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Abstract
We introduce a multivariate version of the modified skew-normal distribution, which
contains the multivariate normal distribution as a special case. Unlike the Azza-
lini multivariate skew-normal distribution, this new distribution has a nonsingular
Fisher information matrix when the skewness parameters are all zero, and its profile
log-likelihood of the skewness parameters is always a non-monotonic function. We
study some basic properties of the proposed family of distributions and present an
expectation-maximization (EM) algorithm for parameter estimation that we validate
through simulation studies. Finally, we apply the proposed model to the univariate
frontier data and to a trivariate wind speed data, and compare its performance with the
Azzalini skew-normal model.

Keywords EM algorithm · Fisher information matrix · Modified skew-normal ·
Skew-elliptical · Skew-generalized normal · Skew-normal

1 Introduction

Because the assumption of the Gaussian model is not appropriate in many statistical
applications, despite its appealing stochastic properties, more options for parametric
models are needed, especially for multivariate cases. For this reason, a large number
of parametric models have been introduced that are more flexible compared to the
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Gaussian model. Among them, an important and popular one is the skew-normal
distribution introduced by Azzalini (1985), which instigated the development of other
skew-normal and skew-elliptical models. For more insight on such univariate and
multivariate flexible parametric models and their applications, readers are referred to
the books by Azzalini and Capitanio (2014) and Genton (2004).

Since the Azzalini skew-normal (ASN ) distribution integrates skewness into the
model with only one additional parameter, compared to the Gaussian model, and due
to its simple interpretation, it has been popular in applications. In the univariate case,
a random variable Z follows an ASN distribution with skewness parameter λ ∈ R if
it has a probability density function (pdf)

fZ (z) = 2φ(z)�(λz), z ∈ R, (1)

where φ(·) and �(·) are the pdf and the distribution function, respectively, of the
standard Gaussian distribution. The parameter λ induces skewness in the distribution.
The sign of λ dictates the sign of the skewness, the magnitude of λ dictates the extent
of the skewness in the distribution and it reduces to the standard Gaussian distribution
when λ becomes zero. The location-scaleASN model is described by the distribution
of X = ξ + ωZ , where Z has the pdf as given in (1), which we denote by X ∼
ASN (ξ, ω, λ), with location parameter ξ ∈ R and scale parameter ω > 0. TheASN
distribution has been studied extensively. Various theoretical properties of the ASN
distribution have been derived in Henze (1986), Pewsey (2000), Azzalini (2005), and
Gómez et al. (2007), among many more. The ASN distribution was firstly extended
to the multivariate case in Azzalini and Dalla-Valle (1996) and posteriorly studied
systematically in Azzalini and Capitanio (1999) and in Azzalini and Capitanio (2003).
In the context of applications, theASN distribution and itsmultivariate extension have
been used in plenty of situations. For example,Ghosh et al. (2007) used themultivariate
ASN distribution as the joint distribution of the random effects in the random effect
model, Lin et al. (2007) applied the ASN distribution in finite mixture models, and
Lachos et al. (2010) considered the ASN distribution for linear mixed models.

The ASN distribution can capture both symmetry and asymmetry in the data
adequately in many applications, demonstrating its flexibility, and it performs well
for moderately skewed datasets. Despite its good properties, two main inferential
drawbacks of the location-scale ASN model are: 1) its Fisher information matrix
is singular when the skewness parameter λ is set to be zero, and as a consequence,
one cannot use the asymptotic normality of the maximum likelihood estimators to test
H0 : λ = 0 versus H1 : λ �= 0 with aWald-type test, which would have been useful for
checkingwhether the data were symmetric or not; 2) themaximum likelihood estimate
of the skewness parameter λ can sometimes be infinite, if the data are heavily skewed,
and the inference regarding the skewness parameter will then be difficult. Indeed, in
that case, it is a boundary point of the parameter space of the skewness parameter,
hence it will not satisfy the assumptions of the standard asymptotic distribution theory
of the maximum likelihood estimator. Then, the problem of testing H0 : λ = 0 versus
H1 : λ �= 0 requires a special methodology described by Rotnitzky et al. (2000) and
by Chiogna (2005). Although, in the univariate ASN case, a likelihood ratio test
(LRT) can be used to test H0 : λ = 0 versus H1 : λ �= 0, this does not extend to
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Fig. 1 The histograms of the LRT statistic under the null hypothesis H0 : ASN p(0, Ip,λ = 0) for
different values of p = 1, . . . , 6, along with the density of χ2

p

the p-dimensional multivariateASN case. Indeed, one can check by simulations that
the usual χ2

p asymptotic distribution of the LRT test statistic under H0 is not valid.
In Fig. 1, we have plotted the histogram of the LRT statistic based on samples of size
1000 from the null distribution with 10, 000 replicates for different values of p. Along
with the histogram, we have plotted the corresponding χ2

p probability density. Figure1
shows that the density only matches with the histogram at p = 1. The distribution
of the LRT statistic for p > 1 is still an open problem for this case. One other
approach to handle the testing problem is to use the centralized parameterization of
the ASN distribution. The univariate centralized ASN was introduced by Azzalini
and Capitanio (1999) and was later extended to the multivariate regime by Arellano-
Valle and Azzalini (2008). The idea of centralized parameterization is to have the
mean vector as the location parameter, the covariance matrix as the scale parameter,
and the vector consisting of the component-wise skewness as the skewness parameter.
Moreover, the transformation from direct to centralized parameterization is one-to-
one. However, in themultivariate case, optimizing the log-likelihood of the centralized
ASN is more difficult compared to the direct parameterization of theASN , because
the centralized parameters are interdependent. Due to that, the feasibility of a set of
central parameters has to be checked by testing the positive definiteness of the scale
matrix of the direct parameterization. In addition, the centralized parameterization
does not guarantee the existence of the MLE of the skewness parameter.

To address the problem of infinite maximum likelihood estimator of λ, Sartori
(2006) used a modified likelihood function for theASN family that always results in
a finite estimate for λ. Azzalini andArellano-Valle (2013) formulated a proposal based
on the idea of a penalized likelihood for finding the maximum likelihood estimates,
which ensures the finiteness and the consistency of the skewness parameter estimate.
Similar work has been done by Jin et al. (2016) under the theme of the finite mixture
model of the ASN distribution. Both these inferential problems can be handled if a
Bayesian ASN model is considered, as shown by Bayes and Branco (2007).

Arrué et al. (2016) addressed the aforementioned problem of singularity by
introducing themodified skew-generalized normal (MSGN ) distribution. This distri-
bution is obtained from a reparametrization of the so-called skew-generalized-normal
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(SGN ) distribution introduced by Arellano-Valle et al. (2004). The density function
of a random variable Z following an MSGN distribution, with skewness parameter
λ and shape parameter ν, is given by

fZ (z) = 2φ(z)�

(
λz√

ν + z2

)
, z ∈ R,

with λ ∈ R and ν > 0, and we denote Z ∼ MSGN (λ, ν). TheMSGN (λ, ν) density
reduces to the N (0, 1) density when λ = 0 or ν → ∞. The usual location-scale
MSGN model possesses a nonsingular Fisher information matrix, when λ = 0 for
any ν > 0. To be more comparable to theASN family, Arrué et al. (2016) suggested
using theMSGN (λ, 1) distribution and named it the modified skew-normal (MSN )

distribution. The univariateMSN distribution has been used in a few applications in
statistics. For instance, theMSN distribution has been applied byArellano-Valle et al.
(2017) tomeasure the divergence of a density fromGaussianity, andArrué et al. (2020)
considered the MSN distribution for suggesting a new type of Birnbaum–Saunders
model.

Although the MSN distribution provides an alternative option to model skewed
data besides the ASN distribution, with the additional advantage over the ASN
distribution of non-singularity of the Fisher information matrix when the skewness
parameter λ is zero, the maximum likelihood estimator of λ can still be infinite in
some situations. This issue has been discussed by Arrué et al. (2016) in detail and was
dealt with by considering a modified likelihood function, similar to Sartori (2006).
However, all the issues discussed above have been studied in the univariate case only.

In this paper, we provide an alternative parameterization of theMSN distribution
and extend it to the multivariate case.We call it the multivariate modified skew-normal
distribution. It has a nonsingular Fisher information matrix when the skewness param-
eter is set to zero, and the maximum likelihood estimator of the skewness parameter
is always finite.

The rest of the paper is as follows: In Sect. 2, we discuss the multivariate ASN
family and introduce an alternative parameterization for it. Then, we formally define
the multivariate modified skew-normal distribution. In Sect. 3, we study some of its
basic properties, its likelihood function, and its Fisher information matrix. In Sect. 4,
we derive an EM algorithm for the parameter estimation of the new family.We provide
some simulation studies in Sect. 5 and data applications in Sect. 6. Finally, we conclude
the paper by discussing some future research topics in Sect. 7.

2 Multivariate modified skew-normal distribution

In this section, we formally define the multivariate modified skew-normal distribution
based on the multivariate skew-normal distribution with alternative parameterization.
Some of the basic properties of the latter are in Appendix A. This parameterization is
used byAzzalini andDalla-Valle (1996), up tominor differences. The same parameter-
ization has also been used by Adcock and Shutes (2001), Adcock (2004), and Adcock
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(2005). We first revisit the family of multivariate ASN distributions and investigate
the effect of its alternative parameterization.

2.1 Themultivariate skew-normal with alternative parameterization

The multivariate ASN distribution introduced by Azzalini and Dalla-Valle (1996)
was defined posteriorly by Azzalini and Capitanio (2003) as follows. A random vector
X ∈ R

p is said to have a multivariate ASN distribution with location parameter ξ ∈
R

p, symmetric positive definite scale parameter � ∈ R
p×p, and skewness parameter

α ∈ R
p, if its multivariate probability density function (mpdf) is given by

fX (x) = 2φp (x; ξ ,�)�{α�ω−1(x − ξ)}, x ∈ R
p, (2)

where φp(·;μ,�) is the mpdf of a p-dimensional normal distribution with mean
μ ∈ R

p and positive definite covariance matrix � ∈ R
p×p, and ω = diag(�)1/2. We

denote this by X ∼ ASN p(ξ ,�,α).
TheASN p(ξ ,�,α)distribution can be reparameterized byusing the relations� =

� +ηη� and α = (1+η��−1η)−1/2 ω�−1η, where � ∈ R
p×p is a symmetric pos-

itive definite matrix, η ∈ R
p and ω = diag

(√
ψ11 + η21, . . . ,

√
ψpp + η2p

)
, with �i i

and ηi being the i th diagonal element of� and η, respectively, for i = 1, . . . , p. Con-
versely, by letting ω = diag(�)1/2, �̄ = ω−1�ω−1 and δ = (1 + α��̄α)−1/2�̄α,

we have � = ω(�̄
−1 +αα�)−1ω = ω(�̄− δδ�)ω and η = ωδ. With this alternative

parameterization, the mpdf of X from Eq. (2) is

fX (x) = 2φp

(
x; ξ ,� + ηη�)�

{
η��−1(x − ξ)√
1 + η��−1η

}
, x ∈ R

p. (3)

Definition 1 (Multivariate skew-normal (SN ) distribution) A random vector X ∈ R
p

withmpdf given by Eq. (3) is said to have amultivariate skew-normal distribution with
location parameter ξ ∈ R

p, scale parameter � ∈ R
p×p, a symmetric and positive

definite matrix, and skewness parameter η ∈ R
p, and denoted by X ∼ SN p(ξ ,�, η).

We discuss the benefits of using this alternative parameterization for defining the SN
distribution compared to the ASN distribution in Appendix A.

2.2 Themultivariate modified skew-normal distribution

The multivariate SN distribution is a reformulation of the multivariate ASN distri-
bution by considering an alternative parameterization, which solves the problem of
the infinite maximum likelihood estimator of the skewness parameter. However, as
in the multivariate ASN case, the Fisher information matrix in the multivariate SN
model at symmetry still remains singular. To have a modified version of the multivari-
ate ASN model without the two aforementioned peculiarities, we next introduce a
multivariate version of the MSN distribution in terms of the same parameterization
of the multivariate SN distribution.
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Definition 2 (Multivariate modified skew-normal (MSN ) distribution) A random
vector X ∈ R

p is said to have a multivariate modified skew-normal distribution with
location parameter ξ ∈ R

p, scale parameter � ∈ R
p×p, a symmetric and positive

definite matrix, and skewness parameter η ∈ R
p if its mpdf is given by

fX (x) = 2φp

(
x; ξ ,� + ηη�)

×�

{
1√

1 + η��−1η

η��−1(x − ξ)√
1 + (x − ξ)�(� + ηη�)−1(x − ξ)

}
, x ∈ R

p, (4)

which we denote by X ∼ MSN p(ξ ,�, η).

To have some insight into how we arrive at this new multivariate distribution, let us
consider a p-variate random vector Z ∈ R

p with mpdf

fZ(z) = 2φp(z; 0, �̄)�

⎛
⎝ α�z√

1 + z��̄
−1

z

⎞
⎠ , z ∈ R

p, (5)

whereα ∈ R
p is the skewness parameter and �̄ ∈ R

p×p, a positive definite correlation
matrix. Equation (5) is a simple and natural multivariate extension of the pdf of the
univariateMSN distribution considered by Arrué et al. (2016), and it becomes effec-

tively an mpdf. In fact, let w(z) = (1 + z��̄
−1

z)−1/2α�z. Since w(−z) = −w(z),
φp(·) is a valid mpdf and �(·) is a valid cdf, then by Proposition 1.1 from Azzalini
and Capitanio (2014), it can be easily established that the function fZ(z) given in Eq.
(5) is indeed an mpdf. Now define the location-scale random vector X = ξ + ωZ,
where ξ ∈ R

p, ω = diag(ω1, . . . , ωp) such that ωi > 0 for all i = 1, . . . , p,
and � = ω�̄ω. Finally, as in the definition of the multivariate SN distribution,
we again adopt the parameterization � = � + ηη�, ω = diag(� + ηη�)1/2, and
α = (1 + η��−1η)−1/2ω�−1η. Thus, the random vector X ∼ MSN p(ξ ,�, η).

3 Properties of themultivariateMSN distribution

3.1 Basic properties

We next list various properties of the multivariateMSN distribution. All proofs can
be found in Appendix B.
1)MSN p(ξ ,�, 0) is equivalent toNp(ξ ,�): This fact is easily verifiable from Eq.
(4) by setting η = 0. When η is the zero vector, the mpdf of the multivariate MSN
distribution is elliptically contoured, as it is the mpdf of the multivariate normal distri-
bution, andwhen η is a non-zero vector, the contours of thempdf of the distribution are
shifted towards η and lose the elliptical shape. The effect of the skewness parameter
η on theMSN distribution is illustrated in the contour plots of two bivariateMSN
distributions with the same location and scale parameters but with different skewness
parameters η = (0, 0)� and η = (10,−5)� in Fig. 2.

123



Amultivariate modified skew-normal distribution 517

MSN with η = (0,0)T

x1

x 2

 0.002 

 0.003 

 0.004 

 0.005 

 0.006 

 0.007 

 0.008 

−6 −4 −2 0 2 4 6

−
15

−
5

0
5

10
MSN with η = (10,−5)T

x1

x 2

 5e−04 

 0.001 

 0.0015 

 0.002 

 0.0025 

 0.003 

−5 0 5 10 15 20 25 30

−
20

−
10

0
10

Fig. 2 Contour plot of the mpdf of the MSN 2 distribution with ξ = (0, 0)�, � =
(
10 12
12 40

)
and

η = (0, 0)� and with η = (10, −5)� with 100 simulated observations from the respective distributions

2) Stochastic representation of the multivariate MSN distribution: Now we present
a stochastic representation of the MSN distribution. As we show in the later part,
this stochastic representation helps us obtain the results regarding the hierarchical
representation and the distribution of affine transformations of aMSN randomvector,
among other properties of this family. To simplify the notation in the following results,
we use the working parametrization (ξ ,�,λ), where as defined earlier

� = � + ηη� and λ = 1√
1 − η��−1η

�−1η = 1√
1 + η��−1η

�−1η. (6)

Proposition 1 Let X ∼ MSN p(ξ ,�, η). Then

X
d= ξ + 1√

1 + Y��Y
�Y T + U,

where T ∼ HN (0, 1), U |Y = y ∼ Np
(
0, (�−1 + y y�)−1

)
, Y ∼ Np(λ,�−1), and

T is independent of U and Y .

3) Hierarchical representation of the multivariate MSN distribution: In the next
corollary, we give one hierarchical representation of the MSN based on the last
proposition. This hierarchical representation is used later for implementation of an
EM algorithm to find the maximum likelihood estimates of the parameters of the
MSN model.

Corollary 1 Let X ∼ MSN p(ξ ,�, η). A hierarchical representation of X is given
by

X|Y = y,W = w ∼Np

(
ξ + w

1

1 + y�� y
� y, (�−1 + y y�)−1

)
,
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W |Y = y ∼T N
(
0, 1 + y�� y; (0,∞)

)
,

Y ∼Np(λ,�−1).

4) Some posterior moments of the missing random quantities Y and W : The results
in the next two corollaries will be used directly to establish the EM algorithm.

Corollary 2 If (X,Y ,W ) have joint mpdf as given in Eq. (21), then

E(Y |X = x) = λ + Wφ

⎧⎨
⎩

λ�(x − ξ)√
1 + (x − ξ)��−1(x − ξ)

⎫⎬
⎭

× 1√
1 + (x − ξ)��−1(x − ξ)

�−1(x − ξ),

E

(
YY�|X = x

)
= λλ� + �−1 + Wφ

⎧⎨
⎩

λ�(x − ξ)√
1 + (x − ξ)��−1(x − ξ)

⎫⎬
⎭

× 1√
1 + (x − ξ)��−1(x − ξ)

×
{
�−1(x − ξ)λ� + λ(x − ξ)��−1

− λ�(x − ξ)

1 + (x − ξ)��−1(x − ξ)
�−1(x − ξ)(x − ξ)��−1

}
,

E(WY |X = x) = E(W |X = x)λ

+ {E(W 2|X = x) − λ�(x − ξ)E(W |X = x)}
1 + (x − ξ)��−1(x − ξ)

�−1(x − ξ),

E(W |X = x) = (x − ξ)�λ +
√
1 + (x − ξ)��−1(x − ξ)

× Wφ

⎧⎨
⎩

λ�(x − ξ)√
1 + (x − ξ)��−1(x − ξ)

⎫⎬
⎭ ,

E(W 2|X = x) = {(x − ξ)�λ}2 + {1 + (x − ξ)��−1(x − ξ)}
+ (x − ξ)�λ

√
1 + (x − ξ)��−1(x − ξ)

× Wφ

⎧⎨
⎩

λ�(x − ξ)√
1 + (x − ξ)��−1(x − ξ)

⎫⎬
⎭ ,

where Wφ(·) = φ(·)/�(·).
5) Expectation and covariance of the multivariate MSN distribution: The above
hierarchical representation is also useful to derive the expectation and covariance of
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the multivariate MSN distribution. Note that even moments of the MSN are the
same as those of the normal distribution due to the invariance property (Arellano-Valle
and Genton 2010).

Proposition 2 The expectation and the covariance matrix of X ∼ MSN p(ξ ,�, η)

are, respectively:

E(X) = ξ +
√

2

π
E

(
1√

1 + Y��Y
�Y

)
,

Var(X) = � − 2

π
E

(
1√

1 + Y��Y
�Y

)
E

(
1√

1 + Y��Y
�Y

)�
,

where Y ∼ Np
(
λ,�−1), with λ and � as in (6).

The explicit forms of expectation and the covariance of theMSN distribution are

not available since they involve the termE

(
1√

1 + Y��Y
�Y

)
which has no explicit

form. However, writing Y = �−1/2(αλ̄+ Z), where α =
√

λ��λ, αλ̄ = �1/2λ, with
‖λ̄‖ = 1, and Z ∼ Np(0, Ip), we have

E

(
�Y√

1 + Y��Y

)
= �1/2

E

⎛
⎝ Z√

1 + α2 + 2αλ̄
�
Z + Z�Z

⎞
⎠

+ λE

⎛
⎝ 1√

1 + α2 + 2αλ̄
�
Z + Z�Z

⎞
⎠

= E

⎛
⎝ Z1√

1 + (α + Z1)2 +∑p
i=2 Z

2
i

⎞
⎠�1/21p

+ E

⎛
⎝ 1√

1 + (α + Z1)2 +∑p
i=2 Z

2
i

⎞
⎠λ,

since Z1, . . . , Z p
iid∼ N1(0, 1) and λ̄

�
Z

d= Z1. Note that W =∑p
i=2 Z

2
i ∼ χ2

p−1 and
is independent of Z1. Thus, to compute the required expectation we only need to solve
numerically two-dimensional integrals.
6) Moment generating function of the MSN distribution: Here we provide the mul-
tivariate moment generating function (mmgf) of theMSN distribution.

Proposition 3 The mmgf of X ∼ MSN p(ξ ,�, η) is
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MX (t) = E{MX|Y (t)}

= 2 exp

(
t�ξ + 1

2
t��t

)
E

{
�

(
Y��t√

1 + Y��Y

)}
, t ∈ R

p, (7)

where Y ∼ Np(λ,�−1), and � and λ are as in Eq. (6).

7) Cumulative distribution function of theMSN distribution: We provide the multi-
variate cumulative distribution function (mcdf) of the MSN distribution here.

Proposition 4 The mcdf of X ∼ MSN p(ξ ,�, η) is

FX (x) = E

[
�p+1

{(
x
0

)
;
(

ξ

0

)
,

(
� −�Y

−Y�� 1 + Y��Y

)}]
, x ∈ R

p, (8)

where Y ∼ Np(λ,�−1), and � and λ are as in Eq. (6).

8) Affine transformation of theMSN distribution: The next proposition gives us the
distribution of a linear transformation of a MSN random vector.

Proposition 5 Let X ∼ MSN p(ξ ,�, η) and consider an affine transformation X̃ =
a+BX , X̃ ∈ R

k , for some vector a ∈ R
k and for some full row rankmatrix B ∈ R

k×p,
k ≤ p, and a and B are constant. Then, the distribution of X̃ has an mpdf given by

f X̃ (̃x) = 2φp

(
x̃; a + Bξ , B�B�)

×
∫
Rp

�

[
λB( y)�(̃x − a − Bξ)√

1 + (̃x − a − Bξ)�(B�B�)−1(̃x − a − Bξ)

]

× φp

(
y;λ,�−1

)
d y,

for x̃ ∈ R
p, and where λB( y) = (B�B�)−1B�λ√

1 + y�{� − �B�(B�B�)−1B�} y
, with �

and λ being the same as in Eq. (6). In particular, if the rank of B is k = p, then
X̃ ∼ MSN p(a + Bξ , B�B�, Bη).

9) Skewness and kurtosis of the MSN distribution: To measure the skewness and
kurtosis of the multivariate MSN distribution, one can use the Mardia measure of
multivariate skewness and kurtosis β1,p and β2,p (Mardia 1970). We could not find
any closed form of β1,p or β2,p but for p = 1, closed forms for

√
β1,1 and β2,1 are

given by Arrué et al. (2016). It has been shown by Arrué et al. (2016) that − 0.9952 <√
β1,1 < 0.9952 and 3 ≤ β2,1 ≤ 3.869, which are exactly the same for SN 1(0, 1, η).

This observation leads us to the conjecture that, although theMSN distribution uses
a different skewing function from the SN distribution, the range of skewness and
kurtosis remain the same.
10) Marginal distributions of the MSN distribution: In the following corollary we
give the mpdf of the marginal X1 of X according to the partition in Eq. (17). The

123



Amultivariate modified skew-normal distribution 521

marginalmpdf of X2 can be obtained in a similarway. For this, we consider the induced
partition on the working parameters (λ,�) defined in Eq. (6) as λ = (λ�

1 ,λ�
2 )� and

� = (�i j ), with �i j = � i j + ηiη
�
j , i, j = 1, 2, and also on the latent random

vector Y ∼ Np(λ,�−1) as Y = (Y�
1 ,Y�

2 )�, with Y i ∼ Npi (λi ,�
−1
i i · j ) and �i i · j =

�i i − �i j�
−1
j j � j i , i, j = 1, 2, i �= j . Moreover, from an extensive but simple matrix

algebra, we can show that �i i · j = � i i · j +ηi · jη�
i · j , where � i i · j = � i i −� i j�

−1
j j � j i

and ηi · j = 1√
1 + η�

j �−1
j j η j

(ηi − � i j�
−1
j j η j ), i, j = 1, 2, i �= j .

Corollary 3 Let X ∼ MSN p(ξ ,�, η) be partitioned as in Eq. (17). Then, the
marginal X1 of X has mpdf given by

fX1(x1) = 2φp1(x1; ξ1,�11)

∫
R

p2
�

⎧⎨
⎩

λ�
1·2(x1 − ξ1)√

1 + (x1 − ξ1)
��−1

11 (x1 − ξ1)

⎫⎬
⎭

× φp2

(
y2;λ2,�

−1
22·1
)
d y2, x1 ∈ R

p1 ,

where �11 = �11 + η1η
�
1 and λ1·2 =

√
1 + η��−1η

1 + y�
2 �22·1 y2

1√
1 + η�

1 �−1
11 η1

�−1
11 η1,

with �22·1 = �22·1 + η2·1η�
2·1, �22·1 = �22 − �21�

−1
11 �12 and η2·1 =

1√
1 + η�

1 �−1
11 η1

(η2 − �21�
−1
11 η1).

11) Log-concavity of the mpdf of the MSN distribution:

Proposition 6 The mpdf of the MSN p(ξ ,�, η) is not always log-concave.

The log-concave nature of the density function ensures that the log-likelihood func-
tion has a unique maxima. Although the mpdf of the MSN , unlike the SN , is not
always log-concave, that does not mean the log-likelihood function does not have a
unique maxima.
12) Limit behavior of the MSN 1(ξ,�, η) distribution as � → 0: The following
proposition provides the behavior of the univariate MSN 1(ξ,�, η) distribution as
the scale parameter � → 0:

Proposition 7 TheMSN 1(ξ,�, η) distribution converges to T N
(
ξ, η2; (ξ,∞)

)
as

� → 0 for η > 0 and converges to T N
(
ξ, η2; (−∞, ξ)

)
as � → 0 for η < 0.

The last proposition states that the univariateMSN family includes the truncated
normal distribution as a limiting case. The truncated normal distribution is also a
special case of the univariate ASN distribution when the skewness parameter α →
±∞. Therefore, if we fit theASN 1 distribution to some extremely skewed univariate
data, we can get an infinite estimate of the skewness parameter, while with theMSN 1
distribution, wewill get an estimate of the scale parameter close to 0, but as established
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in the Proposition 8 below in Subsect. 3.2, the estimate of the skewness parameter will
always be finite. Moreover, a statement similar to Proposition 7 cannot be made for
dimensions larger than one. This is because the MSN distribution is defined in the
multivariate case assuming that the scale matrix � is positive definite. Hence, if we
consider the multivariate extension of Proposition 7, we end up with a positive semi-
definite scale matrix �. From this point, it is not possible to extend Proposition 7 to
the multivariate setup, since it involves the inversion of �.

3.2 Properties of the likelihood function of theMSN model

In this section we present some important aspects of the likelihood function of the
MSN model. First, we show that, as in the SN case, the maximum likelihood esti-
mator of the skewness parameter η obtained from the MSN model is always finite.
Next, we show that, unlike theSN model, for theMSN model the Fisher information
matrix is nonsingular at η = 0.
1) Profile likelihood function of the skewness parameter in the MSN model: For
the MSN model, the likelihood function for (ξ ,�, η) based on a random sample
x1, . . . , xn from X ∼ MSN p(ξ ,�, η) is

L(ξ , �, η) =
n∏

i=1

2φp

(
xi ; ξ ,� + ηη�)�

{
1√

1 + η��−1η

η��−1(xi − ξ)√
1 + (xi − ξ)�(� + ηη�)−1(xi − ξ)

}
,

which becomes the profile likelihood function for the skewness parameter η when
we fix ξ and �. Next proposition shows that the profile likelihood function for the
skewness parameter η always gets maximized at some finite point.

Proposition 8 The maximum likelihood estimator of the skewness parameter η of the
MSN p(ξ ,�, η) distribution is always finite.

2) Fisher information matrix of theMSN model: Now, we obtain the Fisher informa-
tion matrix of theMSN p(ξ ,�, η) model at η = 0. In order to test that the skewness
parameter η = 0, the regular asymptotic theory can also be applied to study the
asymptotic behavior of the maximum likelihood estimators under the null hypothesis
of symmetry when the Fisher information matrix is nonsingular at η = 0. To derive
the Fisher information matrix, we use the fact that the MSN p(ξ ,�, η) family is a
special case of the generalized skew-elliptical family. Similar to the SN family, it
can be easily established that the MSN belongs to the generalized skew-elliptical
family with location parameter ξ , dispersion matrix �, density generator φp(·), and
skewing function π(z) : Rp → [0, 1] with π(z) = �(γ �z/

√
1 + z�z), where � and

γ are the same as defined below Eq. (18), just by rewriting its mpdf by replacing η

and � using the relationships indicated there. The derivation of the Fisher informa-
tion matrix at η = 0 is very much influenced by Ley and Paindaveine (2010), where
the authors derived the Fisher information matrix for the generalized skew-elliptical
family, when the skewness parameter is set to zero. In our case, exactly the same steps
are followed as Ley and Paindaveine (2010), since we are dealing with a special case
of the aforementioned paper.
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Let X ∼ MSN p(ξ ,�, η) and denote by lξ ,�,η(X) the respective score vector for
(ξ�, vech(�)�, η�)�. At η = 0, the score vector, lξ ,�,0(X), is given by

(
�−1(X − ξ),

1

2
D�

p (� ⊗ �)−1vec{(X − ξ)(X − ξ)� − �−1},
√

2

π

�−1(X − ξ)√
1 + (X − ξ)��−1(X − ξ)

)�
.

From the score vector at η = 0, we can see clearly that the components are not
linearly related. Thus, the Fisher information matrix, which is the covariance matrix
of the score vector, is nonsingular as well when η = 0. In fact, let I(ξ ,�, η) be the
Fisher information matrix of (ξ�, vech(�)�, η�)� for the MSN model. Then, at
η = 0, this matrix becomes

I(ξ ,�, 0) =
∫
Rp

lξ ,�,0(x)l�ξ ,�,0(x)φp(x; ξ ,�)dx =
⎡
⎣i ξξ 0 i ξη

0 i�� 0
i ξη 0 iηη

⎤
⎦ , (9)

where i ξξ = �−1, i ξη =
√

2

π
�−1/2

E

(
ZZ�√

1 + Z�Z

)
�−1/2, iηη = 2

π
�−1/2

E

(
ZZ�

1 + Z�Z

)
�−1/2, i�� = 1

2
D�

p (� ⊗ �)D p and Z ∼ Np(0, Ip). The zero

blocks in I(ξ ,�, 0) can easily be obtained by noticing that the score in vech(�) is
symmetric with respect to X − ξ , whereas the scores in ξ and η are anti-symmetric
with respect to the same quantity.

Proposition 9 The Fisher information matrix of theMSN p(ξ ,�, η) as given in Eq.
(9) is nonsingular at η = 0.

4 Inference for theMSN distribution

4.1 EM algorithm

The log-likelihood function of theMSN distribution has a structure too complicated
to be directly maximized in order to obtain the maximum likelihood estimators of
the parameters. In this section, we provide an EM algorithm to find the maximum
likelihood estimates of theMSN model.

We use the hierarchical representation of the augmented vector (X,Y ,W ) for the
EM algorithm as given in Corollary 1. To fit theMSN p(ξ ,�, η)model, we consider
the alternative parameterization (ξ ,�,λ), as in Corollary 1, and then we estimate
these parameters. The maximum likelihood estimators of (ξ ,�, η) can then be easily
found by transforming the maximum likelihood estimators for (ξ ,�,λ) accordingly.
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Let X1, . . . , Xn be a random sample of size n from MSN p(ξ ,�,λ) and
let Y1, . . . ,Yn and W1, . . . ,Wn be the corresponding latent variables. Since
� is a positive definite matrix, � can be written as C�C, where C is a
p × p nonsingular matrix. Let θ = {ξ�, vec(C)�,λ�}� and define Xc =
(X�

1 , . . . , X�
n ,Y�

1 , . . . ,Y�
n ,W1, . . . ,Wn)

�. After some algebra, we find that the
complete log-likelihood for θ when X1 = x1, . . . , Xn = xn are observed is

�c(θ |Xc) = n log 2 − n
(2p + 1)

2
log(2π) − 1

2

n∑
i=1

(xi − ξ)��−1(xi − ξ)

− 1

2

n∑
i=1

( yi − λ)��( yi − λ) − 1

2

n∑
i=1

{
wi − y�

i (xi − ξ)
}2

.

Given the current estimates θ̂ (k) = {̂ξ�
(k), vec(Ĉ(k))

�, λ̂
�
(k)}, the E-step is given by the

Q-function

Q(θ |̂θ (k)) = E{�c(θ |Xc)|x1, . . . , xn, θ̂ (k)}

= c − 1

2

n∑
i=1

[(xi − ξ)��−1(xi − ξ) + tr(� P̂ (k)i ) − 2λ��q̂(k)i

+ λ��λ + r̂(k)i − 2̂s�(k)i (xi − ξ) + (xi − ξ)� P̂ (k)i (xi − ξ)],

(10)

where c = n log(2) − n(2p + 1)

2
log(2π), P̂ (k)i = E(Y iY�

i |x1, . . . , xn, θ̂ (k)),

q̂(k)i = E(Y i |x1, . . . , xn, θ̂ (k)), r̂(k)i = E(W 2
i |x1, . . . , xn, θ̂ (k)), and ŝ(k)i =

E(WiY i |x1, . . . , xn, θ̂ (k)), which can be computed using the results in Corollary 2.
We need to maximize Q(θ |̂θ (k)) with respect to θ in the M-step. To do this we

differentiate Q(θ |̂θ (k)) with respect to θ and then equate it to 0 to get the following
(k + 1)-estimation equation:

∂Q(θ |̂θ (k))

∂ξ
=

n∑
i=1

�−1(xi − ξ) −
n∑

i=1

{̂
s(k)i − P̂ (k)i (xi − ξ)

} = 0,

∂Q(θ |̂θ (k))

∂C
=

n∑
i=1

[(C�)−1(xi − ξ)(xi − ξ)�(C�C)−1 − {C P̂ (k)i − C (̂q(k)iλ
�

+ λq̂�
(k)i ) + Cλλ�}] = 0, (11)

∂Q(θ |̂θ (k))

∂λ
=

n∑
i=1

{�q̂(k)i − �λ} = 0. (12)
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From Eq. (12), we obtain λ̂(k+1) = 1

n

∑n
i=1 q̂(k)i = q̄k . Putting λ̂(k+1) = q̄k in place

of λ in Eq. (11) and then premultiplying C−1, we get

n∑
i=1

�−1(xi − ξ)(xi − ξ)��−1 =
n∑

i=1

(
P̂ (k)i − q̄k q̄

�
k

)
.

The solution for ξ and � from the equations

n∑
i=1

�−1(xi − ξ) =
n∑

i=1

{̂
s(k)i − P̂ (k)i (xi − ξ)

}
,

n∑
i=1

�−1(xi − ξ)(xi − ξ)��−1 =
n∑

i=1

(
P̂ (k)i − q̄k q̄

�
k

)
,

gives ξ̂ (k+1) and �̂(k+1).We cannot solve these equations analyticallywhen the dimen-
sion p > 1.

Another approach is to solve for �, after fixing ξ in Eq. (11) and get

�(ξ) = A−1/2
k

[
A1/2
k

{
S + (x̄ − ξ)(x̄ − ξ)�

}
A1/2
k

]1/2
A−1/2
k , (13)

where Ak = 1

n

∑n
i=1( P̂ (k)i − q̄k q̄

�
k ) and S = 1

n

∑n
i=1(xi − x̄)(xi − x̄)�. Then we

put λ = λ̂(k+1) = q̄k and � = �(ξ) in the expression of Q(θ |̂θ (k)) from Eq. (10) to
obtain

Q(ξ |̂θ (k)) ∝ −1

2

n∑
i=1

[(xi − ξ)��(ξ)−1(xi − ξ) + tr{�(ξ) P̂ (k)i } − q̄�
k �(ξ)q̄k

+ 2̂s�(k)iξ − 2xi� P̂ (k)iξ + ξ� P̂ (k)iξ ]
= −n

2
[tr{�(ξ)−1S} + (x̄ − ξ)��(ξ)−1(x̄ − ξ) + tr{�(ξ) P̄k}

− q̄�
k �(ξ)q̄k + 2s̄�k ξ − 2P�

xk ξ + ξ� P̄kξ ],

where s̄k = 1

n

∑n
i=1 ŝ(k)i , P̄k = 1

n

∑n
i=1 P̂ (k)i , and Pxk = 1

n

∑n
i=1 P̂ (k)i xi . To

get ξ̂ (k+1), we maximize Q(ξ |̂θ (k)) numerically with respect to ξ , and we obtain
�̂(k+1) = �(̂ξ (k+1)), from Eq. (13). We stop when the difference between the log-
likelihood for θ̂ (k) and θ̂ (k+1), i.e., �(̂θ (k+1)) − �(̂θ (k)), becomes very small, where
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�(θ) = n log(2) − np

2
log(2π) − n

2
log{det(�)} − 1

2

n∑
i=1

(xi − ξ)��−1(xi − ξ)

+
n∑

i=1

�

{
λ�(xi − ξ)√

1 + (xi − ξ)��−1(xi − ξ)

}
.

The EM algorithm is thus given as follows:

Step 1: For given estimates ξ (k), �(k) and λ(k), obtain the function Q(ξ |̂θ (k)).
Step 2: Numerically obtain ξ̂ (k+1), which maximizes Q(ξ |̂θ (k)), and obtain �̂(k+1) =

�(̂ξ (k+1)) from Eq. (13) and λ̂(k+1) = q̄k .
Step 3: Repeat Step 1 and Step 2 until the difference between the log-likelihood for

θ̂ (k) and θ̂ (k+1) becomes very small.

Step 4: Finally, obtain the estimates of� and η from the relation� = �− �λλ��

1 + λ��λ

and η = �λ√
1 + λ��λ

.

To maximize Q(ξ |̂θ (k)), we minimize −Q(ξ |̂θ (k)) using the R Core Team (2021)
function nlm, assuming −Q(ξ |̂θ (k)) is convex. Although this claim has not been
proved, it is not contradicted in our simulation study. Since we have to perform a p-
dimensional numerical optimization in each maximization step of the EM algorithm,
the use of the nlm function gives a shorter run time. Another important point to
consider is the initialization of the parameters for the EM algorithm. If we start with
initial parameters very far from the original ones, the algorithm may converge to
an undesirable local point. Here, we use the sample mean vector and the sample
covariance matrix for the initial parameter estimates of ξ and �, and for the initial
estimates of λ, we use the componentwise skewness measure. These initial estimates
work well when the absolute values of all the skewness parameters are not very large,
otherwise the initial estimates of the parameters become very far from the actual
parameters. Moreover, in Proposition 6 it has been established that the log-likelihood
function for theMSN distribution is not always log-concave. Hence, there is a chance
that the EM algorithm might converge to a local maximum. In order to avoid this
problem, one can start the EMalgorithmwithmultiple initial parameters and seewhich
one yields the highest likelihood value in the end.We have provided a simulation study
in the section “S1” in the supplementary material to justify the last statement. We have
also shared the link of the R code for fitting the MSN distribution to a dataset with
this proposed EM algorithm in the section “S3” in the supplementary material.

4.2 Testing for multivariate normality

Since the Fisher information matrix of the MSN p(ξ ,�, η) family is nonsingular
when η = 0, we can test whether a dataset has a multivariate normal distribution or
not by fitting aMSN model and then using the regular asymptotic theory to test the
hypothesis an H0 : η = 0 versus H1 : η �= 0. A classical testing procedure is given as

123



Amultivariate modified skew-normal distribution 527

follows: Let ξ̂ , �̂ and η̂ be the maximum likelihood estimators of ξ , �, and η, respec-
tively, based on a random sample of size n from the p-variate MSN distribution.
Then, using the asymptotic normality of the maximum likelihood estimators, we have

(̂
ξ , vech(�̂), η̂

)� ≈ N2p+p(p+1)/2

(
(ξ , vech(�), η)�,

1

n
I(ξ ,�, η)−1

)
,

which holds whatever the value of the skewness parameter η ∈ R
p. From this, we

have

η̂ ≈ Np

(
η,

1

n
Iηη(ξ ,�, η)

)
,

where Iηη(ξ ,�, η) is the last p × p block diagonal matrix of I(ξ ,�, η)−1 and
I(ξ ,�, η) can be estimated with I (̂ξ , �̂, η̂). Under H0, nη̂�{Iηη(ξ ,�, η)}−1η̂ ≈
χ2
p, and using this we can compute the p-value of the testing problem as 1 −

Fχ2
p
[nη̂�{Iηη(ξ ,�, η)}−1η̂], where Fχ2

p
(·) is the distribution function of a χ2

p ran-
dom variable.

Obviously, we can also use the classical likelihood ratio statistic for testing
H0 : X ∼ MSN p(ξ ,�, 0) against H1 : X ∼ MSN p(ξ ,�, η), since the infor-
mation matrix is non-singular under the null hypothesis. Under H0, the maximum
likelihood estimators become ξ̃ = X̄ , the sample mean vector, �̃ = SX , the sample
covariance matrix, and η̃ = 0. Thus, denoting by � = �(X1, . . . , Xn) the likelihood
ratio statistic, the regular asymptotic theory implies, under the null hypothesis, that
−2 log� = −2{log L (̃ξ , �̃, 0) − log L (̂ξ , �̂, η̂)} ≈ χ2

p, and we can again compute
the p-value in this case as 1− Fχ2

p
(−2 log�obs.), where �obs. = �(x1, . . . , xn) is the

observed value of �.

5 Simulation study

In this section, we provide the results of various simulation studies conducted to
check the performance of the suggested EM algorithm. The first experiment is to
verify the consistency of the estimates obtained from the algorithm. Here, we generate
observations from a 3-dimensional MSN distribution with location parameter ξ =

(−1, 0, 3)�, scale parameter � =
⎛
⎝ 1 1.2 −0.9

1.2 4 −0.6
−0.9 −0.6 9

⎞
⎠, and skewness parameter

η = (10,−5, 0)� for different sample sizes n = 50, 100, 200, 500, and 1000. We
then estimate the parameters using our proposed EM algorithm based on the simulated
observations.

We repeat the process 200 times for each of the three sample sizes. The estimated
parameter values are plotted in boxplots (Fig. 3) for different sample sizes. From the
boxplots, we can see that the variances of the estimated parameter values become
smaller as the sample size increases. The same can be said for the mean square error
as well. From these, we can conclude that the EM algorithm provides consistent
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(c) Boxplots of the estimates of Ψ

Fig. 3 Boxplots of the parameter estimates of a MSN 3 distribution obtained from the EM algorithm for
different sample sizes n: (a) ξ ; (b) η; (c) �. The red line indicates the true parameter value, and the blue
point indicates the mean of the estimated parameter values. (Color figure online)
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estimates of the parameters, as it should since the EM algorithm eventually yields
maximum likelihood estimates of the parameters.

To check the performance of the EM algorithm under different circumstances, we
conduct two separate studies: one with diagonal scale parameter � and another one
with equicorrelated �. Again, we generate observations from MSN 3(ξ ,�, η) of
sample size n = 250, with ξ = (0, 0, 0)�, η = (10,−5, 0)�, � = diag(1, 4, 9)
for the diagonal scale parameter, and � = (1 − ρ)I3 + ρ11�, ρ = 0.4, for the
equicorrelated scale parameter. We estimate the parameters in both scenarios 200
times, with the estimated parameter values presented in boxplots in Fig. 4. From the
results in the boxplots, we conclude that the suggested EM algorithm performs well
under various circumstances. These simulation studies indicate that the suggested EM
algorithm is indeed working correctly.

We provide the result of another simulation study regarding the estimation of
the parameters when the skewness parameter η is zero. In this study, we gener-
ate observations from MSN 3(ξ ,�, η) with ξ = (0, 0, 0)�, η = (0, 0, 0)�, and

� =
⎛
⎝ 1 0.2 −0.7

0.2 1 −0.5
−0.7 −0.5 1

⎞
⎠ with sample sizes 200, 500, and 1000. We find the MLEs

of the parameters and repeat the experiment 200 times. TheMLE boxplots for different
sample sizes are given in Fig. 5. The boxplots show that in scenarioswhen the skewness
parameter is zero, the MLEs of the parameters seem reasonable. The elements of the
scale matrix are sometimes getting over or under-estimated. However, the estimates
seem appropriate when the sample size is increased. Along with the boxplots of the
estimates of η and �, we also provide the boxplots of the estimates of λ and � in
Fig. 6. The boxplots of the parameter estimates of � and λ show that the estimates
behave like the MLEs as it should. We have provided the results of a simulation study
when the skewness parameter is close to zero in the section “S2” in the supplementary
material.

Next, we performed another experiment, where we fit theMSN andASN models
to the data simulated from various models other than the MSN and ASN models.
We generated bivariate observations of different sizes (50, 100, 200, 500, and 1000)
from Clayton, Frank, and Gumbel copulas, with the value of Kendall’s tau being 0.6,
−0.5, and 0.5, respectively. Next, we transformed the generated observations from
the uniform scale to the Gaussian scale with marginal means 1 and 0, and marginal
standard deviations 2 and 1.2 for all three copula models. Moreover, we generated
observations of different sizes (50, 100, 200, 500, and 1000) from a bivariate gen-
eralized hyperbolic distribution (see Chapter 3.2 McNeil et al. 2015). The stochastic
representation of X following a generalized hyperbolic distribution is

X
d= μ + Wγ + √

W Z, (14)

where μ, γ ∈ R
p, Z ∼ Np(0,�), and W has a Generalized Inverse Gaussian

(GIG(λ, χ,ψ)) distribution. We use μ = (1, 0)�, � =
(
2 0
0 1.2

)(
1 −0.5

−0.5 1

)
(
2 0
0 1.2

)
, γ = (−0.2, 0.3)�, and W ∼ GIG(λ = 0.5, χ = 0.1, ψ = 2) for gen-
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Fig. 5 Boxplots of the parameter estimates of a MSN 3 distribution when η is exactly zero for different
sample sizes n: (a) ξ ; (b) η; (c) �. The red line indicates the true parameter value, and the blue point
indicates the mean of the estimated parameter values. (Color figure online)
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Fig. 6 Boxplots of the parameter estimates of a MSN 3 distribution with ξ , �, and λ parameterization,
when λ is exactly zero for different sample sizes n: (a) λ; (b) �. The red line indicates the true parameter
value, and the blue point indicates the mean of the estimated parameter values. (Color figure online)

erating the observations. We fit the MSN and the ASN models to the simulated
observations from the four aforementioned models. We repeated the procedure 100
times for each model and each sample size. We compared the fittedMSN andASN
models by the AIC. In Table 1, we present the percentages of the experiments where
the MSN model outperforms the ASN model for different models and different
sample sizes.

The results in Table 1 show that theASN works better mostly on the observations
based on the Clayton copula as the sample size increases. We cannot make a similar
statement for the other models. In fact, the MSN model is more appropriate for the
simulated observations from the Gumbel model and the generalized hyperbolic model
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Table 1 The percentages when theMSN model outperforms theASN model in terms of AIC, when we
fit the two models on simulated data from different models and for different sample sizes

Percentages whenMSN
OutperformsASN

Clayton copula Frank copula Gumbel copula Generalized hyperbolic

n = 50 32 43 44 68

n = 100 50 51 67 91

n = 200 57 49 92 98

n = 500 37 46 98 99

n = 1000 33 54 99 100

for larger sample sizes. In conclusion, none of the ASN or MSN model is always
better than the other.

6 Data applications

6.1 Univariate frontier data

Wefit theMSN model to the frontier data fromAzzalini and Capitanio (1999), which
is a dataset consisting of 50 observations fromASN 1(0, 1, 5). An interesting feature
of the dataset is that the maximum likelihood estimate of the skewness parameter for
the ASN model is infinite. In Fig. 7a, we plot the fitted MSN density to the data.
The estimated � for theMSN model is 1.97× 10−5, and hence from Proposition 7,
the fitted MSN density behaves essentially like a truncated normal density. This is
also the case when the skewness parameter tends to infinity for the ASN model.
Essentially, both the fittedMSN andASN models for this dataset are the same. The
main difference is that the profile log-likelihood function of the skewness parameter
is monotonically increasing for theASN model, whereas it is non-monotonic for the
MSN .

In Fig. 7b, the profile log-likelihood of the skewness parameter η for the MSN
model is displayed, showing that it is, in fact, a non-monotonic function, attaining
its maximum at a unique point. We conducted the testing for H0 : η = 0 versus
H1 : η �= 0 using the testing procedure discussed in Subsect. 4.2. The p-value for the
test is 0, and, based on it, we reject H0. This should be the case, as the fitted MSN
model is basically a T N (−0.11, 1.242; (−0.11,∞)) model and is very far from a
Gaussian model. The p-value of the LRT for the same test based on theMSN model
is 1.3854 × 10−5, hence it also rejects normality.

6.2 Trivariate wind speed data

We consider trivariate wind speed data produced by Yip (2018) with the Weather
Research and Forecasting (WRF) model. The data consist of n = 156 wind speed
vectors of dimension p = 3 representing bi-weekly mid-day windspeed during the
period 2009–2014 at three locations near the wind farm Dumat Al Jandal currently
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Fig. 7 (a) The red curve is the fitted MSN (−0.11, 1.97 × 10−5, 1.24) density function to the frontier
data (histogram); the black curve is the original density function that generated the data. (b) The profile log-
likelihood of η for the frontier data at the point ξ̂ = −0.11 and �̂ = 1.97× 10−5; the red line corresponds
to η = 1.24 where the profile log-likelihood of η is maximized . (Color figure online)

Table 2 The p-values of
different tests for testing the
marginal Gaussianity of wind
vectors

Test Var 1 Var 2 Var 3

LRT (MSN ) 0.471 0.953 0.959

Wald-type test (MSN ) 0.320 0.740 0.789

Skewness test 0.301 0.418 0.276

Kurtosis test 0.871 0.825 0.868

under construction in Saudi Arabia. There is no serial dependence according to a
Ljung-Box test, therefore the data are treated as a random sample from a trivariate
distribution.

It is important to study the distribution of this trivariate wind speed vector because it
is crucial for understanding wind patterns that will influence the energy production by
the nearby wind farm. In particular, it is of interest to assess whether a non-Gaussian
distribution is needed instead of a common Gaussian model. We test the univariate
Gaussianity of each of the three variables using the likelihood ratio test (LRT) and
theWald-type testing procedure described in Subsect4.2 based on theMSN models.
The p-values for all the tests for all the variables are reported in Table 2. Based on the
p-values we do not reject the marginal Gaussianity for all the three variables at 5%
level. In Table 2we also report the p-values of the skewness and kurtosis test for each of
the three variables. At the 5% level, marginal skewness and kurtosis tests do not reject
Gaussianity, but Mardia’s tests of multivariate skewness and kurtosis reject a trivariate
Gaussian distribution with respective p-values 1.858 × 10−3 and 2.220 × 10−16.

We fit a trivariateMSN distribution to this data, using the suggested EM algorithm
for parameter estimation. In Fig. 8, the bivariate contour plots for the fitted model
are presented. We also fitted the ASN distribution to this data. The optimized log-
likelihood value for the MSN model is −809.76, and the optimized log-likelihood
value for the ASN model is −818.81. Since both models have the same number of
parameters, their optimized log-likelihood values are essentially their AIC. In terms of
AIC, theMSN model performs better on this dataset than theASN model. From the
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bivariate contours one can suspect that the data are froma trivariate normal distribution.
We tested the hypothesis H0 : η = (0, 0, 0)� versus H1 : η �= (0, 0, 0)� from the
MSN model using the testing procedure discussed in Subsect 4.2. The p-value is
0.00545, and based on it we reject the hypothesis H0, that the wind speed data are
coming from a trivariate Gaussian model. We also tested the same hypothesis with
the LRT based on the MSN model and the p-value obtained is 0.00019. Hence, we
reject the hypothesis that a Gaussian model is suitable.

7 Discussion

In this article, we have introduced a new multivariate version of the modified skew-
normal distribution, which is comparable to the multivariate Azzalini skew-normal
distribution. It has a finite likelihood function and nonsingular Fisher information
matrix when the skewness parameter is zero, unlike the ASN family. We discussed
some of the basic probabilistic properties of the suggested distribution. Despite good
properties, the MSN , similar to the ASN , cannot model heavy-tailed data. One
future research direction is to study other skewed multivariate distributions such as
the skew-t with this parameterization and with the skewing function of the MSN
distribution.

Themain advantages of the proposedMSN distributionover theASN distribution
are that theMSN solves the issue of the singularity of the Fisher information matrix
when the skewness parameter is zero, and also that its parameterization ensures the
MLEof the skewness parameter is always finite. Hence, theMSN is more suitable for
statistical works related to inferring the skewness parameter near zero. However, there
are no analytic expressions for the expectation, covariance, skewness, co-skewness,
and kurtosis for the MSN distribution, unlike the ASN distribution. Moreover, the
MSN distribution is not closed under marginalization and hence not closed under
conditioning, which is not the case for the ASN distribution. This means that the
ASN distribution should be preferred for formal purposes like regression modeling,
time-series analysis, spatial modeling, over the MSN distribution.

We have also provided an EM algorithm for theMSN family. One issue regarding
the EM algorithm is that, as we numerically optimize in each iteration of the max-
imization step, the algorithm is not efficient when the dimension p of the problem
is high. Some other hierarchical representations may resolve this problem. Another
research avenue is to improve the initial estimates for the EM algorithm. The current
initial estimates of the parameters are naive and may fail when the skewness in the
data is very high.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00362-023-01397-1.
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Appendix A

We discuss the benefits of using the alternative parameterization for defining the SN
distribution compared to theASN distribution. We start with a preliminary stochastic
representation of the SN distribution, from which we can derive most of its main
basic properties.

Proposition 10 (Stochastic representation of SN distribution) If X ∼ SN p(ξ ,�, η),

then X
d= ξ +Tη+V , where T and V are independently distributed, with half-normal

T denoted by T ∼ HN (0, 1), and V ∼ Np(0,�).

Proof Let X̃ = ξ + Tη + V . Since the conditional mpdf of X̃|T = t is f X̃|T=t (x) =
φp(x; ξ + tη,�) for t > 0, and T has marginal density fT (t) = 2φ(t)I(t>0), then for
the mpdf of X̃ we have

f X̃ (x) =
∫ ∞

0
f X̃|T=t (x) fT (t)dt = 2

∫ ∞

0
φp(x; ξ + tη,�)φ(t)dt

= 2φp

(
x; ξ ,� + ηη�) ∫ ∞

0
φ{t; η�(� + ηη�)−1(x − ξ),

1 − η�(� + ηη�)−1η}dt

= 2φp(x; ξ ,� + ηη�)�

{
η�(� + ηη�)−1(x − ξ)√
1 − η�(� + ηη�)−1η

}
, x ∈ R

p,

(15)

where we have used the identity (see Lemma 2 in Arellano-Valle et al. (2005))

φp(x, ξ + tη,�)φ(t) = φp(x; ξ ,� + ηη�)

× φ{t; η�(� + ηη�)−1(x − ξ), 1 − η�(� + ηη�)−1η}.

Finally, using the following result:

(� + ηη�)−1 = �−1 − �−1ηη��−1

1 + η��−1η
⇒

η�(� + ηη�)−1(x − ξ)√
1 − η�(� + ηη�)−1η

= η��−1(x − ξ)√
1 + η��−1η

,

it can be easily established that X̃ ∼ SN p(ξ ,�, η). ��
Further basic properties As immediate consequences of the above stochastic rep-

resentation of a random vector X ∼ SN p(ξ ,�, η), we have the following basic
properties:
1) Expectation and covariance: The mean vector and covariance matrix of X are

E(X) = ξ +
√

2

π
η and V(X) = � +

(
1 − 2

π

)
ηη�. (16)
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2) Distribution of an affine transformation: For any fixed vector a ∈ R
q and any fixed

matrix B ∈ R
q×p of full row rank and q ≤ p, we have a + BX

d= a + Bξ + T Bη +
BV ∼ SN q(a+Bξ , B�B�, Bη), since, by assumption, T and V are independently
distributed, with T ∼ HN (0, 1) and V ∼ Np(0,�).
3) Marginal distributions: Partition now X in two sub-vectors of sizes p1 and p2
such that p1 + p2 = p, with corresponding partitions of the parameters in blocks of
matching sizes, as follows

X =
(
X1
X2

)
, ξ =

(
ξ1
ξ2

)
, � =

(
�11 �12
�21 �22

)
, η =

(
η1
η2

)
. (17)

Thus, by using property 2) with a = 0 and B = (Ip1 , 0) for X1 and B = (0, Ip2)
for X2 it follows for their respective marginals that X1 ∼ SN p1(ξ1,�11, η1) and
X2 ∼ SN p2(ξ2,�22, η2).
4)Moment generating function: Themultivariate moment generating function (mmgf)
of the SN distribution can be derived in closed form. We present the mmgf of the of
SN distribution in the next proposition.

Proposition 11 The mmgf of X ∼ SN p(ξ ,�, η) is

MX (t) = 2 exp

(
t�ξ + 1

2
t��t

)
�(η� t), t ∈ R

p,

where � = � + ηη�.

Proof The mpdf of X ∼ SN p(ξ ,�, η) in (15) can be rewritten as

fX (x) = 2

|�|1/2 φp

{
�−1/2(x − ξ)

}
�
{
γ ��−1/2(x − ξ)

}
, x ∈ R

p, (18)

whereφp(z) = φp(z; 0, Ip),� = �+ηη�, γ = (1−η��−1η)−1/2�−1/2η, and, con-
versely, we have η = (1+γ �γ )−1/2�1/2γ and� = �−(1+γ �γ )−1�1/2γ γ ��1/2.
From Eq. (18) and by using the change of variable z = �−1/2(x − ξ) we have that
the mmgf of X , MX (t) = E{exp(t�X)}, is given by

MX (t) =
∫
Rp

exp(t�x)2φp(x; ξ ,�)�{γ ��−1/2(x − ξ)}dx

= 2 exp(t�ξ)

∫
Rp

exp(s�z)φp(z; 0, Ip)�{γ �z}dz, (s = �1/2 t)

= 2 exp(t�ξ + 1

2
s�s)

∫
Rp

φp(z; s, Ip)�{γ �z}dz

= 2 exp

(
t�ξ + 1

2
s�s
)
E{�(γ �Z)}, γ �Z ∼ N1(γ

�s, γ �γ )

= 2 exp

(
t�ξ + 1

2
s�s
)

�

(
γ �s√

1 + γ �γ

)
,
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= 2 exp

(
t�ξ + 1

2
t��t

)
�(η� t).

��
5) Cumulative distribution function: In the next proposition we present the exact
functional form of the multivariate cumulative distribution function (mcdf) of the SN
distribution.

Proposition 12 The mcdf of X ∼ SN p(ξ ,�, η) is

FX (x) = 2�p+1(x∗; ξ∗,�∗), with x∗ = (x�, 0)�, x ∈ R
p,

where, ξ∗ = (ξ�, 0)� and �∗ =
(

� + ηη� −η

−η� 1

)
.

Proof The mpdf of X is

fX (z) = 2φp(z; ξ ,� + ηη�)�

{
η��−1(z − ξ)√
1 + η��−1η

}

= 2φp(z; ξ ,� + ηη�)

∫ η��−1(z−ξ)√
1+η��−1η

−∞
φ(u; 0, 1)du

= 2φp(z; ξ ,� + ηη�)

∫ 0

−∞
φ

(
z0 + η��−1(z − ξ)√

1 + η��−1η
; 0, 1

)
dz0

= 2φp(z; ξ ,� + ηη�)

∫ 0

−∞
φ

(
z0;− η��−1(z − ξ)√

1 + η��−1η
, 1

)
dz0

where we use the change of variable z0 = u − η��−1(z − ξ)/
√
1 + η��−1η. Now,

from the marginal-conditional factorization of a (p + 1)-variate normal mpdf we can
write

φp(z; ξ ,� + ηη�)φ

(
z0;− η��−1(z − ξ)√

1 + η��−1η
, 1

)
= φp+1(z∗; ξ∗,�∗∗),

where z∗ = (z�, z0)� and �∗∗ =
(

� + ηη� −
√
1 + η��−1ηη

−
√
1 + η��−1ηη� 1

)
. More-

over, we have �∗∗ = D∗�∗D∗, with D∗ = diag
(
Ip,
√
1 + η��−1η

)
. Then, the

mcdf of X is

FX (x) = 2
∫

(−∞,x]
φp(z; ξ ,� + ηη�)�

{
η��−1(z − ξ)√
1 + η��−1η

}
dz
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= 2
∫

(−∞,x]

∫ 0

−∞
φp(z; ξ ,� + ηη�)φ

(
z0;− η��−1(z − ξ)√

1 + η��−1η
, 1

)
dz0dz

= 2
∫

(−∞,x∗]
φp+1(z∗; ξ∗,�∗∗)dz∗

= 2�p+1(x∗; ξ∗,�∗∗), with x∗ = (x�, 0)�, x ∈ R
p.

But, since x∗ − ξ∗ = ((x − ξ)�, 0)�, then D−1∗ (x∗ − ξ∗) = x∗ − ξ∗ and so

�p+1(x∗; ξ∗,�∗∗) = �p+1(x∗; ξ∗, D∗�∗D∗) = �p+1(D−1∗ (x∗ − ξ∗); 0,�∗)
= �p+1(x∗; ξ∗,�∗).

��
Behavior of the likelihood function In the following two results, we show that the

alternative parameterization used in (3) for defining the SN mpdf fixes the problem
of the infinite maximum likelihood estimate of the skewness parameter, unlike the
original parameterization used in (2) for defining the ASN mpdf, but it also fails to
resolve the problem of the singular Fisher information matrix. In fact, let x1, . . . , xn
be an observed random sample from SN p(ξ ,�, η). The corresponding likelihood
function for (ξ ,�, η) is

L(ξ ,�, η) =
n∏

i=1

2φp

(
xi ; ξ ,� + ηη�)�

{
η��−1(xi − ξ)√
1 + η��−1η

}
. (19)

For fixed ξ and �, (19) becomes the profile likelihood function of η, which we denote
by L(η), η ∈ R

p.

Proposition 13 The maximum likelihood estimator of the skewness parameter η of the
SN p(ξ ,�, η) family is always finite.

Proof We find the limit of L(η) when some (or all) components of η tend to +∞ or
−∞. For this, first note from the Cauchy–Schwarz inequality that

|η��−1(xi − ξ)|√
1 + η��−1η

≤
√

η��−1η

1 + η��−1η

√
(xi − ξ)��−1(xi − ξ) ≤

√
(xi − ξ)��−1(xi − ξ), ∀ η ∈ R

p,

for i = 1, . . . , n. From this inequality, it clearly follows, for all η ∈ R
p and each

i = 1, . . . , n, that

φp(xi ; ξ ,� + ηη�) =
exp

{
− 1

2
(xi − ξ)�(� + ηη�)−1(xi − ξ)

}

(2π)p/2|�|1/2
√
1 + η��−1η
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=
exp

{
− 1

2
(xi − ξ)��−1(xi − ξ)

}

(2π)p/2|�|1/2

×
exp

[
− 1

2

{η��−1(xi − ξ)}2
1 + η��−1η

]
√
1 + η��−1η

≤ 1

(2π)p/2|�|1/2
√
1 + η��−1η

,

and

0 ≤ �

{
−
√

(xi − ξ)��−1(xi − ξ)

}
≤ �

{
η��−1(xi − ξ)√

1 + η��−1η

}
≤ �

{√
(xi − ξ)��−1(xi − ξ)

}
≤ 1.

These results hold whatever fixed value of (ξ ,�). Thus, noting also that whenever
some (or all) components of η tend to ±∞, then η��−1η → ∞, we can easily
deduce from the first of the previous inequalities that φp(xi ; ξ ,� + ηη�) → 0 for
each i = 1, . . . , n as some (or all) components of η tend to ±∞. Thus, now taking
into account the second inequality, we find that L(η) → 0 whenever some (or all)
components of η tend to ±∞ and whatever fixed value of (ξ ,�). This result leads us
to the conclusion that L(η) is not a monotonically increasing or decreasing function
of any of the components of η. This means that the profile likelihood of the skewness
parameter η is always maximized at a finite point for the SN p(ξ ,�, η) family. ��
Remark Proposition 13 shows that the MLE of the skewness parameter of the SN
distribution is always finite for the new parameterization. It was not the case for the
ASN parameterization. So, if we use the new parameterization for a particular data,
then wewill get a finiteMLE of the skewness parameter, whereas wemight get infinite
MLE for the skewness parameter in the ASN parameterization. Because these two
parameterizations are a one-to-one transformation of each other, due to the invariance
property of the MLE, if we transform back the MLE from the new-parameterization
to the ASN parameterization, then we will get back the old results. In other words,
although the MLE of the skewness parameter η is always finite, it may sometimes
correspond to an MLE of the skewness parameter α that is infinite.

In what follows, we use the notation ofMagnus andNeudecker (1979) related to the
Kronecker product and matrix vectorization. For instance, let vech(�) be the p(p +
1)/2-subvector of vec(�), where only upper-diagonal entries of � are considered.
Also, let K p be the p2 × p2 commutation matrix, i.e., K pvec(A) = vec(A�) for
any p × q matrix A, and let D p be the p2 × p(p + 1)/2 duplication matrix, i.e.,
D pvech(A) = vec(A) for any p × p symmetric matrix A.

Proposition 14 The Fisher information matrix of the SN p(ξ ,�, η) family is singular
when the skewness parameter η is set to zero.

Proof The score vector and Fisher information matrix for theASN p(ξ ,�,α) family
are derived by Arellano-Valle and Azzalini (2008) in terms of the reparametrization
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(ξ ,�,λ), where λ = ω−1α. These author also showed that the Fisher information
matrix I(ξ ,�,λ) is singular at λ = 0:

I(ξ ,�, 0) =

⎡
⎢⎢⎣

ω−1 0
√

2
π
Ip

0 1
2 D

�
p (�−1 ⊗ �−1)D p 0√

2
π
Ip 0 2

π
�

⎤
⎥⎥⎦ .

Since theSN p(ξ ,�, η) family corresponds to a reparametrizationof theASN p(ξ ,�,

α) family, its Fisher informationmatrix becomes I(ξ ,�, η) = J(ξ ,�,λ)� I(ξ ,�,λ)

J(ξ ,�,λ), where J(ξ ,�,λ) denotes the Jacobian matrix of the transformation
from (ξ , vech(�),λ) to (ξ , vech(�), η). Thus, since the inverse transformation from
(ξ , vech(�), η) to (ξ , vech(�),λ) turns out to be ξ = ξ , � = � + ηη� and
λ = (1 + η�−1η)−1/2�−1η, for the Jacobian matrix we have

J(ξ ,�,λ) =

⎡
⎢⎢⎣

∂ξ

∂ξ�
∂vec(�)

∂ξ�
∂λ

∂ξ�
∂ξ

∂vec(�)�
∂vec(�)

∂vec(�)�
∂λ

∂vec(�)�
∂ξ

∂η�
∂vec(�)

∂η�
∂λ

∂η�

⎤
⎥⎥⎦ =

⎡
⎣Ip 0 0
0 Ip(p+1)/2 J23
0 J32 J33

⎤
⎦ ,

where J23 = D+
p (Ip ⊗ η + η ⊗ Ip), with D+

p = (D�
p D p)

−1D�
p , J32 = (1 +

η�−1η)−1/2{ 12 (η��−1 ⊗ �−1ηη��−1) − (η��−1 ⊗ �−1)}D p and J33 = (1 +
η�−1η)−1/2(� + ηη�)−1. When η = 0 we have that λ = 0, � = � and the
Jacobian matrix J(ξ ,�, 0) = diag(Ip, Ip(p+1)/2,�

−1). Hence, at η = 0, the Fisher
information matrix I(ξ ,�, η) of the SN p(ξ ,�, η) family becomes

I(ξ ,�, 0) = I(ξ ,�, 0) =

⎡
⎢⎢⎣

�−1 0
√

2
π
�−1

0 1
2 D

�
p (�−1 ⊗ �−1)D p 0√

2
π
�−1 0 2

π
�−1

⎤
⎥⎥⎦ ,

which is clearly singular. ��
Remark Since I(ξ ,�, 0) is singular, in the proof that I(ξ ,�, 0) is also singular it is
enough to prove that the Jacobian matrix J(ξ ,�, 0) is finite (in the matrix sense).

Obviously, the singularity of the Fisher information matrix of the SN p(ξ ,�, η)

family when η = 0 is due to the fact that the score vectors corresponding to the
location vector ξ and the skewness vector η are linearly dependent at η = 0. In fact,
the score vector of X ∼ SN p(ξ ,�, η) for (ξ�, vech(�)�, η�)�, at η = 0, becomes

lξ ,�,0(X) =
(

�−1(X − ξ),
1

2
D�

p (� ⊗ �)−1vec
{
(X − ξ)(X − ξ)� − �

}
,

√
2

π
�−1(X − ξ)

)�
. (20)

123



Amultivariate modified skew-normal distribution 543

It is evident from (20) that, at η = 0, the score vectors of ξ and η are linearly related.
Consequently, the Fisher information matrix, which is the covariance matrix of the
score vector, is singular at η = 0. The score vector in (20) can be obtained from a
direct differentiation of the SN p(ξ ,�, η) log-likelihood function, or from the results
in Arellano-Valle and Azzalini (2008) as well as from Ley and Paindaveine (2010)
since the SN family belongs to the generalized skew-normal family (see Genton and
Loperfido (2005)). This last fact can be easily verified by the form of the mpdf of
X ∼ SN p(ξ ,�, η) in Equation (18), and from there it is clear that SN p(ξ ,�, η) is
a generalized skew-normal distribution with location parameter ξ , dispersion matrix
�, density generator φp(z), and skewing function π(z) : Rp → [0, 1] with π(z) =
�
(
γ �z

)
.

Appendix B

Proof of Proposition 1

Let X̃ = ξ + 1√
1 + Y��Y

�Y T + U . Since, by assumption, T is indepen-

dent of (U�,Y�)�, it is then clear that, conditionally on Y = y, X̃ has the

same distribution as ξ + 1√
1 + y�� y

� y T + U y, where U y
d=U |Y = y ∼

Np
(
0, (�−1 + y y�)−1

)
, independent of T . By Proposition 10, this means X̃|Y =

y ∼ SN p

(
ξ , (�−1 + y y�)−1,

1√
1 + y�� y

� y

)
, and hence, by Proposition 10,

the mpdf of X̃|Y = y becomes f X̃|Y= y(x) = 2φp(x; ξ ,�)�{ y�(x − ξ)}. Thus,
since the mpdf of X̃ is f X̃ (x) = ∫

Rp f X̃|Y (x| y) fY ( y)d y, we have

f X̃ (x) = 2φp(x; ξ ,�)

∫
Rp

�{ y�(x − ξ)}φp

(
y;λ,�−1

)
dy

= 2φp(x; ξ ,�)E[�{Y�(x − ξ)}].

Now, using the fact that, if X ∼ N (μ, σ 2), then E{�(X)} = �

(
μ√

1 + σ 2

)
, we get

the above result. ��

Proof of Corollary 1

Since, by assumption, X ∼ MSN p(ξ ,�, η), we have by Proposition 1 that X can

be represented as X|Y = y ∼ SN p

(
ξ , (�−1 + y y�)−1,

1√
1 + y�� y

� y

)
and

Y ∼ Np(λ,�−1). Combining this statement with the stochastic representation of the
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SN distribution as given in Proposition 10, the mpdf of X can be expressed as

fX (x) = 2
∫
Rp

∫ ∞

0
φp

(
x; ξ + 1√

1 + y�� y
� y t, (�−1 + y y�)−1

)

×φp( y;λ,�−1)φ(t)dtd y.

Now, using Lemma 2 in Arellano-Valle et al. (2005) and that (�−1 + y y�)−1 =
� − 1

1 + y�� y
� y y��, we have the identity given by

φp

(
x; ξ + 1√

1 + y�� y
� y t,� − 1

1 + y�� y
� y y��

)
φ(t)

= φp(x; ξ ,�)φ

{
t; y�(x − ξ)√

1 + y�� y
,

1

1 + y�� y

}
.

Thus, we have

fX (x) = 2
∫
Rp

∫ ∞

0
φp(x; ξ ,�)φp( y;λ,�−1)φ

{
t; y�(x − ξ)√

1 + y�� y
,

1

1 + y�� y

}
dtd y.

Considering the transformation w = √
1 + y�� y t , we have, for the joint mpdf of

(X,Y ,W ):

fX,Y ,W (x, y, w) = 2φp(x; ξ ,�)φp( y;λ,�−1)φ{w; y�(x − ξ), 1},
x ∈ R

p, y ∈ R
p, w > 0. (21)

Again, using Lemma 2 in Arellano-Valle et al. (2005), we have

φp(x; ξ ,�)φ{w; y�(x − ξ), 1} = φp

{
x; ξ + w

1

1 + y�� y
� y, (�−1 + y y�)−1

}

×φ(w; 0, 1 + y�� y),

and using this result in (21), we get

fX,Y ,W (x, y, w) = 2φp

{
x; ξ + w

1

1 + y�� y
� y, (�−1 + y y�)−1

}

×φp( y;λ,�−1)φ(w; 0, 1 + y�� y) (22)

for x ∈ R
p, y ∈ R

p, and w > 0. The rest of the proof is trivial from (22). ��
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Proof of Corollary 2

From Eq. (21), we get that the joint mpdf of (X,Y) is given by

fX,Y (x, y) = 2φp(x; ξ ,�)φp( y;λ,�−1)

∫ ∞

0
φ{w; y�(x − ξ), 1}dw

= 2φp(x; ξ ,�)φp( y;λ,�−1)�{ y�(x − ξ)}, x, y ∈ R
p.

From this mpdf it follows that the marginal mpdf of X and the conditional mpdf of
Y |X = x are:

fX (x) = 2φp(x; ξ ,�)�

{
λ�(x − ξ)√

1 + (x − ξ)��−1(x − ξ)

}
, x ∈ R

p,

fY |X=x( y)

= 1

�

{
λ�(x − ξ)√

1 + (x − ξ)��−1(x − ξ)

}φp( y;λ,�−1)�{ y�(x − ξ)}, y ∈ R
p.

Also, the conditional multivariate moment generating function of Y |X = x is

MY |X=x(t) = E{exp(t�Y)|X = x}

=
∫
Rp

exp(t� y)

�

{
λ�(x − ξ)√

1 + (x − ξ)��−1(x − ξ)

}φp( y;λ,�−1)�{ y�(x − ξ)}d y

=
exp

(
−1

2
λ��λ

)

�

{
λ�(x − ξ)√

1 + (x − ξ)��−1(x − ξ)

}

×
∫
Rp

1

(
√
2π)p{det(�−1)}1/2 exp[−1

2
{ y�� y − 2(�λ + t)� y}]

× �{ y�(x − ξ)}d y

=
exp

(
λ� t + 1

2
t��−1 t

)

�

{
λ�(x − ξ)√

1 + (x − ξ)��−1(x − ξ)

}

× �

{
λ�(x − ξ) + (x − ξ)��−1 t√
1 + (x − ξ)��−1(x − ξ)

}
, t ∈ R

p,
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where the last step follows from Lemma 5.3 in Azzalini and Capitanio (2014).
Thus, we have

E(Y |X = x) = ∂

∂ t
MY |X=x(t)

∣∣∣∣
t=0

= λ + Wφ

{
λ�(x − ξ)√

1 + (x − ξ)��−1(x − ξ)

}

× 1√
1 + (x − ξ)��−1(x − ξ)

�−1(x − ξ),

E(YY�|X = x) = ∂2

∂ t∂ t�
MY |X=x(t)

∣∣∣∣
t=0

= λλ� + �−1 + Wφ

{
λ�(x − ξ)√

1 + (x − ξ)��−1(x − ξ)

}

× 1√
1 + (x − ξ)��−1(x − ξ)

×
{
�−1(x − ξ)λ� + λ(x − ξ)��−1

− λ�(x − ξ)

1 + (x − ξ)��−1(x − ξ)
�−1(x − ξ)(x − ξ)��−1

}
.

Now, since E(WY |X = x) = E{WE(Y |W , X = x)|X = x}, then for the eval-
uation of this quantity we need the conditional mpdfs of Y |W = w, X = x and
W |X = x. Again, from (21):

fW |X=x(w) ∝
∫
Rp

φp( y;λ,�−1)φ{w; y�(x − ξ), 1}d y, w > 0,

where, from Lemma 2 in Arellano-Valle et al. (2005), the product φp( y;λ,�−1)φ{w;
y�(x− ξ), 1} is equal to φ{w; (x− ξ)�λ, 1+ (x− ξ)��−1(x− ξ)}φp[ y;λ+
(x−
ξ){w − λ�(x − ξ)},
], where 
 = {� + (x − ξ)(x − ξ)�}−1. Thus,

fW |X=x(w) ∝ φ{w; (x − ξ)�λ, 1 + (x − ξ)��−1(x − ξ)}, w > 0.

That is, W |X = x ∼ T N {(x − ξ)�λ, 1+ (x − ξ)��−1(x − ξ); (0,∞)}, and hence

E(W |X = x) = (x − ξ)�λ +
√
1 + (x − ξ)��−1(x − ξ)

× Wφ

{
λ�(x − ξ)√

1 + (x − ξ)��−1(x − ξ)

}
,

E(W 2|X = x) = {(x − ξ)�λ}2 + {1 + (x − ξ)��−1(x − ξ)}
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+ (x − ξ)�λ

√
1 + (x − ξ)��−1(x − ξ)

× Wφ

{
λ�(x − ξ)√

1 + (x − ξ)��−1(x − ξ)

}
.

Furthermore, from Eq. (21), we have fY |X=x,W=w( y) ∝ φp( y;λ,�−1)φ{w; y�(x−
ξ), 1}, where again, from Lemma 2 in Arellano-Valle et al. (2005), the product
φp( y;λ,�−1)φ{w; y�(x− ξ), 1} is equal to φ{w; (x− ξ)�λ, 1+ (x− ξ)��−1(x−
ξ)}φp[ y;λ + 
(x − ξ){w − λ�(x − ξ)},
], with 
 = {� + (x − ξ)(x − ξ)�}−1.
Therefore,

fY |X=x,W=w( y) = φp[ y;λ + 
(x − ξ){w − λ�(x − ξ)},
], y ∈ R
p.

That is, Y |X = x,W = w ∼ Np(λ + 
(x − ξ){w − λ�(x − ξ)},
). Hence,

E(WY |X = x) = E{WE(Y |W , X = x)|X = x}

= E

[
W

{
λ + W − λ�(x − ξ)

1 + (x − ξ)��−1(x − ξ)
�−1(x − ξ)

}
| X = x

]

= E(W |X = x)λ

+ {E(W 2|X = x) − λ�(x − ξ)E(W |X = x)}
1 + (x − ξ)��−1(x − ξ)

�−1(x − ξ).

��

Proof of Proposition 2

FromProposition 1, we have that X ∼ MSN p(ξ ,�, η) can be represented as X|Y =
y ∼ SN p

(
ξ ,� − 1

1 + y�� y
� y y��,

1√
1 + y�� y

� y

)
and Y ∼ Np(λ,�−1).

Now, using the results in Eq. (16), we get E(X|Y = y) = ξ +
√

2

π

1√
1 + y�� y

� y

and Var(X|Y = y) = � − 2

π

1

1 + y�� y
� y y��, where Y ∼ Np

(
λ,�−1), so that

E(X) = E{E(X|Y)} = ξ +
√

2

π
E

(
1√

1 + Y��Y
�Y

)

and

Var(X) = E{Var(X|Y)} + Var{E(X|Y)}

= � − 2

π
E

(
1

1 + Y��Y
�YY��

)
+ 2

π
Var

(
1√

1 + Y��Y
�Y

)
.
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Thus,

Var(X) = � − 2

π
E

(
√
1 + Y��Y

�Y

)
E

(
1√

1 + Y��Y
�Y

)�
.

��

Proof of Proposition 3

Let X ∼ MSN p(ξ ,�, η). Then, by Proposition 1 we have that X|Y = y ∼
SN p(ξ ,� y, η y), with � y = � − η yη

�
y and η y = (1 + y�� y)−1/2� y, where

Y ∼ Np(λ,�−1), with λ = (1 − η��−1η)−1/2�−1η and � = � + ηη� as defined
in Eq. (6). Hence by adapting the result of the SN -mmgf from Proposition 11 to the
conditional mmgf of X|Y = y ∼ SN p(ξ ,� y, η y), we have

MX|Y= y(t) = 2 exp

(
t�ξ + 1

2
t�� y t

)
�(η�

y t)

= 2 exp

(
t�ξ + 1

2
t��t

)
�

(
y��t√

1 + y�� y

)
,

since � y = � y + η yη
�
y = �. Hence, the mmgf of X ∼ MSN p(ξ ,�, η) becomes

MX (t) = E{MX|Y (t)} = 2 exp

(
t�ξ + 1

2
t��t

)
E

{
�

(
Y��t√

1 + Y��Y

)}
,

where as before Y ∼ Np(λ,�−1), and we note that

E

{
�

(
Y��t√

1 + Y��Y

)}
= E

{
�

(
Z� t√

1 + Z��−1Z

)}
,

where Z = �Y ∼ Np(λ̄,�), with λ̄ = �λ = (1 − η��−1η)−1/2η. ��

Proof of Proposition 4

From Proposition 12, the conditional mcdf of X|Y = y ∼ SN p(ξ ,� y, η y) is given
by

FX|Y= y(x) =
∫
u≤x

2φp(u; ξ ,� y)�
{
γ �

y �
−1/2
y (u − ξ)

}
du

= 2�p+1(x∗; ξ∗,�∗
y),
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where

x∗ =
(
x
0

)
, ξ∗ =

(
ξ

0

)
,

�∗
y =

(
� y − �

1/2
y γ y

−γ �
y �

1/2
y 1 + γ �

y �−1
y γ y

)
=
(

� −� y
− y�� 1 + y�� y

)
,

since � y = �, γ y = (1 − η�
y �−1

y η y)
−1/2�

−1/2
y η y = �1/2 y and η y = (1 +

y�� y)−1/2� y. Therefore, the mcdf of X ∼ MSN p(ξ ,�, η) becomes

FX (x) = E

[
�p+1

{(
x
0

)
;
(

ξ

0

)
,

(
� −�Y

−Y�� 1 + Y��Y

)}]

= E

[
�p+1

{(
x
0

)
;
(

ξ

0

)
,

(
� −Z

−Z 1 + Z��−1Z

)}]
,

where as before Z = �Y ∼ Np(λ̄,�), with λ̄ = �λ = (1 − η��−1η)−1/2η. ��

Proof of Proposition 5

By assumption X̃ = a + BX , with X ∼ MSN p(ξ ,�, η), and therefore from the
stochastic representation of X , given in Proposition 10,we have X̃ has stochastic repre-

sentation given by X̃
d= a+Bξ+ 1√

1 + Y��Y
B�Y T+BU,where T ∼ HN (0, 1)

and Y ∼ Np(λ,�−1) are independent, and U |Y = y ∼ Np
(
0, (�−1 + y y�)−1

)
.

Also, by conditioning X̃ on Y = y from this stochastic representation, we have that
X̃|Y = y ∼ SN k(a + Bξ ,� y, η y), with conditional mpdf

f X̃|Y= y (̃x) = φp (̃x; a + Bξ ,� y + η yη
�
y )�

⎧⎨
⎩

η�
y �−1

y (x̃ − a − Bξ)√
1 + η�

y (� y + η yη
�
y )−1η y

⎫⎬
⎭ ,

where Y ∼ Np
(
λ,�−1),� y = B(�−1+ y y�)−1B� and η y = 1√

1 + y�� y
B� y.

Thus, since f X̃ (̃x) = ∫
Rp f X̃|Y (̃x) fY ( y)d y, we have, after some extensive but straight-

forward algebra, that the mpdf of X̃ becomes

f X̃ (̃x) = 2φp (̃x; a + Bξ , B�B�)

∫
Rp

�

[
y��B�(B�B�)−1 (̃x − a − Bξ)√
1 + y�{� − �B�(B�B�)−1B�} y

]
φp
(
y; λ,�−1) d y

= 2φp (̃x; a + Bξ , B�B�)E

(
�

[
Y��B�(B�B�)−1 (̃x − a − Bξ)√
1 + Y�{� − �B�(B�B�)−1B�}Y

])
, x̃ ∈ R

p,

where Y ∼ Np(λ,�−1).
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Now, let Y B = B�Y and YC = CY , where C = Ip − B�(B�B�)−1B�.
Note that BC� = 0 and � − �B�(B�B�)−1B� = C��C and so Y�{� −
�B�(B�B�)−1B�}Y = Y�C��CY = Y�

C�YC . Since Y ∼ Np(λ,�−1),
it follows, from the properties of the multivariate normal distribution, that Y B ∼
Nk(B�λ, B�B�) and YC ∼ Nk(Cλ,C�−1C�) and they are independent
since cov(Y B,YC ) = BC� = 0. In turn, this means that (B�B�)−1Y B =
(B�B�)−1B�Y ∼ Nk((B�B�)−1B�λ, (B�B�)−1) and it is independent of
Y�
C�YC = Y�{� − �B�(B�B�)−1B�}Y . Thus, for the above expectation, we

have, by using the same arguments as in the proof of Proposition 1, that

E

(
�

[
Y��B�(B�B�)−1 (̃x − a − Bξ)√
1 + Y�{� − �B�(B�B�)−1B�}Y

])

= E

⎡
⎣�

{
Y�

B (B�B�)−1 (̃x − a − Bξ)√
1 + Y�

C�YC

}⎤
⎦

= E

[
�

{
λ��B�(B�B�)−1 (̃x − a − Bξ)√

1 + Y�{� − �B�(B�B�)−1B�}Y
√
1 + (̃x − a − Bξ)�(B�B�)−1 (̃x − a − Bξ)

}]
.

When B is a nonsingular square matrix, this expectation, which corresponds to the
skewing function of the mpdf of X̃ , reduces to

�

{
λ��B�(B�B�)−1(̃x − a − Bξ)√

1 + (̃x − a − Bξ)�(B�B�)−1(̃x − a − Bξ)

}
, thus it follows that X̃ ∼

MSN p(a + Bξ , B�B�, Bη). ��

Proof of Corollary 3

By considering the partitions of X, ξ ,�, and η, as in Eq. (17), the mpdf of X1 can be
found using Proposition 5, putting a = 0 and B = (Ip1 0) to obtain

fX1(x1) = 2φp1(x1; ξ1,�11)

∫
Rp

�

{
(λ1 + �−1

11 �12λ2)
�(x1 − ξ1)√

1 + y�
2 (�22 − �21�

−1
11 �12) y2

}

× φp

(
y;λ,�−1

)
d y

= 2φp1(x1; ξ1,�11)

∫
R

p2
�

{
(λ1 + �−1

11 �12λ2)
�(x1 − ξ1)√

1 + y�
2 (�22 − �21�

−1
11 �12) y2

}

× φp2

(
y2;λ2,�

−1
22·1
)
d y2, x1 ∈ R

p1 ,

where y = ( y�
1 , y�

2 )�, with yi ∈ R
pi , and λ = (λ�

1 ,λ�
2 )�, with yi ,λi ∈ R

pi , for
i = 1, 2, and � = (�i j ), with �i j = � i j + ηiη

�
j , i, j = 1, 2. Finally, by using the

relations described at the beginning of the corollary we have, after some algebra, that
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λ1 + �−1
11 �12λ2√

1 + y�
2 (�22 − �21�

−1
11 �12) y2

= 1√
1 + y�

2 �22·1 y2
√
1 − η��−1η

�−1
11 η1 =

√
1 + η��−1η

1 + y�
2 �22·1 y2

1√
1 + η�

1 �−1
11 η1

�−1
11 η1 = λ1·2. ��

Proof of Proposition 6

To prove this, we will show that the density function of MSN 1(0, 1, η) is not a
log-concave function. The log-density ofMSN 1(0, 1, η) is

log{ f (x)} = log

[
2φ(x; 0, 1 + η2)�

{
ηx/
√
1 + η2√

1 + x2/(1 + η2)

}]
.

The second derivative of log{ f (x)} with respect to x is

d2 log{ f (x)}
dx2

= 1

1 + η2

[
− 1 − 1

(1 + t2)3

{
φ(ηt/

√
1 + t2)

�(ηt/
√
1 + t2)

}2

− 1

�(ηt/
√
1 + t2)

{
3tφ(ηt/

√
1 + t2)

(1 + t2)5/2

+ η2tφ(ηt/
√
1 + t2)

(1 + t2)7/2

}]
,

where t = x/
√
1 + η2. It has been found numerically that the sign of

d2 log{ f (x)}
dx2

changes for x ∈ (−10, 10) for various values of η. Thus, log{ f (x)} is not always
log-concave. ��

Proof of Proposition 7

Let X ∼ MSN 1(ξ,�, η). Then, the pdf of X is

fX (x) = 2φ(x; ξ,� + η2)�

{
η√
�

(x − ξ)√
� + η2 + (x − ξ)2

}
, x ∈ R.

For x < ξ and for η > 0,
η√
�

(x − ξ)√
� + η2 + (x − ξ)2

→ −∞, and for x > ξ ,

η√
�

(x − ξ)√
� + η2 + (x − ξ)2

→ ∞, when � → 0. As a consequence, we have, as

� → 0: fX (x) → 0 if x < ξ and fX (x) → 2φ(x; ξ, η2) if x > ξ , which completes
the proof for η > 0. The proof for η < 0 is similar. ��
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Proof of Proposition 8

The likelihood function for (ξ ,�, η) based on a random sample x1, . . . , xn from
X ∼ MSN p(ξ ,�, η) is

L(ξ ,�, η) =
n∏

i=1

2φp

(
xi ; ξ ,� + ηη�)

×�

{
1√

1 + η��−1η

η��−1(xi − ξ)√
1 + (xi − ξ)�(� + ηη�)−1(xi − ξ)

}
,

which becomes the profile likelihood function for the skewness parameter η when ξ

and � are fixed. Similar to the SN , it can be argued exactly in the same way as in
the proof of Proposition 13 that the maximum likelihood estimator of the skewness
parameter is always finite for the MSN distribution as well. Indeed, as in the SN
case, for the skewing function of the MSN distribution we have

0 ≤ �

{
−
√

(xi − ξ)��−1(xi − ξ)

}

≤ �

{
1√

1 + η��−1η

η��−1(xi − ξ)√
1 + (xi − ξ)�(� + ηη�)−1(xi − ξ)

}

≤ �

{√
(xi − ξ)��−1(xi − ξ)

}
≤ 1, ∀ η ∈ R

p.

Also, as we already have established in the proof of Proposition 13, φp(xi ; ξ ,� +
ηη�) → 0 for each i = 1, . . . , n as some (or all) components of η tend to ±∞.
Hence, for any fixed value of ξ ∈ R

p and � > 0, we can say that L(ξ ,�, η) → 0
whenever some (or all) components of η tend to ±∞. This observation leads us to the
conclusion that L(ξ ,�, η) is not a monotonically increasing or decreasing function
of any of the components of η. Thus, the profile likelihood of the skewness parameter
η is always maximized at a finite point for the MSN family.

Proof of Proposition 9

The non-singularity of the matrix i�� is just a special case of a more general
result proven in Hallin and Paindaveine (2006). Thus, the Fisher information matrix
I(ξ ,�, 0) is nonsingular if

I ξη =
[
i ξξ i ξη

i ξη iηη

]
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is nonsingular. Let E

(
ZZ�√

1 + Z�Z

)
= U and E

(
ZZ�

1 + Z�Z

)
= V . Then, I ξη can

be written as

I ξη = �−1/2

⎡
⎢⎢⎣

Ip

√
2

π
U√

2

π
U

2

π
V

⎤
⎥⎥⎦�−1/2.

Thus, we conclude that I(ξ ,�, 0) is nonsingular iff the matrix V −U2 is nonsingular.
Let R = |Z|, W = Z/R and Z∗ = Z/

√
1 + R2. Since Z = RW ∼ Np(0, Ip), R

and W are independent. Also, we know that E(W) = 0 and Var(W) = E(WW�) =
(1/p)Ip. Now, note that Z∗ = R∗W , where R∗ = R/

√
1 + R2, and so is independent

of W . Then, we have U = Cov(Z, Z∗) = Cov(RW , R∗W) = E(RR∗)E(WW�) =
(1/p)E(R2/

√
1 + R2)Ip and V = Var(Z∗) = Var(R∗W) = E(R2∗)E(WW�) =

(1/p)E(R2∗)Ip. Hence, V −U2 is positive definite iff pE(R2∗)−{E(RR∗)}2 > 0, i.e.,
iff pE{R2/(1 + R2)} − {E(R2/

√
1 + R2)}2 > 0.

Now, by the Cauchy–Schwartz inequality, we get

{
E

(
R2

√
1 + R2

)}2
≤ E(R2)E

(
R2

1 + R2

)

⇒ pE{R2/(1 + R2)} − {E(R2/
√
1 + R2)}2 ≥ 0, as E(R2) = p.

Since equality in the previous inequality cannot be achieved in this case, we conclude
that V −U2 is positive definite, and, consequently, I(ξ ,�, 0) is also positive definite.

��
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