≤ 𝟎)

P(−�̄�0 ≤ 𝟎)
=
𝐹𝑟+𝑞

([

𝐳∗ − 𝐀𝝃 − 𝒃
𝝉

]

;
[

𝐀𝜴𝐀⊤ −𝝎𝐀𝜟𝐀
−𝜟⊤𝐀𝝎𝐀 �̄�

]

, 𝑔(𝑟+𝑞)
)

𝐹𝑞(𝝉; �̄� , 𝑔(𝑞))
,

for any 𝐳∗ ∈ R𝑟, thus obtaining the cumulative distribution function of the SUE𝑟,𝑞(𝐀𝝃 + 𝒃,𝐀𝜴𝐀⊤,𝜟𝐀, 𝝉 , �̄� , 𝑔(𝑟+𝑞)). The result for the
marginals follows as a direct consequence by letting 𝒃 = 𝟎 and setting 𝐀 equal to a suitably-defined binary selection matrix such
that 𝐀𝐳 = 𝐳𝐶 . □

Lemma 1 ensures that linear combinations and marginals of multivariate SUE distributions are still within the same class, and
he associated parameters can be derived in closed form via tractable analytical calculations. Lemma 2 below clarifies that a related
esult holds for the conditional distributions.

emma 2. Let 𝐳 = (𝐳⊤1 , 𝐳
⊤
2 )
⊤ ∼ SUE𝑚,𝑞(𝝃,𝜴,𝜟, 𝝉 , �̄� , 𝑔(𝑚+𝑞)) with 𝐳1 ∈ R𝑚1 , 𝐳2 ∈ R𝑚2 , and parameters partitioned as

𝝃 =
[

𝝃1
𝝃2

]

, 𝜴 =
[

𝜴11 𝜴12
𝜴21 𝜴22

]

, 𝝎 =
[

𝝎1 𝟎
𝟎 𝝎2

]

, �̄� =
[

�̄�11 �̄�12
�̄�21 �̄�22

]

, 𝜟 =
[

𝜟1
𝜟2

]

, (10)

where 𝑚1 + 𝑚2 = 𝑚, �̄�21 = 𝝎−1
2 𝜴21𝝎−1

1 and �̄�12 = 𝝎−1
1 𝜴12𝝎−1

2 . Then, for 𝑖, 𝑗 ∈ {1, 2} and 𝑗 ≠ 𝑖, we have

(𝐳𝑖 ∣ 𝐳𝑗 ) ∼ SUE𝑚𝑖 ,𝑞(𝝃𝑖∣𝑗 ,𝜴𝑖∣𝑗 ,𝜟𝑖∣𝑗 , 𝝉 𝑖∣𝑗 , �̄� 𝑖∣𝑗 , 𝑔
(𝑚𝑖+𝑞)
𝑄𝑗 (𝐳𝑗 )

), 𝐳𝑗 ∈ R𝑚𝑗 , (11)

with parameters defined as

𝝃𝑖∣𝑗 = 𝝃𝑖 +𝜴𝑖𝑗𝜴−1
𝑗𝑗 (𝐳𝑗 − 𝝃𝑗 ), 𝜴𝑖∣𝑗 = 𝜴𝑖𝑖 −𝜴𝑖𝑗𝜴−1

𝑗𝑗 𝜴𝑗𝑖, 𝝎𝑖∣𝑗 = diag(𝜴𝑖∣𝑗 )1∕2, 𝜸𝑖∣𝑗 = diag(�̄� − 𝜟⊤𝑗 �̄�
−1
𝑗𝑗 𝜟𝑗 )

1∕2,

𝜟𝑖∣𝑗 = 𝝎−1
𝑖∣𝑗 (𝝎𝑖𝜟𝑖 −𝜴𝑖𝑗𝜴−1

𝑗𝑗 𝝎𝑗𝜟𝑗 )𝜸
−1
𝑖∣𝑗 , 𝝉 𝑖∣𝑗 = 𝜸−1𝑖∣𝑗 [𝝉 + 𝜟⊤𝑗 �̄�

−1
𝑗𝑗 𝝎

−1
𝑗 (𝐳𝑗 − 𝝃𝑗 )], �̄� 𝑖∣𝑗 = 𝜸−1𝑖∣𝑗 (�̄� − 𝜟⊤𝑗 �̄�

−1
𝑗𝑗 𝜟𝑗 )𝜸

−1
𝑖∣𝑗 ,

(12)

and conditional density generator 𝑔(𝑚𝑖+𝑞)(𝑢) = 𝑔(𝑚+𝑞)[𝑄 (𝐳 ) + 𝑢]∕𝑔(𝑚𝑗 )[𝑄 (𝐳 )], with 𝑄 (𝐳 ) = (𝐳 − 𝝃 )⊤𝜴−1(𝐳 − 𝝃 ).
5

𝑄𝑗 (𝐳𝑗 ) 𝑗 𝑗 𝑗 𝑗 𝑗 𝑗 𝑗 𝑗 𝑗𝑗 𝑗 𝑗
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Proof. To prove Lemma 2, let us leverage again (2). To this end, consider the following elliptical distribution

⎡

⎢

⎢

⎣

�̄�1
�̄�2
�̄�0

⎤

⎥

⎥

⎦

∼ EC𝑚1+𝑚2+𝑞

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎣

𝝃1
𝝃2
𝝉

⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎣

𝜴11 𝜴12 𝝎1𝜟1

𝜴21 𝜴22 𝝎2𝜟2

𝜟⊤1𝝎1 𝜟⊤2𝝎2 �̄�

⎤

⎥

⎥

⎥

⎦

, 𝑔(𝑚1+𝑚2+𝑞)

⎞

⎟

⎟

⎟

⎠

. (13)

Then, by the closure under linear combinations and conditioning of elliptical distributions [e.g., 41], we have that

([�̄�⊤𝑖 , (−𝜸
−1
𝑖∣𝑗 �̄�0)

⊤]⊤ ∣ �̄�𝑗 ) ∼ EC𝑚𝑖+𝑞

([

𝝃𝑖∣𝑗
−𝝉 𝑖∣𝑗

]

,

[

𝜴𝑖∣𝑗 −𝝎𝑖∣𝑗𝜟𝑖∣𝑗
−𝜟⊤𝑖∣𝑗𝝎𝑖∣𝑗 �̄� 𝑖∣𝑗

]

, 𝑔(𝑚𝑖+𝑞)𝑄𝑗 (�̄�𝑗 )

)

, 𝑄𝑗 (�̄�𝑗 ) = (�̄�𝑗 − 𝝃𝑗 )⊤𝜴−1
𝑗𝑗 (�̄�𝑗 − 𝝃𝑗 ),

hich also implies (−𝜸−1𝑖∣𝑗 �̄�0 ∣ �̄�𝑗 ) ∼ EC𝑞(−𝝉 𝑖∣𝑗 , �̄� 𝑖∣𝑗 , 𝑔
(𝑞)
𝑄𝑗 (�̄�𝑗 )

), as a direct consequence of the closure under marginalization.
By combining these results with the selection representation in (2), and noticing that the event −�̄�0 ≤ 𝟎 is equivalent to −𝜸−1𝑖∣𝑗 �̄�0 ≤ 𝟎

since 𝜸−1𝑖∣𝑗 is diagonal with non-negative entries), it follows that

P(𝐳𝑖 ∣ 𝐳𝑗 ) =
P(�̄�𝑖 ≤ 𝐳𝑖,−𝜸−1𝑖∣𝑗 �̄�0 ≤ 𝟎 ∣ �̄�𝑗 = 𝐳𝑗 )

P(−𝜸−1𝑖∣𝑗 �̄�0 ≤ 𝟎 ∣ �̄�𝑗 = 𝐳𝑗 )
=

𝐹𝑚𝑖+𝑞

([

𝐳𝑖 − 𝝃𝑖∣𝑗
𝝉 𝑖∣𝑗

]

;

[

𝜴𝑖∣𝑗 −𝝎𝑖∣𝑗𝜟𝑖∣𝑗
−𝜟⊤𝑖∣𝑗𝝎𝑖∣𝑗 �̄� 𝑖∣𝑗

]

, 𝑔(𝑚𝑖+𝑞)𝑄𝑗 (𝐳𝑗 )

)

𝐹𝑞(𝝉 𝑖∣𝑗 ; �̄� 𝑖∣𝑗 , 𝑔
(𝑞)
𝑄𝑗 (𝐳𝑗 )

)
, (14)

hich coincides with the cumulative distribution function of the SUE in (11) having parameters as in (12); see (4) for the expression
f the cumulative distribution function of a generic SUE𝑚,𝑞(𝝃,𝜴,𝜟, 𝝉 , �̄� , 𝑔(𝑚+𝑞)). Notice that the first equality in (14) follows from

the fact that p(𝐳𝑖 ∣ 𝐳𝑗 ) = p(𝐳𝑖, 𝐳𝑗 )∕p(𝐳𝑗 ), where (𝐳⊤𝑖 , 𝐳
⊤
𝑗 )
⊤ = 𝐳 is distributed as a SUE and, by Lemma 1, the same holds for 𝐳𝑗 . Hence,

from the selection representation in (2), it follows that

p(𝐳𝑖 ∣ 𝐳𝑗 ) =
p(�̄�𝑖 = 𝐳𝑖, �̄�𝑗 = 𝐳𝑗 )

p(�̄�𝑗 = 𝐳𝑗 )
P(�̄�0 ≥ 𝟎 ∣ �̄�𝑖 = 𝐳𝑖, �̄�𝑗 = 𝐳𝑗 )

P(�̄�0 ≥ 𝟎 ∣ �̄�𝑗 = 𝐳𝑗 )
= p(�̄�𝑖 = 𝐳𝑖 ∣ �̄�𝑗 = 𝐳𝑗 )

P(�̄�0 ≥ 𝟎 ∣ �̄�𝑖 = 𝐳𝑖, �̄�𝑗 = 𝐳𝑗 )
P(�̄�0 ≥ 𝟎 ∣ �̄�𝑗 = 𝐳𝑗 )

, (15)

nd, hence, P(𝐳𝑖 ∣ 𝐳𝑗 ) = P(�̄�𝑖 ≤ 𝐳𝑖,−𝜸−1𝑖∣𝑗 �̄�0 ≤ 𝟎 ∣ �̄�𝑗 = 𝐳𝑗 )∕P(−𝜸−1𝑖∣𝑗 �̄�0 ≤ 𝟎 ∣ �̄�𝑗 = 𝐳𝑗 ). □

Lemma 2 guarantees that when 𝐳 = (𝐳⊤𝑖 , 𝐳
⊤
𝑗 )
⊤ is distributed as a SUE, then also the conditional distribution for a generic sub-vector

𝑖 belongs to the same family. Such a result conditions on a given realization 𝐳𝑗 for the remaining entries in 𝐳. In this respect, Lemma 3
tates a novel finding which clarifies that the properties in Lemma 2 can be preserved also when conditioning on a truncation event.
imilar results can be found in [4,48] with a focus on SUN and SUT sub-classes. Lemma 3 states this property for the SUE family.

emma 3. Let 𝐳 = (𝐳⊤1 , 𝐳
⊤
2 )
⊤ ∼ SUE𝑚,𝑞(𝝃,𝜴,𝜟, 𝝉 , �̄� , 𝑔(𝑚+𝑞)) with parameters partitioned as in (10). Then

(𝐳𝑖 | 𝐳𝑗 > 𝟎) ∼ SUE𝑚𝑖 ,𝑚𝑗+𝑞(𝝃𝑖,𝜴𝑖𝑖, �̃�𝑖∣𝑗 , �̃� 𝑖∣𝑗 , ̄̃𝜞 𝑖∣𝑗 , 𝑔
(𝑚+𝑞)), (16)

here the quantities �̃�𝑖∣𝑗 , �̃� 𝑖∣𝑗 , and ̄̃𝜞 𝑖∣𝑗 are defined as

�̃�𝑖∣𝑗 =
[

�̄�𝑖𝑗 𝜟𝑖
]

, �̃� 𝑖∣𝑗 =

[

𝝎−1
𝑗 𝝃𝑗
𝝉

]

, ̄̃𝜞 𝑖∣𝑗 =

[

�̄�𝑗𝑗 𝜟𝑗
𝜟⊤𝑗 �̄�

]

, (17)

or every 𝑖, 𝑗 ∈ {1, 2}, with 𝑗 ≠ 𝑖 and �̄�𝑖𝑗 = 𝝎−1
𝑖 𝜴𝑖𝑗𝝎−1

𝑗 .

roof. Consider the selection representation in (2) based on the underlying elliptical distribution in (13). Leveraging derivations
nd arguments similar to those considered in the proof of Lemma 2, we have that

P(𝐳𝑗 > 𝟎 ∣ 𝐳𝑖) =
P(�̄�𝑗 > 𝟎, �̄�0 > 𝟎 ∣ �̄�𝑖 = 𝐳𝑖)

P(�̄�0 > 𝟎 ∣ �̄�𝑖 = 𝐳𝑖)
, P(𝐳𝑗 > 𝟎) =

P(�̄�𝑗 > 𝟎, �̄�0 > 𝟎)
P(�̄�0 > 𝟎)

=
P(𝝎−1

𝑗 �̄�𝑗 > 𝟎, �̄�0 > 𝟎)
P(�̄�0 > 𝟎)

. (18)

oreover, recall that by representation (2) and the closure properties of SUE, the marginal density for 𝐳𝑖 is defined as p(𝐳𝑖) = p(�̄�𝑖 =
𝑖)P(�̄�0 > 𝟎 ∣ �̄�𝑖 = 𝐳𝑖)∕P(�̄�0 > 𝟎). Combining such an expression with those in (18) leads to

p(𝐳𝑖 ∣ 𝐳𝑗 > 0) = p(𝐳𝑖)
P(𝐳𝑗 > 𝟎 ∣ 𝐳𝑖)
P(𝐳𝑗 > 𝟎)

= p(�̄�𝑖 = 𝐳𝑖)
P(�̄�0 > 𝟎 ∣ �̄�𝑖 = 𝐳𝑖)

P(�̄�0 > 𝟎)
P(�̄�𝑗 > 𝟎, �̄�0 > 𝟎 ∣ �̄�𝑖 = 𝐳𝑖)

P(�̄�0 > 𝟎 ∣ �̄�𝑖 = 𝐳𝑖)
P(�̄�0 > 𝟎)

P(𝝎−1
𝑗 �̄�𝑗 > 𝟎, �̄�0 > 𝟎)

= p(�̄�𝑖 = 𝐳𝑖)
P(�̄�𝑗 > 𝟎, �̄�0 > 𝟎 ∣ �̄�𝑖 = 𝐳𝑖)

P(𝝎−1
𝑗 �̄�𝑗 > 𝟎, �̄�0 > 𝟎)

= p(�̄�𝑖 = 𝐳𝑖)
P(−𝝎−1

𝑗 �̄�𝑗 ≤ 𝟎,−�̄�0 ≤ 𝟎 ∣ �̄�𝑖 = 𝐳𝑖)

P(−𝝎−1
𝑗 �̄�𝑗 ≤ 𝟎,−�̄�0 ≤ 𝟎)

. (19)

Leveraging the closure under linear combinations, marginalization and conditioning of elliptical distributions [e.g., 41], we have

[(−𝝎−1
𝑗 �̄�𝑗 )⊤,−�̄�⊤0 ]

⊤ ∼ EC𝑚𝑗+𝑞(−�̃� 𝑖∣𝑗 ,
̄̃𝜞 𝑖∣𝑗 , 𝑔

(𝑚𝑗+𝑞)),

([(−𝝎−1
𝑗 �̄�𝑗 )⊤,−�̄�⊤0 ]

⊤ ∣ �̄�𝑖 = 𝐳𝑖) ∼ EC𝑚𝑗+𝑞(−�̃� 𝑖∣𝑗 − �̃�⊤𝑖∣𝑗�̄�
−1
𝑖𝑖 𝝎

−1
𝑖 (𝐳𝑖 − 𝝃𝑖), ̄̃𝜞 𝑖∣𝑗 − �̃�⊤𝑖∣𝑗�̄�

−1
𝑖𝑖 �̃�𝑖∣𝑗 , 𝑔

(𝑚𝑗+𝑞)
𝑄𝑖(𝐳𝑖)

),

here 𝑄 (𝐳 ) = (𝐳 − 𝝃 )⊤𝜴−1(𝐳 − 𝝃 ).
6

𝑖 𝑖 𝑖 𝑖 𝑖𝑖 𝑖 𝑖
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Hence, combining the above results with expression (19), and recalling that p(�̄�𝑖 = 𝐳𝑖) coincides with the density of the elliptical
istribution EC𝑚𝑖 (𝝃𝑖,𝜴𝑖𝑖, 𝑔(𝑚𝑖)), we obtain

p(𝐳𝑖 ∣ 𝐳𝑗 > 𝟎) = 𝑓𝑚𝑖 (𝐳𝑖 − 𝝃𝑖;𝜴𝑖𝑖, 𝑔
(𝑚𝑖))

𝐹𝑚𝑗+𝑞(�̃� 𝑖∣𝑗 + �̃�⊤𝑖∣𝑗�̄�
−1
𝑖𝑖 𝝎

−1
𝑖 (𝐳𝑖 − 𝝃𝑖); ̄̃𝜞 𝑖∣𝑗 − �̃�⊤𝑖∣𝑗�̄�

−1
𝑖𝑖 �̃�𝑖∣𝑗 , 𝑔

(𝑚𝑗+𝑞)
𝑄𝑖(𝐳𝑖)

)

𝐹𝑚𝑗+𝑞(�̃� 𝑖∣𝑗 ;
̄̃𝜞 𝑖∣𝑗 , 𝑔

(𝑚𝑗+𝑞))
,

which coincides with the density of the SUE in Lemma 3. □

Remark 1. Under a similar argument and derivations, it easily follows that also (𝐳𝑖 ∣ 𝐳𝑗 < 𝟎) is a SUE distribution.

Lemma 4 below is useful for converting a SUE distribution parameterized by a matrix 𝜞 that is not in the form of a Pearson
correlation matrix to a standard SUE meeting such a constraint.

Lemma 4. Let 𝜞 be a positive-definite matrix, then SUE𝑚,𝑞(𝝃,𝜴,𝜟, 𝝉 ,𝜞 , 𝑔(𝑚+𝑞))
𝑑
= SUE𝑚,𝑞(𝝃,𝜴,𝜟𝜸−1, 𝜸−1𝝉 , �̄� , 𝑔(𝑚+𝑞)), where �̄� is a Pearson

correlation matrix defined as �̄� = 𝜸−1𝜞𝜸−1, with 𝜸 = diag(𝜞 )1∕2.

Proof. Let 𝐳 ∼ SUE𝑚,𝑞(𝝃,𝜴,𝜟, 𝝉 ,𝜞 , 𝑔(𝑚+𝑞)). Then, according to the selection representation in (2), 𝐳 𝑑
= (�̄� ∣ �̄�0 > 𝟎), and its density

function is given by (3). Notice that, since 𝜸 is a diagonal matrix with non-negative entries, then the numerator and denominator
in (3) can be alternatively re-written as P(−�̄�0 ≤ 𝟎 ∣ �̄� = 𝐳) = P(−𝜸−1�̄�0 ≤ 𝟎 ∣ �̄� = 𝐳) and P(−�̄�0 ≤ 𝟎) = P(−𝜸−1�̄�0 ≤ 𝟎). Therefore, the
proof follows directly from (2)–(3) and by the closure under linear combinations and conditioning of elliptical distributions. □

Lemma 5 concludes this section by presenting particular cases of SUE distributions obtained under specific constraints on the
ssociated parameters. These results are useful for detecting redundant latent dimensions and identifying interesting examples of
onstrained representations yielding specific models of interest under the conjugacy results derived in Section 3.

emma 5. Let 𝐳 ∼ SUE𝑚,𝑞(𝝃,𝜴,𝜟, 𝝉 , �̄� , 𝑔(𝑚+𝑞)) with parameters 𝜟, 𝝉, and �̄� partitioned as

𝜟 =
[

𝜟1 𝜟2
]

, 𝝉 =

[

𝝉1
𝝉2

]

, �̄� =

[

�̄� 11 �̄� 12

�̄� 21 �̄� 22

]

,

here 𝜟𝑖 ∈ R𝑚×𝑞𝑖 , 𝝉 𝑖 ∈ R𝑞𝑖 , and �̄� 𝑖𝑗 ∈ R𝑞𝑖×𝑞𝑗 , for every 𝑖, 𝑗 ∈ {1, 2}, such that 𝑞1 + 𝑞2 = 𝑞. Then, (i) if 𝜟 = 𝟎 and 𝝉 = 𝟎, it follows that
∼ EC𝑚(𝝃,𝜴, 𝑔(𝑚)). Additionally, (ii) if 𝜟𝑖 = 𝟎, 𝝉 𝑖 = 𝟎, �̄� 𝑖𝑗 = 𝟎, for 𝑖 and 𝑗 fixed, with 𝑗 ≠ 𝑖, then 𝐳 ∼ SUE𝑚,𝑞𝑗 (𝝃,𝜴,𝜟𝑗 , 𝝉𝑗 , �̄� 𝑗𝑗 , 𝑔

(𝑚+𝑞𝑗 )).
inally, (iii) 𝐹𝑚+𝑞{[(𝐳− 𝝃)⊤, 𝟎⊤]⊤;diag(𝜴, �̄� ), 𝑔(𝑚+𝑞)} = 𝐹𝑚(𝐳− 𝝃;𝜴, 𝑔(𝑚)) ⋅𝐹𝑞(𝟎; �̄� , 𝑔(𝑞)), where diag(𝜴, �̄� ) denotes a block-diagonal matrix
ith blocks 𝜴 and �̄� , respectively.

roof. To prove (i) note that, due to the invariance of orthant probabilities under centered elliptical distributions [e.g., 41], we
ave 𝐹𝑞(𝟎; �̄� , 𝑔

(𝑞)
𝑄(𝐳)) = 𝐹𝑞(𝟎; �̄� , 𝑔(𝑞)). Hence, including the constraints 𝜟 = 𝟎 and 𝝉 = 𝟎 in (1), yields

p(𝐳) = 𝑓𝑚(𝐳 − 𝝃;𝜴, 𝑔(𝑚))
𝐹𝑞(𝟎; �̄� , 𝑔

(𝑞)
𝑄(𝐳))

𝐹𝑞(𝟎; �̄� , 𝑔(𝑞))
= 𝑓𝑚(𝐳 − 𝝃;𝜴, 𝑔(𝑚)),

which coincides with the density of the elliptical distribution EC𝑚(𝝃,𝜴, 𝑔(𝑚)). This result allows us to prove also (iii). In particular,
since 𝐳 ∼ EC𝑚(𝝃,𝜴, 𝑔(𝑚)) when both 𝜟 = 𝟎 and 𝝉 = 𝟎, then P(𝐳) = 𝐹𝑚(𝐳 − 𝝃;𝜴, 𝑔(𝑚)). Conversely, by including the constraints

= 𝟎 and 𝝉 = 𝟎 within the general expression for the SUE cumulative distribution function in (4) yields P(𝐳) = 𝐹𝑚+𝑞{[(𝐳 −
)⊤, 𝟎⊤]⊤;diag(𝜴, �̄� ), 𝑔(𝑚+𝑞)}∕𝐹𝑞(𝟎; �̄� , 𝑔(𝑞)). Therefore P(𝐳) = 𝐹𝑚(𝐳 − 𝝃;𝜴, 𝑔(𝑚)) = 𝐹𝑚+𝑞{[(𝐳 − 𝝃)⊤, 𝟎⊤]⊤;diag(𝜴, �̄� ), 𝑔(𝑚+𝑞)}∕𝐹𝑞(𝟎; �̄� , 𝑔(𝑞))
hich implies the result stated in point (iii).

Finally, to prove (ii), assume for the sake of simplicity that 𝜟2 = 𝟎, 𝝉2 = 𝟎, and �̄� 21 = �̄� ⊤
12 = 𝟎, i.e., 𝑖 = 2 and 𝑗 = 1 (the proof

or 𝑖 = 1 and 𝑗 = 2 is analogous). Then, applying (iii) to both the numerator and the denominator of the expression for P(𝐳) in (4),
valuated under the constrained parameters, leads to

P(𝐳) =

𝐹𝑚+𝑞1+𝑞2

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

𝐳 − 𝝃

𝝉1
𝟎

⎤

⎥

⎥

⎥

⎦

;

⎡

⎢

⎢

⎢

⎣

𝜴 −𝝎𝜟1 𝟎
−𝜟⊤1𝝎 �̄� 11 𝟎

𝟎 𝟎 �̄� 22

⎤

⎥

⎥

⎥

⎦

, 𝑔(𝑚+𝑞1+𝑞2)
⎞

⎟

⎟

⎟

⎠

𝐹𝑞1+𝑞2

([

𝝉1
𝟎

]

;
[

�̄� 11 𝟎
𝟎 �̄� 22

]

, 𝑔(𝑞1+𝑞2)
)

=

𝐹𝑚+𝑞1

(

[

𝐳 − 𝝃
𝝉1

]

;

[

𝜴 −𝝎𝜟1

−𝜟⊤1𝝎 �̄� 11

]

, 𝑔(𝑚+𝑞1)
)

𝐹𝑞1 (𝝉1; �̄� 11, 𝑔(𝑞1))
,

where the last equality follows from the fact that 𝐹𝑞2 (𝟎; �̄� 22, 𝑔(𝑞2)) at the numerator and the denominator simplifies. To conclude the
proof, it suffices to notice that the above cumulative distribution function is the one of a SUE𝑚,𝑞1 (𝝃,𝜴,𝜟1, 𝝉1, �̄� 11, 𝑔(𝑚+𝑞1)). □

Remark 2. In the particular case of a SUN distribution, it can be shown that the restrictions 𝝉 = 𝟎 or 𝝉 𝑖 = 𝟎 are not necessary
in Lemma 5 since there are results analogous to (i)–(iii) that follow directly by the specific properties of Gaussian cumulative
distribution functions. In particular, adapting the above proof to the SUN sub-family, it can be easily shown, for example, that if
𝜟𝑖 = 𝟎 and �̄� 𝑖𝑗 = �̄� ⊤

𝑗𝑖 = 𝟎, 𝑗 ≠ 𝑖, then 𝐳 ∼ SUN𝑚,𝑞𝑗 (𝝃,𝜴,𝜟𝑗 , 𝝉𝑗 , �̄� 𝑗𝑗 ), even if 𝝉 𝑖 ≠ 𝟎.
7

Leveraging Lemmas 1–5, Section 3 derives the novel conjugacy properties of SUE distributions.
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3. Conjugacy properties of multivariate unified skew-elliptical (SUE) distributions

Sections 3.1–3.3 present the new results on the SUE conjugacy properties under a broad class of regression models for fully-
bserved, censored or dichotomized realizations from elliptical or skew-elliptical variables. As anticipated in Section 1, the technical
erivation of these results is based on specifying a general joint SUE distribution for the parameters in 𝜷 and the noise vector 𝜺

underlying the response 𝐲. This allows to leverage the closure properties in Section 2.3 to obtain closed-form SUE priors p(𝜷) and
eaningful likelihoods p(𝐲 ∣ 𝜷) whose combination, under the standard Bayes rule, yields posterior distributions p(𝜷 ∣ 𝐲) ∝ p(𝜷)p(𝐲 ∣
) that still belong to the SUE class.

The above technical focus on the joint distribution p(𝜷, 𝐲) for 𝜷 and 𝐲 is motivated by the fact that the results in Sections 3.1–3.3
larify that not all the models arising from elliptical or skew-elliptical noise vectors admit conjugate SUE priors. For this property
o hold generally within the SUE family, it is necessary to consider a form of dependence between 𝜷 and 𝜺 due to the specific
roperties of the density generator. Notice that such a dependence is often weak. In particular, it allows to account for meaningful
riors and models having 𝜷 and 𝜺 uncorrelated, while reducing to full independence under the density generators of the multivariate
aussians and unified skew-normals. Nonetheless, such a weak dependence combined with a technical focus on p(𝜷, 𝐲) allows for
more comprehensive investigation of SUE conjugacy properties that would not be as immediate to prove theoretically under a

irect specification of the prior p(𝜷) and the likelihood p(𝐲 ∣ 𝜷).
As a simple example that clarifies the above arguments, consider a univariate setting with Cauchy(0, 1) prior for 𝛽 and Cauchy(𝛽, 1)

ikelihood for (𝑦 ∣ 𝛽). By application of the Bayes rule, we obtain p(𝛽 ∣ 𝑦) ∝ p(𝛽)p(𝑦 ∣ 𝛽) where p(𝛽)p(𝑦 ∣ 𝛽) = 1∕[𝜋2(1+𝛽2)(1+(𝑦−𝛽)2)]
s not proportional to the kernel of a Cauchy density. Clearly, in this illustrative example and in general situations where conjugacy
acks, Bayesian inference can still proceed via routinely-implemented MCMC methods or deterministic approximations of the target
osterior. Nonetheless, as clarified in Sections 3.1–3.3, SUE conjugacy can be still achieved under certain likelihoods induced by
lliptical or skew-elliptical error terms (including instances of potential practical interest), thereby facilitating posterior inference.

.1. Conjugacy properties of SUE distributions in multivariate linear models

Let us first study the SUE conjugacy properties under general multivariate linear models of the form

𝐲 = 𝐗𝜷 + 𝜺, (20)

here 𝐲 = (𝑦1,… , 𝑦𝑛)⊤ ∈ R𝑛 is the response vector, 𝐗 ∈ R𝑛×𝑝 corresponds to a known design matrix, 𝜷 ∈ R𝑝 is a vector of unknown
arameters, often referred to as the regression coefficients, and 𝜺 ∈ R𝑛 is the error vector. Current results in Bayesian inference under
he above model have established conjugacy of Gaussian or SUN priors for 𝜷 when combined with Gaussian or SUN noise vectors
[8]. Although these advancements cover a broad range of models, in practice, it is of interest to consider alternative representations

n the wider elliptical or skew-elliptical family, which account for heavier tails and ensure increased robustness. However, conjugacy
emains unexplored in these larger classes, undermining advancements in tractable Bayesian inference. Proposition 1 below covers
uch a gap.

roposition 1. Assume that (𝜷⊤, 𝜺⊤)⊤ ∼ SUE𝑝+𝑛,𝑞(𝝃,𝜴,𝜟, 𝝉 , �̄� , 𝑔(𝑝+𝑛+𝑞)) with parameters partitioned as

𝝃 =
[

𝝃𝜷
𝝃𝜺

]

, 𝜴 =
[

𝜴𝜷 𝜴𝜷𝜺
𝜴𝜺𝜷 𝜴𝜺

]

, 𝜟 =
[

𝜟𝜷
𝜟𝜺

]

. (21)

hen, when 𝐲 is defined as in (20), it follows that (𝜷⊤, 𝐲⊤)⊤ ∼ SUE𝑝+𝑛,𝑞(𝝃†,𝜴†,𝜟†, 𝝉 , �̄� , 𝑔(𝑝+𝑛+𝑞)), with

𝝃† =

[

𝝃𝜷
𝐗𝝃𝜷 + 𝝃𝜺

]

=∶

[

𝝃𝜷
𝝃𝐲

]

, 𝜟† =

[

𝜟𝜷

𝝎−1
𝐲 (𝐗𝝎𝜷𝜟𝜷 + 𝝎𝜺𝜟𝜺)

]

=∶

[

𝜟𝜷

𝜟𝐲

]

,

𝜴† =

[

𝜴𝜷 𝜴𝜷𝐗⊤ +𝜴𝜷𝜺

𝐗𝜴𝜷 +𝜴𝜺𝜷 𝐗𝜴𝜷𝐗⊤ +𝜴𝜺𝜷𝐗⊤ + 𝐗𝜴𝜷𝜺 +𝜴𝜺

]

=∶

[

𝜴𝜷 𝜴𝜷𝐲

𝜴𝐲𝜷 𝜴𝐲

]

,

(22)

here 𝝎𝜺 = diag(𝜴𝜺)1∕2, 𝝎𝜷 = diag(𝜴𝜷 )1∕2, and 𝝎𝐲 = diag(𝜴𝐲)1∕2. Moreover

(a) Prior distribution: 𝜷 ∼ SUE𝑝,𝑞(𝝃𝜷 ,𝜴𝜷 ,𝜟𝜷 , 𝝉 , �̄� , 𝑔(𝑝+𝑞)).
(b) Likelihood: (𝐲 ∣ 𝜷) ∼ SUE𝑛,𝑞(𝝃𝐲∣𝜷 ,𝜴𝐲∣𝜷 ,𝜟𝐲∣𝜷 , 𝝉𝐲∣𝜷 , �̄� 𝐲∣𝜷 , 𝑔

(𝑛+𝑞)
𝑄𝜷 (𝜷)

), with parameters

𝝃𝐲∣𝜷 = 𝝃𝐲 +𝜴𝐲𝜷𝜴−1
𝜷 (𝜷 − 𝝃𝜷 ), 𝜴𝐲∣𝜷 = 𝜴𝐲 −𝜴𝐲𝜷𝜴−1

𝜷 𝜴𝜷𝐲 , 𝜟𝐲∣𝜷 = 𝝎−1
𝐲∣𝜷 (𝝎𝐲𝜟𝐲 −𝜴𝐲𝜷𝜴−1

𝜷 𝝎𝜷𝜟𝜷 )𝜸−1𝐲∣𝜷 ,

𝝉𝐲∣𝜷 = 𝜸−1𝐲∣𝜷 [𝝉 + 𝜟⊤𝜷 �̄�
−1
𝜷 𝝎−1

𝜷 (𝜷 − 𝝃𝜷 )], �̄� 𝐲∣𝜷 = 𝜸−1𝐲∣𝜷 (�̄� − 𝜟⊤𝜷 �̄�
−1
𝜷 𝜟𝜷 )𝜸−1𝐲∣𝜷 , 𝑄𝜷 (𝜷) = (𝜷 − 𝝃𝜷 )⊤𝜴−1

𝜷 (𝜷 − 𝝃𝜷 ),

where 𝝎𝐲∣𝜷 = diag(𝜴𝐲∣𝜷 )1∕2 and 𝜸𝐲∣𝜷 = diag(�̄� − 𝜟⊤𝜷 �̄�
−1
𝜷 𝜟𝜷 )1∕2.

(c) Posterior distribution: (𝜷 ∣ 𝐲) ∼ SUE𝑝,𝑞(𝝃𝜷∣𝐲 ,𝜴𝜷∣𝐲 ,𝜟𝜷∣𝐲 , 𝝉𝜷∣𝐲 , �̄� 𝜷∣𝐲 , 𝑔
(𝑝+𝑞)
𝑄𝐲 (𝐲)

), with parameters

𝝃𝜷∣𝐲 = 𝝃𝜷 +𝜴𝜷𝐲𝜴−1
𝐲 (𝐲 − 𝝃𝐲), 𝜴𝜷∣𝐲 = 𝜴𝜷 −𝜴𝜷𝐲𝜴−1

𝐲 𝜴𝐲𝜷 , 𝜟𝜷∣𝐲 = 𝝎−1
𝜷∣𝐲(𝝎𝜷𝜟𝜷 −𝜴𝜷𝐲𝜴−1

𝐲 𝝎𝐲𝜟𝐲)𝜸−1𝜷∣𝐲 ,

𝝉𝜷∣𝐲 = 𝜸−1𝜷∣𝐲[𝝉 + 𝜟⊤𝐲 �̄�
−1
𝐲 𝝎−1

𝐲 (𝐲 − 𝝃𝐲)], �̄� 𝜷∣𝐲 = 𝜸−1𝜷∣𝐲(�̄� − 𝜟⊤𝐲 �̄�
−1
𝐲 𝜟𝐲)𝜸−1𝜷∣𝐲 , 𝑄𝐲(𝐲) = (𝐲 − 𝝃𝐲)⊤𝜴−1

𝐲 (𝐲 − 𝝃𝐲),

1∕2 ̄ ⊤ ̄ −1 1∕2
8

where 𝝎𝜷∣𝐲 = diag(𝜴𝜷∣𝐲) and 𝜸𝜷∣𝐲 = diag(𝜞 − 𝜟𝐲𝜴𝐲 𝜟𝐲) .
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Remark 3. Before proving Proposition 1, it shall be emphasized that the above results, along with those provided in Propositions 2
and 3, are purposely stated in a highly-general form in order to derive a comprehensive conjugacy theory for SUE distributions that
is of broader and independent interest in expanding the theoretical analysis of such a family. As clarified in Examples 1–6, priors
and likelihoods of potential interest in practice are only a subset of the general results in Propositions 1–3. More specifically, setting
𝜴𝜺𝜷 = 𝜴⊤

𝜷𝜺 = 𝟎, 𝝉 = 𝟎, 𝝃𝜺 = 𝟎, and either 𝜟𝜷 = 𝟎 or 𝜟𝜺 = 𝟎, would be sufficient to recover most of the priors and likelihoods of direct
interest in applications.

Proof. To prove (22) in Proposition 1, first notice that (𝜷⊤, 𝐲⊤)⊤ = 𝐀(𝜷⊤, 𝜺⊤)⊤, where 𝐀 is a known matrix of dimension (𝑝+𝑛)×(𝑝+𝑛)
with blocks 𝐀11 = 𝐈𝑝, 𝐀12 = 𝟎, 𝐀21 = 𝐗 and 𝐀22 = 𝐈𝑛. Combining such a representation with the closure under linear combination
properties of SUE distributions presented in Lemma 1, we have that (𝜷⊤, 𝐲⊤)⊤ ∼ SUE𝑝+𝑛,𝑞(𝐀𝝃,𝐀𝜴𝐀⊤,𝜟𝐀, 𝝉 , �̄� , 𝑔(𝑝+𝑛+𝑞)), where 𝐀𝝃 = 𝝃†,
𝐀𝜴𝐀⊤ = 𝜴† and 𝜟𝐀 = 𝜟†. As a result, the prior for 𝜷 in Proposition 1 follows directly from the closure under marginalization of
the SUE family outlined in Lemma 1. Similarly, the likelihood (𝐲 ∣ 𝜷) and posterior (𝜷 ∣ 𝐲) in Proposition 1 can be readily derived by
applying the closure under conditioning properties in Lemma 2 to the joint SUE distribution for (𝜷⊤, 𝐲⊤)⊤ presented in Proposition 1,
with parameters 𝝃†, 𝜴† and 𝜟† partitioned as in (22). □

As anticipated within Section 3, the results in Proposition 1 clarify that the joint distribution for 𝜷 and 𝜺 requires some form of
dependence to guarantee conjugacy. In this respect, notice that even when 𝝃 = 𝟎, 𝜴𝜺𝜷 = 𝜴⊤

𝜷𝜺 = 𝟎 and 𝜟 = 𝟎, by the closure under
conditioning properties of the unified skew-elliptical family, it follows that (𝜺 ∣ 𝜷) ∼ SUE𝑛,𝑞(𝟎,𝜴𝜺, 𝟎, 𝝉 , �̄� , 𝑔

(𝑛+𝑞)
𝑄𝜷 (𝜷)

), which clarifies that
a weak form of dependence persists in the conditional density generator. Nonetheless, such a form of higher-level dependence still
allows to include within the results in Proposition 1 interesting models with uncorrelated 𝜷 and 𝜺 vectors. Recalling the expression
for the SUE covariance matrix in (7), a sufficient condition to retrieve these uncorrelated representations is to assume either 𝜟𝜷 = 𝟎
or 𝜟𝜺 = 𝟎, and set 𝜴𝜺𝜷 = 𝜴⊤

𝜷𝜺 = 𝟎. When both 𝜟𝜷 and 𝜟𝜺 are 𝟎, and also 𝝉 = 𝟎, by point (i) in Lemma 5, (𝜷⊤, 𝜺⊤)⊤ reduces to an
lliptical distribution. As such, conjugacy under this latter class can be obtained as a special case of Proposition 1.

This discussion clarifies that full independence between 𝜷 and 𝜺 cannot be generally enforced if the objective is to obtain broad
onjugacy results as in Proposition 1 that hold for the whole SUE family. Nonetheless, in the specific setting of Gaussian density
enerators, which leads to the sub-class of SUN distributions, such a full independence can be enforced without undermining con-
ugacy. As discussed in Section 2.2.1, under this specific choice, the conditional density generator coincides with the unconditional
ne, thus allowing to enforce independence between 𝜷 and 𝜺 while preserving conjugacy. This is clear from the results in Anceschi
t al. [8], that establish SUN conjugacy via a classical Bayes rule perspective, without requiring to specify a joint distribution for 𝜷
nd 𝜺 or, alternatively, 𝜷 and 𝐲. As illustrated in Example 1 below, these conjugacy results can be obtained as a particular case of
hose in Proposition 1.

xample 1 (SUN Conjugacy). The supplementary materials of Anceschi et al. [8] present an example based on a classical linear
egression with skew-normal errors, i.e., (𝑦𝑖 ∣ 𝜷) ∼ SN(𝒙⊤𝑖 𝜷, 𝜎

2, 𝛼), independently for every unit 𝑖 ∈ {1,… , 𝑛}, and, consistent with
our notation, SUN𝑝,𝑞(𝝃𝜷 ,𝜴𝜷 ,𝜟𝜷 , 𝝉𝜷 , �̄� 𝜷 ) prior for 𝜷. This model yields a likelihood p(𝐲 ∣ 𝜷) ∝ 𝜙𝑛(𝐲 − 𝐗𝜷; 𝜎2𝐈𝑛)𝛷𝑛(𝛼𝐲 − 𝛼𝐗𝜷; 𝜎2𝐈𝑛)
hat is proportional to a SUN𝑛,𝑛(𝐗𝜷, 𝜎2𝐈𝑛, 𝛼𝜎𝐈𝑛, 𝟎, (1 + 𝛼2)𝜎2𝐈𝑛) density. Leveraging Lemma 4, such a SUN is equivalent to (𝐲 ∣ 𝜷) ∼
UN𝑛,𝑛(𝐗𝜷, 𝜎2𝐈𝑛, [𝛼∕(1 + 𝛼2)1∕2]𝐈𝑛, 𝟎, 𝐈𝑛). Before showing that such a Bayesian formulation is a special case of the broader family of
odels and priors in Proposition 1, it shall be emphasized that this construction also comprises classical multivariate Gaussian priors

or 𝜷, when 𝜟𝜷 = 𝟎, and Gaussian linear regression for 𝐲 if 𝛼 = 0. Replacing 𝜎2𝐈𝑛 with a full covariance matrix also leads to general
ultivariate versions of such models. This yields an important class of routinely-implemented formulations.

In order to rephrase the above Bayesian formulation within those covered by Proposition 1, let us consider the case (𝜷⊤, 𝜺⊤)⊤ ∼
UN𝑝+𝑛,𝑞+𝑛(𝝃,𝜴,𝜟, 𝝉 , �̄� ) with parameters partitioned as

𝝃 =
[

𝝃𝜷
𝟎

]

, 𝜴 =
[

𝜴𝜷 𝟎
𝟎 𝜎2𝐈𝑛

]

, 𝜟 =
[

𝜟𝜷 𝟎
𝟎 �̄�𝐈𝑛

]

, 𝝉 =
[

𝝉𝜷
𝟎

]

, �̄� =
[

�̄� 𝜷 𝟎
𝟎 𝐈𝑛

]

,

here �̄� = 𝛼∕(1 + 𝛼2)1∕2. Adapting Proposition 1 to this setting, yields (𝜷⊤, 𝐲⊤)⊤ ∼ SUN𝑝+𝑛,𝑞+𝑛(𝝃†,𝜴†,𝜟†, 𝝉 , �̄� ), with

𝝃† =

[

𝝃𝜷
𝐗𝝃𝜷

]

, 𝜴† =

[

𝜴𝜷 𝜴𝜷𝐗⊤

𝐗𝜴𝜷 𝐗𝜴𝜷𝐗⊤ + 𝜎2𝐈𝑛

]

, 𝜟† =

[

𝜟𝜷 𝟎
𝝎−1
𝐲 𝐗𝝎𝜷𝜟𝜷 𝝎−1

𝐲 𝜎�̄�𝐈𝑛

]

, 𝝉 =

[

𝝉𝜷
𝟎

]

, �̄� =

[

�̄� 𝜷 𝟎
𝟎 𝐈𝑛

]

.

s a direct consequence of the closure under linear combinations of SUE, and hence SUN, distributions, together with point (ii) in
emma 5 (see also Remark 2), the above formulation implies

𝜷 ∼ SUN𝑝,𝑞(𝝃𝜷 ,𝜴𝜷 ,𝜟𝜷 , 𝝉𝜷 , �̄� 𝜷 ), 𝜺 ∼ SUN𝑛,𝑛(𝟎, 𝜎2𝐈𝑛, �̄�𝐈𝑛, 𝟎, 𝐈𝑛),

where the marginal distribution for 𝜷 coincides with the prior considered in Anceschi et al. [8], whereas 𝜺 corresponds to a noise
vector comprising 𝑛 independent skew-normals. Similarly, by applying to the above parameters the expressions for those of (𝐲 ∣ 𝜷)
n Proposition 1, and recalling Remark 2, yields after standard calculations the following likelihood

(𝐲 ∣ 𝜷) ∼ SUN𝑛,𝑛(𝐗𝜷, 𝜎2𝐈𝑛, [𝛼∕(1 + 𝛼2)1∕2]𝐈𝑛, 𝟎, 𝐈𝑛).

uch a likelihood is proportional to the one considered in Anceschi et al. [8] for the general skew-normal regression setting, which
ncludes the Gaussian as a special case and can be readily extended to more general multivariate models. As such, Proposition 1
lso covers SUN conjugacy properties in commonly-implemented linear models.
9
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Example 2 (SUT Conjugacy). As stated in Corollary 1, by specializing Proposition 1 to the SUT sub-family in Section 2.2.2, it is
ossible to derive new conjugacy results not yet explored in the literature, along with examples of potential interest in applications.

orollary 1. Consider model (20), and assume (𝜷⊤, 𝜺⊤)⊤ ∼ SUT𝑝+𝑛,𝑞(𝝃,𝜴,𝜟, 𝝉 , �̄� , 𝜈), with 𝝃,𝜴,𝜟 partitioned as in (21). Then, the prior
for 𝜷 is 𝜷 ∼ SUT𝑝,𝑞(𝝃𝜷 ,𝜴𝜷 ,𝜟𝜷 , 𝝉 , �̄� , 𝜈), whereas the likelihood and posterior are (𝐲 ∣ 𝜷) ∼ SUT𝑛,𝑞(𝝃𝐲∣𝜷 , 𝛼𝜷𝜴𝐲∣𝜷 ,𝜟𝐲∣𝜷 , 𝛼

−1∕2
𝜷 𝝉𝐲∣𝜷 , �̄� 𝐲∣𝜷 , 𝜈 + 𝑝)

and (𝜷 ∣ 𝐲) ∼ SUT𝑝,𝑞(𝝃𝜷∣𝐲 , 𝛼𝐲𝜴𝜷∣𝐲 ,𝜟𝜷∣𝐲 , 𝛼
−1∕2
𝐲 𝝉𝜷∣𝐲 , �̄� 𝜷∣𝐲 , 𝜈 + 𝑛), respectively. In these expressions, 𝛼𝜷 = [𝜈 + 𝑄𝜷 (𝜷)]∕(𝜈 + 𝑝) and 𝛼𝐲 =

[𝜈 +𝑄𝐲(𝐲)]∕(𝜈 + 𝑛). The remaining parameters, along with 𝑄𝜷 (𝜷) and 𝑄𝐲(𝐲), are defined as in Proposition 1.

Proof. The proof follows directly by replacing the generic density generators in Proposition 1 with those of the Student’s 𝑡 distribution
presented in Section 2.2.2. Alternatively, it is possible to prove the statement leveraging the specific properties of unified skew-𝑡
distributions in Proposition 11 of Wang et al. [48]. □

Corollary 1 states a general conjugacy result which includes those of the SUN as a limiting case, provided that SUT distributions
converge to SUNs when 𝜈 → ∞ [e.g., 48]. In addition, suitable constraints on the parameters of the joint SUT distribution for (𝜷⊤, 𝜺⊤)⊤
n Corollary 1, yield priors and likelihoods of potential practical interest. In particular, consider (𝜷⊤, 𝜺⊤)⊤ ∼ SUT𝑝+𝑛,𝑞(𝝃,𝜴,𝜟, 𝝉 , �̄� , 𝜈),

with

𝝃 =
[

𝝃𝜷
𝟎

]

, 𝜴 =
[

𝜴𝜷 𝟎
𝟎 𝜴𝜺

]

, 𝜟 =
[

𝟎
𝜟𝜺

]

,

and 𝝉 = 𝟎. Then, by the closure under marginalization of SUE distributions combined with Lemma 5 and Corollary 1, we have that
𝜷 and 𝜺 are uncorrelated and have marginals

𝜷 ∼ T𝑝(𝝃𝜷 ,𝜴𝜷 , 𝜈), 𝜺 ∼ SUT𝑛,𝑞(𝟎,𝜴𝜺,𝜟𝜺, 𝟎, �̄� , 𝜈),

which yield a Bayesian multivariate linear regression model 𝐲 = 𝐗𝜷 + 𝜺 with Student’s 𝑡 prior on 𝜷 and unified skew-𝑡 residuals 𝜺,
uncorrelated with 𝜷. In the above expression, T𝑝(𝝃𝜷 ,𝜴𝜷 , 𝜈) denotes the 𝑝-variate Student’s 𝑡 distribution with location 𝝃𝜷 , scale 𝜴𝜷
and degrees of freedom 𝜈. By Corollary 1, this implies the SUT likelihood

(𝐲 ∣ 𝜷) ∼ SUT𝑛,𝑞(𝐗𝜷, 𝛼𝜷𝜴𝜺,𝜟𝜺, 𝟎, �̄� , 𝜈 + 𝑝).

Including the additional constrain 𝜟𝜺 = 𝟎 within this formulation, and recalling again Lemma 5, it is possible to obtain the Bayesian
Student’s 𝑡 regression with prior and likelihood given by

𝜷 ∼ T𝑝(𝝃𝜷 ,𝜴𝜷 , 𝜈), (𝐲 ∣ 𝜷) ∼ T𝑛(𝐗𝜷, 𝛼𝜷𝜴𝜺, 𝜈 + 𝑝),

which yields, by Corollary 1, a 𝑝-variate Student’s 𝑡 posterior for 𝜷. This result provides an important finding which clarifies that, in
specific contexts of potential practical interest, Student’s 𝑡 – Student’s 𝑡 conjugacy can be attained, thereby expanding some earlier
findings in Song and Xia [55] on a simpler formulation. As is clear from the expression of the likelihood, for this property to hold
it is necessary to incorporate the classical location dependence on 𝜷 via 𝐗𝜷, together with a weak form of additional dependence
induced by the scaling term 𝛼𝜷 = [𝜈 + (𝜷 − 𝝃𝜷 )⊤𝜴−1

𝜷 (𝜷 − 𝝃𝜷 )]∕(𝜈 + 𝑝). Recalling Zhang et al. [40], under weakly informative Student’s
𝑡 priors employed in practice for 𝜷, such an effect tends to be small, and most of the dependence between 𝜷 and 𝐲 is through the
classical linear predictor 𝐗𝜷. In addition, notice that, when 𝜷 ∼ T𝑝(𝝃𝜷 ,𝜴𝜷 , 𝜈), then (𝜷 − 𝝃𝜷 )⊤𝜴−1

𝜷 (𝜷 − 𝝃𝜷 )∕𝑝 has 𝐹 distribution with
degrees of freedom 𝑝 and 𝜈, which implies that for moderate 𝑝 and 𝜈, the term (𝜷 − 𝝃𝜷 )⊤𝜴−1

𝜷 (𝜷 − 𝝃𝜷 )∕𝑝, and hence 𝛼𝜷 , shrink to 1.

Section 3.2 shows that the conjugacy properties of SUE distributions derived in Proposition 1 extend even beyond multivariate
linear models for continuous response vectors, to cover, in particular, also generalizations of multivariate probit and multinomial
probit under elliptical or skew-elliptical link functions.

3.2. Conjugacy properties of SUE distributions in multivariate binary models

When the focus is on Bayesian modeling of multivariate binary data 𝐲 ∈ {0, 1}𝑛, a natural strategy, which extends classical probit,
multivariate probit and multinomial probit formulations [27,63], is to adapt the class of models studied in Section 3.1 to such a
setting, by assuming

𝐲 = [1(�̄�1 > 0),… , 1(�̄�𝑛 > 0)]⊤, �̄� = 𝐗𝜷 + 𝜺, (23)

where 1(⋅) denotes the indicator function, �̄� = (�̄�1,… , �̄�𝑛)⊤ ∈ R𝑛 and (𝜷⊤, 𝜺⊤)⊤ ∼ SUE𝑝+𝑛,𝑞(𝝃,𝜴,𝜟, 𝝉 , �̄� , 𝑔(𝑝+𝑛+𝑞)). Proposition 2 clarifies
from a general perspective that SUE conjugacy can be established also in these contexts. This unifies and extends the contributions
by Durante [1], Fasano and Durante [6], Anceschi et al. [8] and Zhang et al. [40] on particular SUE sub-classes; i.e., SUNs and
specific skew-elliptical distributions in the SUE family; see also Remark 3.

Proposition 2. Consider the binary random vector 𝐲 ∈ {0, 1}𝑛, defined as in (23) and let 𝑫𝐲 = diag(2𝑦1 − 1,… , 2𝑦𝑛 − 1). Moreover,
assume again (𝜷⊤, 𝜺⊤)⊤ ∼ SUE𝑝+𝑛,𝑞(𝝃,𝜴,𝜟, 𝝉 , �̄� , 𝑔(𝑝+𝑛+𝑞)) with parameters partitioned as in (21). Then, (𝜷⊤, �̄�⊤)⊤ is a SUE with dimensions
(𝑝 + 𝑛, 𝑞) and parameters defined as in (22). In addition

(a) Prior distribution: 𝜷 ∼ SUE (𝝃 ,𝜴 ,𝜟 , 𝝉 , �̄� , 𝑔(𝑝+𝑞)).
10
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(b) Likelihood: (𝐲 ∣ 𝜷) is a multivariate Bernoulli with probability 𝜫𝐲∣𝜷 for the generic configuration 𝐲 defined as

𝜫𝐲∣𝜷 = P(𝐲 ∣ 𝜷) =

𝐹𝑛+𝑞

([

𝝃𝐲∣𝜷
𝝉𝐲∣𝜷

]

;

[

𝜴𝐲∣𝜷 𝝎𝐲∣𝜷𝜟𝐲∣𝜷

𝜟⊤𝐲∣𝜷𝝎𝐲∣𝜷 �̄� 𝐲∣𝜷

]

, 𝑔(𝑛+𝑞)𝑄𝜷 (𝜷)

)

𝐹𝑞(𝝉𝐲∣𝜷 ; �̄� 𝐲∣𝜷 , 𝑔
(𝑞)
𝑄𝜷 (𝜷)

)
,

for all 𝐲 ∈ {0, 1}𝑛, and parameters available in closed form according to the following equations

𝝃𝐲∣𝜷 = 𝑫𝐲[𝝃𝐲 +𝜴𝐲𝜷𝜴−1
𝜷 (𝜷 − 𝝃𝜷 )], 𝜴𝐲∣𝜷 = 𝑫𝐲(𝜴𝐲 −𝜴𝐲𝜷𝜴−1

𝜷 𝜴𝜷𝐲)𝑫𝐲 , 𝜟𝐲∣𝜷 = 𝝎−1
𝐲∣𝜷𝑫𝐲(𝝎𝐲𝜟𝐲 −𝜴𝐲𝜷𝜴−1

𝜷 𝝎𝜷𝜟𝜷 )𝜸−1𝐲∣𝜷 ,

𝝉𝐲∣𝜷 = 𝜸−1𝐲∣𝜷 [𝝉 + 𝜟⊤𝜷 �̄�
−1
𝜷 𝝎−1

𝜷 (𝜷 − 𝝃𝜷 )], �̄� 𝐲∣𝜷 = 𝜸−1𝐲∣𝜷 (�̄� − 𝜟⊤𝜷 �̄�
−1
𝜷 𝜟𝜷 )𝜸−1𝐲∣𝜷 , 𝑄𝜷 (𝜷) = (𝜷 − 𝝃𝜷 )⊤𝜴−1

𝜷 (𝜷 − 𝝃𝜷 ),

where 𝝎𝐲∣𝜷 = diag(𝜴𝐲∣𝜷 )1∕2 and 𝜸𝐲∣𝜷 = diag(�̄� − 𝜟⊤𝜷 �̄�
−1
𝜷 𝜟𝜷 )1∕2, while 𝝃𝐲, 𝜴𝐲, 𝝎𝐲, 𝜴𝐲𝜷 , 𝜴𝜷𝐲, and 𝜟𝐲 are defined as in (22).

(c) Posterior distribution: (𝜷 ∣ 𝐲) ∼ SUE𝑝,𝑛+𝑞(𝝃𝜷∣𝐲 ,𝜴𝜷∣𝐲 ,𝜟𝜷∣𝐲 , 𝝉𝜷∣𝐲 , �̄� 𝜷∣𝐲 , 𝑔(𝑝+𝑛+𝑞)), with parameters

𝝃𝜷∣𝐲 = 𝝃𝜷 , 𝜴𝜷∣𝐲 = 𝜴𝜷 , 𝜟𝜷∣𝐲 =
[

�̄�𝜷𝐲𝑫𝐲 𝜟𝜷
]

, 𝝉𝜷∣𝐲 =

[

𝝎−1
𝐲 𝑫𝐲𝝃𝐲

𝝉

]

, �̄� 𝜷∣𝐲 =

[

𝑫𝐲�̄�𝐲𝑫𝐲 𝑫𝐲𝜟𝐲

𝜟⊤𝐲𝑫𝐲 �̄�

]

,

where �̄�𝜷𝐲 = 𝝎−1
𝜷 𝜴𝜷𝐲𝝎−1

𝐲 and �̄�𝐲 = 𝝎−1
𝐲 𝜴𝐲𝝎−1

𝐲 , while 𝝃𝐲, 𝜴𝐲, 𝝎𝐲, 𝜴𝐲𝜷 , 𝜴𝜷𝐲, and 𝜟𝐲 are defined as in (22).

roof. To prove Proposition 2, first notice that under model (23), the probability of observing a given configuration 𝐲 coincides
ith that of the event 𝑫𝐲 �̄� > 𝟎. Let 𝑫𝐲 �̄� =∶ �̄�𝑫𝐲

, then
[

𝜷
�̄�𝑫𝐲

]

= 𝐀𝐲

[

𝜷
�̄�

]

, 𝐀𝐲 =
[

𝐈𝑝 𝟎
𝟎 𝑫𝐲

]

, (24)

where (𝜷⊤, �̄�⊤)⊤ ∼ SUE𝑝+𝑛,𝑞(𝝃†,𝜴†,𝜟†, 𝝉 , �̄� , 𝑔(𝑝+𝑛+𝑞)), with parameters as in (22).
Therefore, by Lemma 1, we have that (𝜷⊤, �̄�⊤𝑫𝐲

)⊤ ∼ SUE𝑝+𝑛,𝑞(𝐀𝐲𝝃†,𝐀𝐲𝜴†𝐀⊤𝐲 ,𝜟
†
𝐀𝐲
, 𝝉 , �̄� , 𝑔(𝑝+𝑛+𝑞)), with

𝐀𝐲𝝃† =

[

𝝃𝜷
𝑫𝐲𝝃𝐲

]

, 𝐀𝐲𝜴†𝐀⊤𝐲 =

[

𝜴𝜷 𝜴𝜷𝐲𝑫𝐲

𝑫𝐲𝜴𝐲𝜷 𝑫𝐲𝜴𝐲𝑫𝐲

]

, 𝜟†
𝐀𝐲

=

[

𝜟𝜷

𝑫𝐲𝜟𝐲

]

.

Under the above construction, the prior for 𝜷 follows directly by the SUE closure under marginalization.
As for the likelihood of 𝐲, recall that P(𝐲 ∣ 𝜷) is equal to P(�̄�𝑫𝐲

> 𝟎 ∣ 𝜷). Moreover, by applying the results in Proposition 1 to the
random vector (𝜷⊤, �̄�⊤𝑫𝐲

)⊤, we have (�̄�𝑫𝐲
∣ 𝜷) ∼ SUE𝑛,𝑞(𝝃𝐲∣𝜷 ,𝜴𝐲∣𝜷 ,𝜟𝐲∣𝜷 , 𝝉𝐲∣𝜷 , �̄� 𝐲∣𝜷 , 𝑔

(𝑛+𝑞)
𝑄𝜷 (𝜷)

), with parameters defined as in Proposition 2.
Therefore, the likelihood P(𝐲 ∣ 𝜷) coincides with the cumulative distribution function, evaluated at 𝟎, of the SUE random variable
(−�̄�𝑫𝐲

∣ 𝜷) ∼ SUE𝑛,𝑞(−𝝃𝐲∣𝜷 ,𝜴𝐲∣𝜷 ,−𝜟𝐲∣𝜷 , 𝝉𝐲∣𝜷 , �̄� 𝐲∣𝜷 , 𝑔
(𝑛+𝑞)
𝑄𝜷 (𝜷)

). As a consequence, by applying (4) to such a SUE yields

P(𝐲 ∣ 𝜷) =

𝐹𝑛+𝑞

([

𝝃𝐲∣𝜷
𝝉𝐲∣𝜷

]

;

[

𝜴𝐲∣𝜷 𝝎𝐲∣𝜷𝜟𝐲∣𝜷

𝜟⊤𝐲∣𝜷𝝎𝐲∣𝜷 �̄� 𝐲∣𝜷

]

, 𝑔(𝑛+𝑞)𝑄𝜷 (𝜷)

)

𝐹𝑞(𝝉𝐲∣𝜷 ; �̄� 𝐲∣𝜷 , 𝑔
(𝑞)
𝑄𝜷 (𝜷)

)
,

for all 𝐲 ∈ {0, 1}𝑛, as in Proposition 2. To conclude the proof, note that (𝜷 ∣ 𝐲) is distributed as (𝜷 ∣ �̄�𝑫𝐲
> 𝟎). As a result, the posterior

distribution follows directly by applying Lemma 3 to the SUE random vector (𝜷⊤, �̄�⊤𝑫𝐲
)⊤. □

Proposition 2 clarifies that SUE distributions possess fundamental conjugacy properties also when combined with specific models
or multivariate binary data. This result extends the one recently derived by Zhang et al. [40] under model (23) with a specific focus
n a skew-elliptical joint distribution for (𝜷⊤, 𝜺⊤)⊤ which enforces lack of correlation between 𝜷 and 𝜺 while inducing an elliptical
rior for 𝜷. Such a construction can be derived, under simple linear algebra operations, as a particular case of the general SUE
ssumption for (𝜷⊤, 𝜺⊤)⊤ in Proposition 2, which crucially allows to recover more general Bayesian formulations, including priors
eyond the symmetric elliptical family. This connection with the contribution by Zhang et al. [40] is helpful to showcase the practical
mpact of extending conjugacy to broader classes of models beyond classical multivariate and multinomial probit. Examples 3–4
urther stress this aspect with a focus on SUN and SUT distributions.

xample 3 (SUN Conjugacy). A direct and natural strategy to adapt the model studied in Example 1 within the binary data context,
s to consider 𝑦𝑖 = 1(�̄�𝑖 > 0) with (�̄�𝑖 ∣ 𝜷) ∼ SN(𝒙⊤𝑖 𝜷, 𝜎

2, 𝛼), independently for 𝑖 ∈ {1,… , 𝑛}, and 𝜷 ∼ SUN𝑝,𝑞(𝝃𝜷 ,𝜴𝜷 ,𝜟𝜷 , 𝝉𝜷 , �̄� 𝜷 ). Such
a model is studied in the supplementary materials of Anceschi et al. [8] as a broad extension of classical probit models to skewed
link functions, further facilitating generalizations to multivariate and multinomial binary responses. Leveraging standard properties
of multivariate Gaussian cumulative distribution functions, the resulting likelihood in Anceschi et al. [8] can be alternatively re-
expressed as proportional to 𝛷2𝑛([(𝑫𝐲𝐗𝜷)⊤, 𝟎⊤]⊤;𝜮), where 𝜮 is a block matrix partitioned as 𝜮11 = 𝜎2𝐈𝑛, 𝜮21 = 𝜮⊤

12 = 𝑫𝐲�̄�𝜎𝐈𝑛 and
11

𝜮22 = 𝐈𝑛.
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To recast the above Bayesian formulation within those studied in Proposition 2, consider the setting (𝜷⊤, 𝜺⊤)⊤ ∼ SUN𝑝+𝑛,𝑞+𝑛(𝝃,𝜴,𝜟,
, �̄� ) with parameters partitioned as in Example 1. This assumption, combined with model (23) and the proof of Proposition 2,
mplies (𝜷⊤, �̄�⊤𝑫𝐲

)⊤ ∼ SUN𝑝+𝑛,𝑞+𝑛(𝐀𝐲𝝃†,𝐀𝐲𝜴†𝐀⊤𝐲 ,𝜟
†
𝐀𝐲
, 𝝉 , �̄� ), with

𝐀𝐲𝝃† =

[

𝝃𝜷
𝑫𝐲𝐗𝝃𝜷

]

, 𝐀𝐲𝜴†𝐀⊤𝐲 =

[

𝜴𝜷 𝜴𝜷𝐗⊤𝑫𝐲

𝑫𝐲𝐗𝜴𝜷 𝑫𝐲(𝐗𝜴𝜷𝐗⊤+𝜎2𝐈𝑛)𝑫𝐲

]

, 𝜟†
𝐀𝐲

=

[

𝜟𝜷 𝟎
𝝎−1
𝐲 𝑫𝐲𝐗𝝎𝜷𝜟𝜷 𝝎−1

𝐲 𝑫𝐲𝜎�̄�𝐈𝑛

]

,

here �̄�𝑫𝐲
= 𝑫𝐲 �̄�, �̄� = 𝛼∕(1 + 𝛼2)1∕2, and 𝐀𝐲 is defined in (24). The above representations, together with the closure properties of

UNs and point (ii) in Lemma 5, yield

𝜷 ∼ SUN𝑝,𝑞(𝝃𝜷 ,𝜴𝜷 ,𝜟𝜷 , 𝝉𝜷 , �̄� 𝜷 ), 𝜺 ∼ SUN𝑛,𝑛(𝟎, 𝜎2𝐈𝑛, �̄�𝐈𝑛, 𝟎, 𝐈𝑛),

hereby recovering the SUN prior and skew-normal noise vector considered in Anceschi et al. [8]. Furthermore, by Lemma 2 and
emark 2, we have (�̄�𝑫𝐲

∣ 𝜷) ∼ SUN𝑛,𝑛(𝑫𝐲𝐗𝜷, 𝜎2𝐈𝑛,𝑫𝐲�̄�𝐈𝑛, 𝟎, 𝐈𝑛) which implies

P(𝐲 ∣ 𝜷) ∝ 𝛷2𝑛

([

𝑫𝐲𝐗𝜷
𝟎

]

;
[

𝜎2𝐈𝑛 𝑫𝐲�̄�𝜎𝐈𝑛
𝑫𝐲�̄�𝜎𝐈𝑛 𝐈𝑛

])

,

or all 𝐲 ∈ {0, 1}𝑛, which coincides again with the likelihood in Anceschi et al. [8]. As discussed above, such a formulation includes
everal models of direct interest in practice. For instance, setting 𝛼 = 0 yields classical probit regression, whereas replacing 𝜎2𝐈𝑛
ith a full covariance matrix allows to recover multivariate probit and, for a suitable specification of 𝐗, multinomial probit, under
oth skewed and non-skewed link functions.

As discussed in Example 4 below, these classes of models can be further extended to specific formulations relying on Student’s
and skew-𝑡 link functions while preserving conjugacy. As such, the practical impact of Proposition 2 goes beyond the broad class
f models studied in Anceschi et al. [8].

xample 4 (SUT Conjugacy). Corollary 2 specializes the conjugacy properties derived in Proposition 2 to the specific context of the
UT sub-family presented in Section 2.2.2.

orollary 2. Consider model (23), with (𝜷⊤, 𝜺⊤)⊤ ∼ SUT𝑝+𝑛,𝑞(𝝃,𝜴,𝜟, 𝝉 , �̄� , 𝜈), and parameters 𝝃,𝜴,𝜟 partitioned as in (21). Then, the
induced prior distribution is 𝜷 ∼ SUT𝑝,𝑞(𝝃𝜷 ,𝜴𝜷 ,𝜟𝜷 , 𝝉 , �̄� , 𝜈), whereas the likelihood is equal to

P(𝐲 ∣ 𝜷) =

𝑇𝑛+𝑞

(

𝛼−1∕2𝜷

[

𝝃𝐲∣𝜷
𝝉𝐲∣𝜷

]

;

[

𝜴𝐲∣𝜷 𝝎𝐲∣𝜷𝜟𝐲∣𝜷

𝜟⊤𝐲∣𝜷𝝎𝐲∣𝜷 �̄� 𝐲∣𝜷

]

, 𝜈 + 𝑝

)

𝑇𝑞(𝛼
−1∕2
𝜷 𝝉𝐲∣𝜷 ; �̄� 𝐲∣𝜷 , 𝜈 + 𝑝)

,

or all 𝐲 ∈ {0, 1}𝑛, with 𝛼𝜷 = [𝜈 + (𝜷 − 𝝃𝜷 )⊤𝜴−1
𝜷 (𝜷 − 𝝃𝜷 )]∕(𝜈 + 𝑝), and 𝝃𝐲∣𝜷 , 𝝉𝐲∣𝜷 , 𝜴𝐲∣𝜷 , 𝝎𝐲∣𝜷 , 𝜟𝐲∣𝜷 , �̄� 𝐲∣𝜷 as in Proposition 2. The resulting

osterior is (𝜷 ∣ 𝐲) ∼ SUT𝑝,𝑛+𝑞(𝝃𝜷∣𝐲 ,𝜴𝜷∣𝐲 ,𝜟𝜷∣𝐲 , 𝝉𝜷∣𝐲 , �̄� 𝜷∣𝐲 ,𝜈), with parameters as in Proposition 2.

Proof. To prove Corollary 2, it is sufficient to replace the generic density generators in Proposition 2 with those of the Student’s 𝑡
distribution provided in Section 2.2.2. □

As for the continuous setting in Example 2, let us consider special cases of potential practical interest that arise from Corollary 2
under suitable constraints. In particular, define (𝜷⊤, 𝜺⊤)⊤ ∼ SUT𝑝+𝑛,𝑞(𝝃,𝜴,𝜟, 𝝉 , �̄� , 𝜈), with

𝝃 =
[

𝝃𝜷
𝟎

]

, 𝜴 =
[

𝜴𝜷 𝟎
𝟎 𝜴𝜺

]

, 𝜟 =
[

𝟎
𝜟𝜺

]

,

and 𝝉 = 𝟎. Recalling Example 2, such a formulation implies

𝜷 ∼ T𝑝(𝝃𝜷 ,𝜴𝜷 , 𝜈), 𝜺 ∼ SUT𝑛,𝑞(𝟎,𝜴𝜺,𝜟𝜺, 𝟎, �̄� , 𝜈),

and hence, under (23), the resulting model for 𝐲 coincides with a multivariate binary regression having unified skew-𝑡 link function,
and Student’s 𝑡 prior for 𝜷 uncorrelated with the underlying noise vector 𝜺. As a direct consequence of Corollary 2, such a formulation
yields the likelihood

P(𝐲 ∣ 𝜷) ∝ 𝑇𝑛+𝑞

([

𝛼−1∕2𝜷 𝑫𝐲𝐗𝜷
𝟎

]

;

[

𝑫𝐲𝜴𝜺𝑫𝐲 𝝎𝜺𝑫𝐲𝜟𝜺

𝜟⊤𝜺𝑫𝐲𝝎𝜺 �̄�

]

, 𝜈 + 𝑝

)

,

for all 𝐲 ∈ {0, 1}𝑛, which provides a natural extension to more general settings of classical binary regression with 𝑡 link function;
recall the discussion in Example 2 on the impact of 𝛼−1∕2𝜷 , relative to the standard linear dependence through 𝐗𝜷. By setting 𝜟𝜺 = 𝟎
within the above formulation, and recalling again Example 2, leads to

𝜷 ∼ T𝑝(𝝃𝜷 ,𝜴𝜷 , 𝜈), P(𝐲 ∣ 𝜷) ∝ 𝑇𝑛(𝛼
−1∕2
𝜷 𝑫𝐲𝐗𝜷;𝑫𝐲𝜴𝜺𝑫𝐲 , 𝜈 + 𝑝),

which yields a closed-form SUT posterior distribution, while further clarifying the direct link with statistical models implemented
in practice.
12
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Section 3.3 concludes our analysis by studying SUE conjugacy in regression models for random vectors comprising both fully-
bserved and dichotomized data. Such a class combines results in Sections 3.1–3.2 to explore a general set of formulations that
xtends classical tobit models in both multivariate and skew-elliptical contexts.

.3. Conjugacy properties of SUE distributions in multivariate censored models

The classes of models studied in Sections 3.1–3.2 are designed for data that are either all continuous or all discretized. However,
n practice, it is also possible to observe vectors comprising a combination of these two types of data. This is the case, for example,
hen a continuous variable is fully observed only if its value exceeds a certain threshold.

Such a form of censoring is common in several applications and is typically addressed via tobit models and related extensions [64,
5]. Although common implementations rely on Gaussian noise vectors, such a class can be naturally extended to the broader unified
kew-elliptical family via the following formulation

𝐲 = [�̄�11(�̄�1 > 0),… , �̄�𝑛1(�̄�𝑛 > 0)]⊤, �̄� = 𝐗𝜷 + 𝜺, (25)

here 1(⋅) is the indicator function, �̄� = (�̄�1,… , �̄�𝑛)⊤ ∈ R𝑛 and (𝜷⊤, 𝜺⊤)⊤ ∼ SUE𝑝+𝑛,𝑞(𝝃,𝜴,𝜟, 𝝉 , �̄� , 𝑔(𝑝+𝑛+𝑞)).
Recent research on the above class of Bayesian models [8] has shown that when 𝜷 and 𝜺 have independent SUN distributions,

also the posterior (𝜷 ∣ 𝐲) is SUN. Proposition 3 below clarifies that similar conjugacy results can be obtained when the focus is on
the whole SUE family; see also Remark 3.

Proposition 3. Let 𝐲 = (𝐲⊤1 , 𝐲
⊤
0 )
⊤ denote a generic realization from model (25), where 𝐲1 ∈ R𝑛1+ corresponds to the vector of fully-observed

data and 𝐲0 = 𝟎 comprises the 𝑛0 censored ones, with 𝑛1 + 𝑛0 = 𝑛. Moreover, assume again (𝜷⊤, 𝜺⊤)⊤ ∼ SUE𝑝+𝑛,𝑞(𝝃,𝜴,𝜟, 𝝉 , �̄� , 𝑔(𝑝+𝑛+𝑞)) and
consider the following partition of the parameters

𝝃 =
[

𝝃𝜷
𝝃𝜺

]

=
⎡

⎢

⎢

⎣

𝝃𝜷
𝝃𝜺1
𝝃𝜺0

⎤

⎥

⎥

⎦

, 𝜴 =
[

𝜴𝜷 𝜴𝜷𝜺
𝜴𝜺𝜷 𝜴𝜺

]

=
⎡

⎢

⎢

⎣

𝜴𝜷 𝜴𝜷𝜺1 𝜴𝜷𝜺0
𝜴𝜺1𝜷 𝜴𝜺1 𝜴𝜺1𝜺0
𝜴𝜺0𝜷 𝜴𝜺0𝜺1 𝜴𝜺0

⎤

⎥

⎥

⎦

, 𝜟 =
[

𝜟𝜷
𝜟𝜺

]

=
⎡

⎢

⎢

⎣

𝜟𝜷
𝜟𝜺1
𝜟𝜺0

⎤

⎥

⎥

⎦

, (26)

where 𝜺1 and 𝜺0 comprise the noise terms associated with the two vectors 𝐲1 and 𝐲0 in which the generic realization 𝐲 is partitioned. Then,
when �̄� is defined as in (25), we have (𝜷⊤, �̄�⊤)⊤ ∼ SUE𝑝+𝑛1+𝑛0 ,𝑞(𝝃

†,𝜴†,𝜟†, 𝝉 , �̄� , 𝑔(𝑝+𝑛1+𝑛0+𝑞)) with

𝝃† =
⎡

⎢

⎢

⎣

𝝃𝜷
𝐗1𝝃𝜷 + 𝝃𝜺1
𝐗0𝝃𝜷 + 𝝃𝜺0

⎤

⎥

⎥

⎦

=∶
⎡

⎢

⎢

⎣

𝝃𝜷
𝝃𝐲1
𝝃𝐲0

⎤

⎥

⎥

⎦

=
[

𝝃−𝐲0
𝝃𝐲0

]

, 𝜟† =

⎡

⎢

⎢

⎢

⎣

𝜟𝜷

𝝎−1
𝐲1
(𝐗1𝝎𝜷𝜟𝜷 + 𝝎𝜺1𝜟𝜺1 )

𝝎−1
𝐲0
(𝐗0𝝎𝜷𝜟𝜷 + 𝝎𝜺0𝜟𝜺0 )

⎤

⎥

⎥

⎥

⎦

=∶
⎡

⎢

⎢

⎣

𝜟𝜷
𝜟𝐲1
𝜟𝐲0

⎤

⎥

⎥

⎦

=
[

𝜟−𝐲0
𝜟𝐲0

]

,

𝜴† =

⎡

⎢

⎢

⎢

⎣

𝜴𝜷 𝜴𝜷𝐗⊤1 +𝜴𝜷𝜺1 𝜴𝜷𝐗⊤0 +𝜴𝜷𝜺0

𝐗1𝜴𝜷 +𝜴𝜺1𝜷 𝐗1𝜴𝜷𝐗⊤1 +𝜴𝜺1𝜷𝐗
⊤
1 + 𝐗1𝜴𝜷𝜺1 +𝜴𝜺1 𝐗1𝜴𝜷𝐗⊤0 +𝜴𝜺1𝜷𝐗

⊤
0 + 𝐗1𝜴𝜷𝜺0 +𝜴𝜺1𝜺0

𝐗0𝜴𝜷 +𝜴𝜺0𝜷 𝐗0𝜴𝜷𝐗⊤1 +𝜴𝜺0𝜷𝐗
⊤
1 + 𝐗0𝜴𝜷𝜺1 +𝜴𝜺0𝜺1 𝐗0𝜴𝜷𝐗⊤0 +𝜴𝜺0𝜷𝐗

⊤
0 + 𝐗0𝜴𝜷𝜺0 +𝜴𝜺0

⎤

⎥

⎥

⎥

⎦

=∶
⎡

⎢

⎢

⎣

𝜴𝜷 𝜴𝜷𝐲1 𝜴𝜷𝐲0
𝜴𝐲1𝜷 𝜴𝐲1 𝜴𝐲1𝐲0
𝜴𝐲0𝜷 𝜴𝐲0𝐲1 𝜴𝐲0

⎤

⎥

⎥

⎦

=
[

𝜴−𝐲0 𝜴⋅𝐲0
𝜴𝐲0⋅ 𝜴𝐲0

]

,
𝝎𝜺0 = diag(𝜴𝜺0 )

1∕2, 𝝎𝜺1 = diag(𝜴𝜺1 )
1∕2, 𝝎𝜷 = diag(𝜴𝜷 )1∕2,

𝝎𝐲0 = diag(𝜴𝐲0 )
1∕2, 𝝎𝐲1 = diag(𝜴𝐲1 )

1∕2,

(27)

here 𝐗1 ∈ R𝑛1×𝑝 and 𝐗0 ∈ R𝑛0×𝑝 denote the two design matrices associated with the two sub-vectors �̄�1 and �̄�0 of �̄� = (�̄�⊤1 , �̄�
⊤
0 )
⊤ in (25),

hich in turn correspond to the partition 𝐲 = (𝐲⊤1 , 𝐲
⊤
0 )
⊤. Moreover

(a) Prior distribution: 𝜷 ∼ SUE𝑝,𝑞(𝝃𝜷 ,𝜴𝜷 ,𝜟𝜷 , 𝝉 , �̄� , 𝑔(𝑝+𝑞)).
(b) Likelihood: Let 𝜼−𝐲0 ∶= (𝜷⊤, 𝐲⊤1 )

⊤, then (𝐲 ∣ 𝜷) is a multivariate random vector whose density is equal to

p(𝐲 ∣ 𝜷) = p(𝐲1, 𝐲0 ∣ 𝜷) = p(�̄�1 = 𝐲1 ∣ 𝜷) ⋅ P(�̄�0 ≤ 𝟎 ∣ �̄�1 = 𝐲1, 𝜷),

where p(�̄�1 = 𝐲1 ∣ 𝜷) is the density of the SUE𝑛1 ,𝑞(𝝃𝐲1 ∣𝜷 ,𝜴𝐲1 ∣𝜷 ,𝜟𝐲1 ∣𝜷 , 𝝉𝐲1 ∣𝜷 , �̄� 𝐲1 ∣𝜷 , 𝑔
(𝑛1+𝑞)
𝑄𝜷 (𝜷)

), having parameters

𝝃𝐲1 ∣𝜷 = 𝝃𝐲1 +𝜴𝐲1𝜷𝜴
−1
𝜷 (𝜷 − 𝝃𝜷 ), 𝜴𝐲1 ∣𝜷 = 𝜴𝐲1 −𝜴𝐲1𝜷𝜴

−1
𝜷 𝜴𝜷𝐲1 , 𝜟𝐲1 ∣𝜷 = 𝝎−1

𝐲1 ∣𝜷
(𝝎𝐲1𝜟𝐲1 −𝜴𝐲1𝜷𝜴

−1
𝜷 𝝎𝜷𝜟𝜷 )𝜸−1𝐲1 ∣𝜷 ,

𝝉𝐲1 ∣𝜷 = 𝜸−1𝐲1 ∣𝜷 [𝝉 + 𝜟⊤𝜷 �̄�
−1
𝜷 𝝎−1

𝜷 (𝜷 − 𝝃𝜷 )], �̄� 𝐲1 ∣𝜷 = 𝜸−1𝐲1 ∣𝜷 (�̄� − 𝜟⊤𝜷 �̄�
−1
𝜷 𝜟𝜷 )𝜸−1𝐲1 ∣𝜷 , 𝑄𝜷 (𝜷) = (𝜷 − 𝝃𝜷 )⊤𝜴−1

𝜷 (𝜷 − 𝝃𝜷 ),

with 𝝎𝐲1 ∣𝜷 = diag(𝜴𝐲1 ∣𝜷 )
1∕2 and 𝜸𝐲1 ∣𝜷 = diag(�̄� − 𝜟⊤𝜷 �̄�

−1
𝜷 𝜟𝜷 )1∕2, whereas P(�̄�0 ≤ 𝟎 ∣ �̄�1 = 𝐲1, 𝜷) corresponds to the cumulative

distribution function, evaluated at 𝟎, of the SUE𝑛0 ,𝑞(𝝃𝐲0 ∣⋅,𝜴𝐲0 ∣⋅,𝜟𝐲0 ∣⋅, 𝝉𝐲0 ∣⋅, �̄� 𝐲0 ∣⋅, 𝑔
(𝑛0+𝑞)
𝑄𝜼−𝐲0

(𝜼−𝐲0 )
) with

𝝃𝐲0 ∣⋅= 𝝃𝐲0 +𝜴𝐲0⋅𝜴
−1
−𝐲0

(𝜼−𝐲0 − 𝝃−𝐲0 ), 𝜴𝐲0 ∣⋅= 𝜴𝐲0 −𝜴𝐲0⋅𝜴
−1
−𝐲0

𝜴⋅𝐲0 , 𝜟𝐲0 ∣⋅= 𝝎−1
𝐲0 ∣⋅

(𝝎𝐲0𝜟𝐲0 −𝜴𝐲0⋅𝜴
−1
−𝐲0

𝝎−𝐲0𝜟−𝐲0 )𝜸
−1
𝐲0 ∣⋅
,

𝝉𝐲0 ∣⋅= 𝜸−1𝐲0 ∣⋅[𝝉 + 𝜟⊤−𝐲0 �̄�
−1
−𝐲0

𝝎−1
−𝐲0

(𝜼−𝐲0 − 𝝃−𝐲0 )], �̄� 𝐲0 ∣⋅= 𝜸−1𝐲0 ∣⋅(�̄� − 𝜟⊤−𝐲0 �̄�
−1
−𝐲0

𝜟−𝐲0 )𝜸
−1
𝐲0 ∣⋅
,

where 𝑄 (𝜼 ) = (𝜼 − 𝝃 )⊤𝜴−1 (𝜼 − 𝝃 ), 𝝎 = diag(𝜴 )1∕2 and 𝜸 = diag(�̄� − 𝜟⊤ �̄�−1 𝜟 )1∕2.
13
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,

(c) Posterior distribution: (𝜷 ∣ 𝐲) ∼ SUE𝑝,𝑛0+𝑞(𝝃𝜷∣𝐲 ,𝜴𝜷∣𝐲 ,𝜟𝜷∣𝐲 , 𝝉𝜷∣𝐲 , �̄� 𝜷∣𝐲 , 𝑔
(𝑝+𝑛0+𝑞)
𝑄𝐲1 (𝐲1)

), with the following parameters

𝝃𝜷∣𝐲 = 𝝃𝜷 +𝜴𝜷𝐲1𝜴
−1
𝐲1
(𝐲1 − 𝝃𝐲1 ), 𝜴𝜷∣𝐲 = 𝜴𝛽 −𝜴𝜷𝐲1𝜴

−1
𝐲1
𝜴𝐲1𝜷 , 𝝎𝜷∣𝐲 = diag(𝜴𝜷∣𝐲)1∕2,

𝜟𝜷∣𝐲 = 𝝎−1
𝜷∣𝐲

[

−𝜴𝜷𝐲0 +𝜴𝜷𝐲1𝜴
−1
𝐲1
𝜴𝐲1𝐲0 𝝎𝜷𝜟𝜷 −𝜴𝜷𝐲1𝜴

−1
𝐲1
𝝎𝐲1𝜟𝐲1

]

𝜸−1𝜷∣𝐲 , 𝑄𝐲1 (𝐲1) = (𝐲1 − 𝝃𝐲1 )
⊤𝜴−1

𝐲1
(𝐲1 − 𝝃𝐲1 ),

𝝉𝜷∣𝐲 = 𝜸−1𝜷∣𝐲[(−𝝃𝐲0 −𝜴𝐲0𝐲1𝜴
−1
𝐲1
(𝐲1 − 𝝃𝐲1 ))

⊤ (𝝉 + 𝜟⊤𝐲1 �̄�
−1
𝐲1
𝝎−1
𝐲1
(𝐲1 − 𝝃𝐲1 ))

⊤]⊤,

�̄� 𝜷∣𝐲 = 𝜸−1𝜷∣𝐲
⎡

⎢

⎢

⎣

𝜴𝐲0 −𝜴𝐲0𝐲1𝜴
−1
𝐲1
𝜴𝐲1𝐲0 −𝝎𝐲0𝜟𝐲0 +𝜴𝐲0𝐲1𝜴

−1
𝐲1
𝝎𝐲1𝜟𝐲1

(−𝝎𝐲0𝜟𝐲0 +𝜴𝐲0𝐲1𝜴
−1
𝐲1
𝝎𝐲1𝜟𝐲1 )

⊤ �̄� − 𝜟⊤𝐲1 �̄�
−1
𝐲1
𝜟𝐲1

⎤

⎥

⎥

⎦

𝜸−1𝜷∣𝐲 ,

where 𝜸𝜷∣𝐲 is a block diagonal matrix with blocks diag(𝜴𝐲0 −𝜴𝐲0𝐲1𝜴
−1
𝐲1
𝜴𝐲1𝐲0 )

1∕2 and diag(�̄� − 𝜟⊤𝐲1 �̄�
−1
𝐲1
𝜟𝐲1 )

1∕2.

Proof. The proof of (27) follows directly from the closure under linear combinations of SUE derived in Lemma 1, after noticing that
(𝜷⊤, �̄�⊤)⊤ = (𝜷⊤, �̄�⊤1 , �̄�

⊤
0 )
⊤ = 𝐀(𝜷⊤, 𝜺⊤)⊤ = 𝐀(𝜷⊤, 𝜺⊤1 , 𝜺

⊤
0 )
⊤ with 𝐀 a block matrix having row blocks 𝐀1⋅ = [𝐈𝑝 𝟎 𝟎], 𝐀2⋅ = [𝐗1 𝐈𝑛1 𝟎]

and 𝐀3⋅ = [𝐗0 𝟎 𝐈𝑛0 ]. Under (27), the SUE prior distribution for 𝜷 in Proposition 3 is a direct consequence of the closure under
marginalization stated in Lemma 1 for the SUE class.

As for the likelihood, first notice that p(𝐲 ∣ 𝜷) = p(𝐲1, 𝐲0 ∣ 𝜷) = p(𝐲1 ∣ 𝜷)p(𝐲0 ∣ 𝐲1, 𝜷). Under model (25), p(𝐲1 ∣ 𝜷) is equal to
(�̄�1 = 𝐲1 ∣ 𝜷), which in turn coincides with the density, evaluated at 𝐲1, of (�̄�1 ∣ 𝜷). Therefore, by applying to the SUE random

vector (𝜷⊤, �̄�⊤)⊤ – with parameters as in (27) – the closure under marginalization and conditioning presented in Lemmas 1–2, it
directly follows that (�̄�1 ∣ 𝜷) is a SUE having parameters as in Proposition 3. For what concerns the second term p(𝐲0 ∣ 𝐲1, 𝜷), notice
that, under model (25), p(𝐲0 ∣ 𝐲1, 𝜷) = P(�̄�0 ≤ 𝟎 ∣ �̄�1 = 𝐲1, 𝜷), where (�̄�0 ∣ �̄�1 = 𝐲1, 𝜷) is, again, a SUE whose parameters are defined
in Proposition 3. Such a latter result follows directly from the closure under linear combinations and conditioning properties in
Lemmas 1–2, applied to the SUE random vector (𝜷⊤, �̄�⊤)⊤ = (𝜷⊤, �̄�⊤1 , �̄�

⊤
0 )
⊤ partitioned as (𝜼⊤−𝐲0 , �̄�

⊤
0 )
⊤.

To conclude the proof, notice that

P(𝜷 ≤ 𝐛 ∣ 𝐲) = P(𝜷 ≤ 𝐛 ∣ �̄�1 = 𝐲1, �̄�0 ≤ 𝟎) = P(𝜷 ≤ 𝐛, �̄�0 ≤ 𝟎 ∣ �̄�1 = 𝐲1)∕P(�̄�0 ≤ 𝟎 ∣ �̄�1 = 𝐲1).

By Lemma 2, the numerator in the above expression coincides with the cumulative distribution function, evaluated at (𝐛⊤, 𝟎⊤)⊤, of
the random vector having SUE𝑝+𝑛0 ,𝑞(𝝃nu,𝜴nu,𝜟nu, 𝝉nu, �̄� nu, 𝑔

(𝑝+𝑛0+𝑞)
𝑄𝐲1 (𝐲1)

) distribution, with parameters

𝝃nu =

[

𝝃𝜷 +𝜴𝜷𝐲1𝜴
−1
𝐲1
(𝐲1 − 𝝃𝐲1 )

𝝃𝐲0+𝜴𝐲0𝐲1𝜴
−1
𝐲1
(𝐲1 − 𝝃𝐲1 )

]

=∶

[

𝝃nu𝜷

𝝃nu𝐲0

]

, 𝜴nu =

[

𝜴𝜷 −𝜴𝜷𝐲1𝜴
−1
𝐲1
𝜴𝐲1𝜷 𝜴𝜷𝐲0 −𝜴𝜷𝐲1𝜴

−1
𝐲1
𝜴𝐲1𝐲0

𝜴𝐲0𝜷 −𝜴𝐲0𝐲1𝜴
−1
𝐲1
𝜴𝐲1𝜷 𝜴𝐲0 −𝜴𝐲0𝐲1𝜴

−1
𝐲1
𝜴𝐲1𝐲0

]

=∶

[

𝜴nu𝜷 𝜴nu𝜷𝐲0

𝜴nu𝐲0𝜷 𝜴nu𝐲0

]

𝜟nu =

[

𝝎−1
nu𝜷 (𝝎𝜷𝜟𝜷 −𝜴𝜷𝐲1𝜴

−1
𝐲1
𝝎𝐲1𝜟𝐲1 )𝜸

−1
nu

𝝎−1
nu𝐲0

(𝝎𝐲0𝜟𝐲0 −𝜴𝐲0𝐲1𝜴
−1
𝐲1
𝝎𝐲1𝜟𝐲1 )𝜸

−1
nu

]

=∶

[

𝜟nu𝜷

𝜟nu𝐲0

]

,
𝝉nu = 𝜸−1nu [𝝉 + 𝜟⊤𝐲1 �̄�

−1
𝐲1
𝝎−1
𝐲1
(𝐲1 − 𝝃𝐲1 )],

�̄� nu = 𝜸−1nu (�̄� − 𝜟⊤𝐲1 �̄�
−1
𝐲1
𝜟𝐲1 )𝜸

−1
nu ,

where 𝑄𝐲1 (𝐲1) = (𝐲1 − 𝝃𝐲1 )
⊤𝜴−1

𝐲1
(𝐲1 − 𝝃𝐲1 ), 𝝎nu𝜷 = diag(𝜴nu𝜷 )1∕2, 𝝎nu𝐲0 = diag(𝜴nu𝐲0 )

1∕2 and 𝜸nu = diag(�̄� − 𝜟⊤𝐲1 �̄�
−1
𝐲1
𝜟𝐲1 )

1∕2. Similarly,
the denominator in the expression for P(𝜷 ≤ 𝐛 ∣ 𝐲) coincides with the cumulative distribution function, evaluated at 𝟎, of a SUE
random vector. By the closure under marginalization of SUE variables, the distribution of this vector can be directly derived from
the one above to obtain a SUE𝑛0 ,𝑞(𝝃de,𝜴de,𝜟de, 𝝉de, �̄� de, 𝑔

(𝑛0+𝑞)
𝑄𝐲1 (𝐲1)

) with parameters

𝝃de = 𝝃nu𝐲0 , 𝜴de = 𝜴nu𝐲0 , 𝜟de = 𝜟nu𝐲0 , 𝝉de = 𝝉nu, �̄� de = �̄� nu, 𝑄𝐲1 (𝐲1) = (𝐲1 − 𝝃𝐲1 )
⊤𝜴−1

𝐲1
(𝐲1 − 𝝃𝐲1 ).

Combining the above results and recalling the expression for the SUE cumulative distribution function in (4), we have

P(𝜷 ≤ 𝐛 ∣ 𝐲) =

𝐹𝑝+𝑛0+𝑞

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎣

𝐛 − 𝝃nu𝜷
−𝝃nu𝐲0
𝝉nu

⎤

⎥

⎥

⎦

;

⎡

⎢

⎢

⎢

⎣

𝜴nu𝜷 𝜴nu𝜷𝐲0 −𝝎nu𝜷𝜟nu𝜷
𝜴nu𝐲0𝜷 𝜴nu𝐲0 −𝝎nu𝐲0𝜟nu𝐲0

−𝜟⊤nu𝜷𝝎nu𝜷 −𝜟⊤nu𝐲0
𝝎nu𝐲0 �̄� nu

⎤

⎥

⎥

⎥

⎦

, 𝑔(𝑝+𝑛0+𝑞)𝑄𝐲1 (𝐲1)

⎞

⎟

⎟

⎟

⎠

𝐹𝑞

(

𝝉nu; �̄� nu, 𝑔
(𝑞)
𝑄𝐲1 (𝐲1)

)

𝐹𝑞

(

𝝉nu; �̄� nu, 𝑔
(𝑞)
𝑄𝐲1 (𝐲1)

)

𝐹𝑛0+𝑞

(

[

−𝝃nu𝐲0
𝝉nu

]

;

[

𝜴nu𝐲0 −𝝎nu𝐲0𝜟nu𝐲0
−𝜟⊤nu𝐲0

𝝎nu𝐲0 �̄� nu

]

, 𝑔(𝑛0+𝑞)𝑄𝐲1 (𝐲1)

)

=

𝐹𝑝+𝑛0+𝑞

(

[

𝐛 − 𝝃𝜷∣𝐲
𝝉𝜷∣𝐲

]

;

[

𝜴𝜷∣𝐲 −𝝎𝜷∣𝐲𝜟𝜷∣𝐲
−𝜟⊤𝜷∣𝐲𝝎𝜷∣𝐲 �̄� 𝜷∣𝐲

]

, 𝑔(𝑝+𝑛0+𝑞)𝑄𝐲1 (𝐲1)

)

𝐹𝑛0+𝑞

(

𝝉𝜷∣𝐲; �̄� 𝜷∣𝐲 , 𝑔
(𝑛0+𝑞)
𝑄𝐲1 (𝐲1)

) ,

which coincides with the cumulative distribution function of the SUE𝑝,𝑛0+𝑞(𝝃𝜷∣𝐲 ,𝜴𝜷∣𝐲 ,𝜟𝜷∣𝐲 , 𝝉𝜷∣𝐲 , �̄� 𝜷∣𝐲 , 𝑔
(𝑝+𝑛0+𝑞)
𝑄𝐲1 (𝐲1)

) posterior for 𝜷 whose
parameters, after suitable standardizations based on Lemma 4, are defined as in Proposition 3. □

Proposition 3 states a general result that establishes SUE conjugacy for a broad class of models whose likelihood factorizes as
the product of multivariate elliptical densities and cumulative distribution functions. These likelihoods substantially extend classical
14

tobit representations to multivariate and skewed contexts while covering a broader family of noise terms beyond the Gaussian ones.
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As clarified in Examples 5–6, albeit general, such a result allows to recover Bayesian formulations of potential interest in practice
while ensuring conjugacy under these representations.

Example 5 (SUN Conjugacy). Classical tobit models consider 𝑦𝑖 = �̄�𝑖1(�̄�𝑖 > 0) with (�̄�𝑖 ∣ 𝜷) ∼ N(𝒙⊤𝑖 𝜷, 𝜎
2), independently for every 𝑖 ∈

{1,… , 𝑛}. A natural extension that incorporates skewness within these representations replaces N(𝒙⊤𝑖 𝜷, 𝜎
2) with SN(𝒙⊤𝑖 𝜷, 𝜎

2, 𝛼) [16].
nder this setting, which includes the classical and routinely-implemented tobit formulation when 𝛼 = 0, Anceschi et al. [8] have

hown that SUN priors for 𝜷, i.e., 𝜷 ∼ SUN𝑝,𝑞(𝝃𝜷 ,𝜴𝜷 ,𝜟𝜷 , 𝝉𝜷 , �̄� 𝜷 ), yield posterior distributions within the same class. Such a result
an be derived as a very special case of Proposition 3 under a Gaussian density generator and suitable constraints on the parameters.

To clarify the above point, assume again (𝜷⊤, 𝜺⊤)⊤ ∼ SUN𝑝+𝑛,𝑞+𝑛(𝝃,𝜴,𝜟, 𝝉 , �̄� ) with parameters partitioned as in Example 1. In
addition, consider the partitioning (𝐲⊤1 , 𝐲

⊤
0 )
⊤ defined in Proposition 3 for a generic realization 𝐲 from model (25). This construction,

combined with the results in (27) and the proof of Proposition 3, implies that (𝜷⊤, �̄�⊤)⊤ ∼ SUN𝑝+𝑛1+𝑛0 ,𝑞+𝑛1+𝑛0 (𝝃
†,𝜴†,𝜟†, 𝝉 , �̄� ), with

𝝃† =
⎡

⎢

⎢

⎢

⎣

𝝃𝜷
𝐗1𝝃𝜷
𝐗0𝝃𝜷

⎤

⎥

⎥

⎥

⎦

, 𝜟† =

⎡

⎢

⎢

⎢

⎣

𝜟𝜷 𝟎 𝟎
𝝎−1
𝐲1
𝐗1𝝎𝜷𝜟𝜷 𝝎−1

𝐲1
𝜎�̄�𝐈𝑛1 𝟎

𝝎−1
𝐲0
𝐗0𝝎𝜷𝜟𝜷 𝟎 𝝎−1

𝐲0
𝜎�̄�𝐈𝑛0

⎤

⎥

⎥

⎥

⎦

, 𝜴† =

⎡

⎢

⎢

⎢

⎣

𝜴𝜷 𝜴𝜷𝐗⊤1 𝜴𝜷𝐗⊤0
𝐗1𝜴𝜷 𝐗1𝜴𝜷𝐗⊤1 + 𝜎2𝐈𝑛1 𝐗1𝜴𝜷𝐗⊤0
𝐗0𝜴𝜷 𝐗0𝜴𝜷𝐗⊤1 𝐗0𝜴𝜷𝐗⊤0 + 𝜎2𝐈𝑛0

⎤

⎥

⎥

⎥

⎦

,

where �̄� = 𝛼∕(1 + 𝛼2)1∕2, 𝝎𝜷 = diag(𝜴𝜷 )1∕2, 𝝎𝐲1 = diag(𝐗1𝜴𝜷𝐗⊤1 + 𝜎2𝐈𝑛1 )
1∕2 and 𝝎𝐲0 = diag(𝐗0𝜴𝜷𝐗⊤0 + 𝜎2𝐈𝑛0 )

1∕2. These results,
combined with the closure properties of SUNs and point (ii) in Lemma 5, yield

𝜷 ∼ SUN𝑝,𝑞(𝝃𝜷 ,𝜴𝜷 ,𝜟𝜷 , 𝝉𝜷 , �̄� 𝜷 ), 𝜺 ∼ SUN𝑛,𝑛(𝟎, 𝜎2𝐈𝑛, �̄�𝐈𝑛, 𝟎, 𝐈𝑛),

that coincide with the SUN prior and skew-normal noise vector for the extension of the tobit model analyzed in the supplementary
materials of Anceschi et al. [8]. In addition, leveraging Lemma 2 and Remark 2, we have (�̄�1 ∣ 𝜷) ∼ SUN𝑛1 ,𝑛1 (𝐗1𝜷, 𝜎2𝐈𝑛1 , �̄�𝐈𝑛1 , 𝟎, 𝐈𝑛1 ).
Similarly, by the properties of the Gaussian density generators, it follows that under the above constraints for the SUN parameters,
(�̄�0 ⟂ �̄�1 ∣ 𝜷). Therefore, p(�̄�0 ∣ �̄�1 = 𝐲1, 𝜷) = p(�̄�0 ∣ 𝜷), and hence, by the same derivations that led to the SUN for (�̄�1 ∣ 𝜷), we
obtain (�̄�0∣𝜷) ∼ SUN𝑛0 ,𝑛0 (𝐗0𝜷, 𝜎2𝐈𝑛0 , �̄�𝐈𝑛0 , 𝟎, 𝐈𝑛0 ). Combining these results with Proposition 3, Lemma 2 and Remark 2, and recalling
the expression for the SUN density and cumulative distribution function (see e.g., Arellano-Valle and Azzalini [4]), leads to

p(𝐲1, 𝐲0 ∣ 𝜷) ∝ 𝜙𝑛1 (𝐲1 − 𝐗1𝜷; 𝜎2𝐈𝑛1 )𝛷𝑛1+2𝑛0
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

𝛼(𝐲1 − 𝐗1𝜷)
−𝐗0𝜷
𝟎

⎤

⎥

⎥

⎦

;
⎡

⎢

⎢

⎣

𝜎2𝐈𝑛1 𝟎 𝟎
𝟎 𝜎2𝐈𝑛0 −�̄�𝜎𝐈𝑛0
𝟎 −�̄�𝜎𝐈𝑛0 𝐈𝑛0

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

,

which coincides again with the likelihood in Anceschi et al. [8]. As for the models explored within Examples 1 and 3, the above
representation also includes several formulations of direct interest in practice. In particular, setting 𝛼 = 0 yields classical tobit
regression, whereas replacing 𝜎2𝐈𝑛 with a full covariance matrix allows to recover multivariate extensions of tobit models, including
those based on skewed link functions.

Example 6 concludes our analysis by clarifying that similar, but yet-unexplored, conjugacy properties can be established also
when the focus is on models for Student’s 𝑡 or skew-𝑡 censored observations.

Example 6 (SUT Conjugacy). Conjugacy properties for generalizations of tobit models relying on Student’s 𝑡 or skew-𝑡 censored
observations are currently lacking. As stated in Corollary 3, these properties can be derived as special cases of Proposition 3 under
Student’s 𝑡 density generators.

Corollary 3. Consider model (25), with (𝜷⊤, 𝜺⊤)⊤ ∼ SUT𝑝+𝑛,𝑞(𝝃,𝜴,𝜟, 𝝉 , �̄� , 𝜈), and parameters 𝝃,𝜴,𝜟 partitioned as in (26). Then, the
induced prior distribution is 𝜷 ∼ SUT𝑝,𝑞(𝝃𝜷 ,𝜴𝜷 ,𝜟𝜷 , 𝝉 , �̄� , 𝜈), whereas the likelihood is equal to

p(𝐲 ∣ 𝜷) = p(𝐲1, 𝐲0 ∣ 𝜷) = p(�̄�1 = 𝐲1 ∣ 𝜷) ⋅ P(�̄�0 ≤ 𝟎 ∣ �̄�1 = 𝐲1, 𝜷),

with p(�̄�1 = 𝐲1 ∣ 𝜷) the density of the SUT𝑛1 ,𝑞(𝝃𝐲1 ∣𝜷 , 𝛼𝜷𝜴𝐲1 ∣𝜷 ,𝜟𝐲1 ∣𝜷 , 𝛼
−1∕2
𝜷 𝝉𝐲1 ∣𝜷 , �̄� 𝐲1 ∣𝜷 , 𝜈+𝑝) having parameters as in Proposition 3, and P(�̄�0 ≤

𝟎 ∣ �̄�1 = 𝐲1, 𝜷) the cumulative distribution function, evaluated at 𝟎, of a SUT𝑛0 ,𝑞(𝝃𝐲0 ∣⋅, 𝛼𝜼−𝐲0𝜴𝐲0 ∣⋅,𝜟𝐲0 ∣⋅, 𝛼
−1∕2
𝜼−𝐲0

𝝉𝐲0 ∣⋅, �̄� 𝐲0 ∣⋅, 𝜈+𝑝+𝑛1) with param-
eters as in Proposition 3. In these expressions 𝛼𝜷 = [𝜈+𝑄𝜷 (𝜷)]∕(𝜈+𝑝) and 𝛼𝜼−𝐲0 = [𝜈+𝑄𝜼−𝐲0

(𝜼−𝐲0 )]∕(𝜈+𝑛1+𝑝), with 𝑄𝜷 (𝜷) and 𝑄𝜼−𝐲0
(𝜼−𝐲0 )

defined again in Proposition 3. Finally, the posterior distribution for 𝜷 is (𝜷 ∣ 𝐲) ∼ SUT𝑝,𝑛0+𝑞(𝝃𝜷∣𝐲 , 𝛼𝐲1𝜴𝜷∣𝐲 ,𝜟𝜷∣𝐲 , 𝛼
−1∕2
𝐲1 𝝉𝜷∣𝐲 , �̄� 𝜷∣𝐲 , 𝜈 + 𝑛1) with

𝛼𝐲1 = [𝜈 +𝑄𝐲1 (𝐲1)]∕(𝜈 + 𝑛1), and the remaining quantities defined as in Proposition 3.

Proof. The proof of Corollary 3 requires replacing the generic density generators in Proposition 3 with those of the Student’s 𝑡, and
then leveraging the properties of such generators described in Section 2.2.2. □

Let us conclude with some special cases of Corollary 3 that yield priors and likelihoods of potential interest in practice. To this
end, similarly to Examples 2 and 4, consider (𝜷⊤, 𝜺⊤)⊤ ∼ SUT𝑝+𝑛,𝑞(𝝃,𝜴,𝜟, 𝝉 , �̄� , 𝜈), with 𝑛 = 𝑛1 + 𝑛0 and parameters partitioned as

𝝃 =
[

𝝃𝜷
𝟎

]

=
⎡

⎢

⎢

⎣

𝝃𝜷
𝟎
𝟎

⎤

⎥

⎥

⎦

, 𝜴 =
[

𝜴𝜷 𝟎
𝟎 𝜴𝜺

]

=
⎡

⎢

⎢

⎣

𝜴𝜷 𝟎 𝟎
𝟎 𝜴𝜺1 𝟎
𝟎 𝟎 𝜴𝜺0

⎤

⎥

⎥

⎦

, 𝜟 =
[

𝟎
𝜟𝜺

]

=
⎡

⎢

⎢

⎣

𝟎
𝜟𝜺1
𝜟𝜺0

⎤

⎥

⎥

⎦

,

and 𝝉 = 𝟎.
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Recalling Examples 2 and 4, the above construction implies

𝜷 ∼ T𝑝(𝝃𝜷 ,𝜴𝜷 , 𝜈), 𝜺 ∼ SUT𝑛,𝑞(𝟎,𝜴𝜺,𝜟𝜺, 𝟎, �̄� , 𝜈),

and therefore, under (25), the model underlying a generic observation 𝐲 = (𝐲⊤1 , 𝐲
⊤
0 )
⊤ coincides with a multivariate extension of tobit

regression having unified skew-𝑡 error terms, and Student’s 𝑡 prior for 𝜷 uncorrelated with the noise vector 𝜺. Applying Corollary 3
to such a formulation yields the likelihood

p(𝐲 ∣ 𝜷) = p(𝐲1, 𝐲0 ∣ 𝜷) = p(�̄�1 = 𝐲1 ∣ 𝜷) ⋅ P(�̄�0 ≤ 𝟎 ∣ �̄�1 = 𝐲1, 𝜷),

where p(�̄�1 = 𝐲1 ∣ 𝜷) coincides with the density function, computed at 𝐲1, of the SUT𝑛1 ,𝑞(𝐗1𝜷, 𝛼𝜷𝜴𝜺1 ,𝜟𝜺1 , 𝟎, �̄� , 𝜈 + 𝑝) random
variable, whereas the quantity P(�̄�0 ≤ 𝟎 ∣ �̄�1 = 𝐲1, 𝜷) corresponds to the cumulative distribution function, evaluated at 𝟎, of the
SUT𝑛0 ,𝑞(𝐗0𝜷, 𝛼𝜼−𝐲0𝜴𝜺0 ,𝜟𝜺0𝜸

−1
0 , 𝛼−1∕2𝜼−𝐲0

𝜸−10 𝜟⊤𝜺1 �̄�
−1
𝜺1
𝝎−1
𝜺1
(𝐲1 − 𝐗1𝜷), 𝜸−10 (�̄� − 𝜟⊤𝜺1 �̄�

−1
𝜺1
𝜟𝜺1 )𝜸

−1
0 , 𝜈 + 𝑝 + 𝑛1), with 𝜸0 = diag(�̄� − 𝜟⊤𝜺1 �̄�

−1
𝜺1
𝜟𝜺1 )

1∕2.
This result clarifies that classical multivariate tobit representations admit extensions to suitable skew-𝑡 formulations while preserving
conjugacy. Imposing additional constraints within such a formulation further highlights the practical potential of our contribution.
For example, setting 𝜟𝜺 = 𝟎 in the above formulation, and recalling again Examples 2 and 4, yields

𝜷 ∼ T𝑝(𝝃𝜷 ,𝜴𝜷 , 𝜈), p(𝐲 ∣ 𝜷) = p(�̄�1 = 𝐲1 ∣ 𝜷) ⋅ P(�̄�0 ≤ 𝟎 ∣ �̄�1 = 𝐲1, 𝜷),

where p(�̄�1 = 𝐲1 ∣ 𝜷) is the density of T𝑛1 (𝐗1𝜷, 𝛼𝜷𝜴𝜺1 , 𝜈+𝑝) evaluated at 𝐲1, while P(�̄�0 ≤ 𝟎 ∣ �̄�1 = 𝐲1, 𝜷) is a T𝑛0 (𝐗0𝜷, 𝛼𝜼−𝐲0𝜴𝜺0 , 𝜈+𝑝+𝑛1)
cumulative distribution function computed at 𝟎. As a consequence of Corollary 3, the induced posterior distribution for 𝜷 is still
within the SUT family.

4. Conclusions

This article proves that SUE distributions have important conjugacy properties when combined with broad classes of likelihoods
that generalize classical probit, tobit, multinomial probit, and linear models in several directions. These generalizations include
multivariate formulations based on general elliptical noise terms and allow for asymmetric representations relying on unified skew-
elliptical extensions. Our results leverage available and newly-derived closure properties of the SUE family to prove that priors
within this class yield again SUE posterior distributions when combined with the likelihood of the models mentioned above, under
the classical Bayes rule. Recalling Propositions 1–3, these results are technically derived by starting from a joint SUE distribution
for the parameters and the observed data. Such a proof technique is not meant to provide a different perspective on the standard
specification of a prior and a likelihood in Bayesian statistics. Rather, it provides a convenient strategy that facilitates the derivation,
within the SUE class, of meaningful priors and likelihoods yielding closed-form SUE posterior distributions.

More specifically, Examples 1–6 clarify that our results include models of direct interest in practice, such as those based on
multivariate Gaussian or Student’s 𝑡 formulations, along with the corresponding skewed extensions. In this respect, an interesting
direction would be to specialize Propositions 1–3 to other SUE sub-families, e.g., those based on Cauchy or logistic density generators.
This goal can be accomplished by replacing the generic density generators in Propositions 1–3, with those yielding the sub-family
investigated. These extensions further motivate advancements in the study of other relevant SUE sub-families to derive results and
properties similar to those characterizing SUN [e.g., 4] and SUT [e.g., 48] distributions. Particularly impactful, within our context,
would be the derivation of additive stochastic representations as those obtained for SUNs and SUTs. Advancements along these
lines would facilitate i.i.d. sampling under any SUE posterior, thus enlarging the class of models and priors that allow for tractable
Bayesian inference. The recent additive stochastic representations derived by Yin and Balakrishnan [56] for general skew-elliptical
distributions provide a promising advancement in this direction, which also suggests that related results could be derived even for
the wider SUE family. Similarly, expanding the available strategies for the efficient evaluation of the moments of SUE distributions
in, e.g., (6)–(7), would further facilitate Bayesian inference leveraging the conjugacy results derived in the present article. Current
contributions [e.g., 50–54] provide important results along these lines which motivate future research to showcase the computational
advantages and the practical impact of these solutions when the focus is on Bayesian inference under the newly-derived SUE posterior
distributions.

Finally, we shall emphasize that the SUE family can be itself rephrased as a particular case of selection elliptical distributions [49]
arising from even more general conditioning mechanisms. As such, it would be interesting to expand the conjugacy properties derived
in this article for SUE distributions to the broader selection elliptical family. Let us conclude by highlighting that not all the priors
and likelihoods implied by the general results in Propositions 1–3 have direct practical applicability. Nonetheless, from a theoretical
perspective, also these instances are of interest in expanding the analysis of the probabilistic properties of the SUE family. Moreover,
although conjugacy is a desirable property, it is important to emphasize that those priors and likelihoods in the SUE family that do
not yield SUE posteriors can still allow for Bayesian inference leveraging, e.g., MCMC methods and deterministic approximations.
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