
Journal of Multivariate Analysis 200 (2024) 105260

A
0

A
S
S

A

A
p
s

K
H
L
N
S
S
T

1

s
b

r
s
b
u
b
G
n
H
t

h
R

Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

multivariate skew-normal-Tukey-ℎ distribution
agnik Mondal ∗, Marc G. Genton

tatistics Program, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

R T I C L E I N F O

MS 2020 subject classifications:
rimary 62H10
econdary 62E10

eywords:
eavy-tails
ambert’s-W
on-gaussian distribution
kew-normal
kew-t
ukey-h

A B S T R A C T

We introduce a new family of multivariate distributions by taking the component-wise Tukey-ℎ
transformation of a random vector following a skew-normal distribution with an alternative
parameterization. The proposed distribution is named the skew-normal-Tukey-ℎ distribution
and is an extension of the skew-normal distribution for handling heavy-tailed data. We compare
this proposed distribution to the skew-𝑡 distribution, which is another extension of the skew-
normal distribution for modeling tail-thickness, and demonstrate that when there are substantial
differences in marginal kurtosis, the proposed distribution is more appropriate. Moreover,
we derive many appealing stochastic properties of the proposed distribution and provide a
methodology for the estimation of the parameters that can be applied to large dimensions.
Using simulations, as well as a wine and a wind speed data application, we illustrate how to
draw inferences based on the multivariate skew-normal-Tukey-ℎ distribution.

. Introduction

In recent decades, there has been a growing interest in developing parametric multivariate distributions flexible enough to handle
kewness and tail-thickness for various statistical applications. In a multivariate setup, two of the most popular methods to introduce
oth skewness and tail-thickness are:

1. Perturbation of symmetry of an elliptically contoured distribution which is capable of capturing tail-thickness. Examples of
such distributions include the multivariate skew-𝑡 distribution [12] and the multivariate extended skew-𝑡 distribution [6].

2. Transformation of a random vector following some elliptically contoured distribution for imposing skewness and tail-thickness.
Examples of such transformations are the Tukey 𝑔-and-ℎ transformation [21] and the Sinh-Arcsinh transformation [30] in
the multivariate case, and the Lambert’s-𝑊 transformation [26] in the univariate case.

The primary parametric model obtained by perturbing the symmetry of an elliptically contoured distribution, which instigated the
esearch in this area, is the multivariate skew-normal distribution introduced by [14]. Many distributions such as the multivariate
kew-𝑡 distribution, the multivariate extended skew-normal distribution, and the multivariate extended skew-𝑡 distribution were
uilt upon the foundation of the skew-normal distribution. These distributions can be viewed as special cases of the multivariate
nified skew-elliptical distribution studied by [7]. For more on these types of distributions, readers are referred to the books
y [13,24], and to a recent review by [10]. Since the skew-normal distribution is obtained by perturbing the symmetry of the
aussian distribution and the skew-𝑡 distribution is obtained by perturbing the symmetry of the Student’s-𝑡 distribution, the skew-
ormal distribution is not capable of handling tail-thickness while the skew-𝑡 distribution is more apt for modeling heavy-tailed data.
owever, one shortcoming of the skew-𝑡 distribution is that it cannot handle different tail-thickness for different marginals, since

he tail-thickness is controlled only by one parameter. There has been a proposal by [33] to introduce a multivariate Student’s-𝑡
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distribution with different tail-thickness parameters for different marginals. However, the probability density function (pdf) of the
proposed distribution involves complicated hypergeometric functions that make inference with such a distribution very challenging.

The second approach above for introducing skewed and heavy-tailed distribution is to use some non-linear transformation on a
ight-tailed elliptically symmetric random variable. The Lambert’s-𝑊 transformation, proposed by [26] in the univariate case, can
mpose both skewness and tail-thickness on a Gaussian random variable using a single parameter. However, as this transformation
s not one-to-one, the pdf of its multivariate extension becomes almost impossible to track down, especially for higher dimensions.
his issue was solved by [27] where he changed the Lambert’s-𝑊 transformation slightly and made it one-to-one. This modified
ransformation is a generalized version of the Tukey-ℎ transformation. Although [27] proposed this new distribution in the univariate
etting, he only briefly mentioned how it can be extended to the multivariate setting by applying this transformation component-
ise. Other examples include the Sinh-Arcsinh (SAS) transformation and the Tukey 𝑔-and-ℎ transformation which are monotonic
nd control skewness and tail-thickness with separate parameters. A multivariate 𝑔-and-ℎ distribution was presented by [21] which
s based on the component-wise Tukey’s 𝑔-and-ℎ transformation of a random vector following a Gaussian distribution. As a result, it
ermits different kurtosis for different marginals. However, one drawback of this distribution is drawing inferences. Since the inverse
f Tukey’s 𝑔-and-ℎ transformation does not have a closed form, the likelihood function cannot be readily calculated. Moreover,
or parameter estimation, some definitions of multivariate quantiles are needed. This can be computationally challenging when
he dimension is high because the number of directions in which the quantiles have to be computed grows exponentially with
imension. The univariate SAS distribution and its various stochastic and inferential properties were mainly discussed by [30].
he idea of the multivariate expansion of this family has also been presented by [30]. It consists in using the transformation on
he marginals of a standardized but correlated multivariate Gaussian distribution. A similar approach has been taken by [37] who
roposed a distribution that is capable of modeling higher skewness than the original SAS distribution by applying the two-piece
ransformation to the symmetric SAS distribution. The SAS distribution was used by [42] in the context of a bivariate random field
or wind data and they discussed how to draw inference based on it. However, inference in the multivariate scenario is yet to be
horoughly explored.

In this article, we propose a new multivariate distribution by combining these two techniques, the perturbation of symmetry
or skewness and the transformation for tail-thickness. We introduce the skew-normal-Tukey-ℎ distribution by taking the Tukey-ℎ
ransformation on the components of a skew-normal random vector to introduce tail-thickness on each component. Moreover, by
hanging the marginal kurtosis parameter, we can have different kurtosis for different marginals. We study some basic statistical
roperties of the skew-normal-Tukey-ℎ distribution. Furthermore, we discuss how to draw inferences based on this distribution. We
ompare the proposed distribution with the skew-𝑡 distribution since both of them are extensions of the skew-normal distribution
or handling heavy-tailed data. Finally, we justify in which scenarios the skew-normal-Tukey-ℎ distribution is more appropriate
ompared to the skew-𝑡 distribution using a simulation study and two data applications.

It should be pointed out that the aforementioned two methods for constructing skewed and heavy-tailed distributions are not
xhaustive. There exists a variety of proposals in the statistics literature. For example, distributions studied by [17,39] are very
imilar to the definition of the skew-normal distribution. A definition of generalized skew-elliptical distributions which bring such
ifferent skewed distributions defined by perturbation of symmetry under one umbrella was proposed by [25]. Another avenue for
he introduction of skewness and tail-thickness was explored by [22] and further generalized by [41] under the name of location-
cale mixtures of Gaussian distributions. Various other non-Gaussian distributions for modeling skewed and heavy-tailed data can
lso be obtained using the theory of copulas [38]. We refer interested readers to the books by [29,35], and the references therein,
or more details on copulas. These are some other examples of parametric families proposed for modeling various skewed and
eavy-tailed or light-tailed data.

The rest of the article is organized as follows. In Section 2, we formally define the skew-normal-Tukey-ℎ distribution, whereas
arious of its stochastic properties are discussed in Section 3. In Section 4, we illustrate how to draw inferences based on the skew-
ormal-Tukey-ℎ distribution. In Sections 5 and 6, we present simulation studies and two applications to wine data and to wind
peed data showing when the skew-normal-Tukey-ℎ distribution is more appropriate compared to the skew-𝑡 distribution. Finally,
n Section 7, we conclude our article and discuss some avenues for future research work.

. Multivariate skew-normal-Tukey-𝒉 distribution

In this section, we define the multivariate skew-normal-Tukey-ℎ distribution. We start by defining an alternative parameterization
f the multivariate skew-normal distribution.

.1. Skew-normal distribution

The multivariate skew-normal distribution was introduced by [14] and later studied in [11]. A random vector 𝒀 ∈ R𝑝 is said to
ave a multivariate skew-normal distribution with location parameter 𝝃 ∈ R𝑝, symmetric positive definite scale parameter 𝜴 ∈ R𝑝×𝑝,
nd skewness parameter 𝜶 ∈ R𝑝, if its pdf is

𝑓𝒀 (𝒚) = 2𝜙𝑝 (𝒚; 𝝃,𝜴)𝛷{𝜶⊤𝝎−1(𝒚 − 𝝃)}, 𝒚 ∈ R𝑝, (1)

here 𝜙𝑝(⋅;𝝁,𝜮) is the pdf of a 𝑝-dimensional normal distribution with mean 𝝁 ∈ R𝑝 and positive definite covariance matrix
∈ R𝑝×𝑝, and 𝝎 = diag(𝜴)1∕2. Here, and from now on, we call this distribution with the parameterization in (1) the Azzalini
2

kew-normal ( ) distribution and we denote it by 𝒀 ∼  𝑝(𝝃,𝜴,𝜶).
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As used in [34], the  𝑝(𝝃,𝜴,𝜶) distribution can be reparameterized by means of the relations 𝜴 = 𝜳 + 𝜼𝜼⊤ and 𝜶 =

1 + 𝜼⊤𝜳−1𝜼)−1∕2𝝎𝜳−1𝜼, where 𝜳 ∈ R𝑝×𝑝 is a symmetric positive definite matrix, 𝜼 ∈ R𝑝 and 𝝎 = diag(
√

𝛹11 + 𝜂21 ,… ,
√

𝛹𝑝𝑝 + 𝜂2𝑝 ),
ith 𝛹𝑖𝑖 and 𝜂𝑖 being the 𝑖th diagonal element of 𝜳 and 𝜼, respectively, for 𝑖 ∈ {1,… , 𝑝}. Conversely, by letting 𝝎 = diag(𝜴)1∕2,

̄ = 𝝎−1𝜴𝝎−1 and 𝜹 = (1 + 𝜶⊤�̄�𝜶)−1∕2�̄�𝜶, we have 𝜳 = 𝝎(�̄�−1 + 𝜶𝜶⊤)−1𝝎 = 𝝎(�̄� − 𝜹𝜹⊤)𝝎 and 𝜼 = 𝝎𝜹. With this alternative
arameterization, the pdf of 𝒀 from (1) is

𝑓𝒀 (𝒚) = 2𝜙𝑝
(

𝒚; 𝝃,𝜳 + 𝜼𝜼⊤
)

𝛷

{

𝜼⊤𝜳−1(𝒚 − 𝝃)
√

1 + 𝜼⊤𝜳−1𝜼

}

, 𝒚 ∈ R𝑝. (2)

[14] used this parameterization up to minor differences. Moreover, [2–4] have also used the same parameterization. With this
parameterization, a 𝑝-variate random vector 𝒀 is said to have a skew-normal ( ) distribution with location parameter 𝝃 ∈ R𝑝,
symmetric positive definite scale matrix 𝜳 ∈ R𝑝×𝑝, and skewness parameter 𝜼 ∈ R𝑝 if its pdf is given by (2). We denote it by
𝒀 ∼  𝑝(𝝃,𝜳 , 𝜼).

Many interesting properties of the  distribution with the parameterization in (2) have been derived in [34]. The following
results are given here as they will be useful later on, while their proofs can be found in [34]:

• Stochastic representation of  distribution: If 𝒀 ∼  𝑝(𝝃,𝜳 , 𝜼), then 𝒀 = 𝝃 + 𝑈𝜼 + 𝑾 , where 𝑈 and 𝑾 are independently
distributed, with half-normal 𝑈 denoted by 𝑈 ∼  (0, 1), and 𝑾 ∼ 𝑝(𝟎,𝜳 ).

• Affine transformation of the  distribution: If 𝒀 ∼  𝑝(𝝃,𝜳 , 𝜼), then for any fixed vector 𝒂 ∈ R𝑞 and any fixed matrix 𝑩 ∈ R𝑞×𝑝

of full row rank and 𝑞 ≤ 𝑝: 𝒂 + 𝑩𝒀 ∼  𝑞(𝒂 + 𝑩𝝃,𝑩𝜳𝑩⊤,𝑩𝜼).
• Marginal distributions of the  distribution: Let 𝒀 ∼  𝑝(𝝃,𝜳 , 𝜼) and consider the partition of 𝒀 = (𝒀 ⊤

1 , 𝒀
⊤
2 )

⊤ with 𝒀 𝑖 of size
𝑝𝑖 (𝑖 ∈ {1, 2}) and such that 𝑝1 + 𝑝2 = 𝑝, with corresponding partitions of the parameters in blocks of matching sizes. Then
𝒀 𝑖 ∼  𝑝𝑖 (𝝃𝑖,𝜳 𝑖𝑖, 𝜼𝑖), 𝑖 ∈ {1, 2}.

The  and  parameterizations describe the same distribution but the simplicity of the marginal distributions in the 
parameterization (see above) will prove useful for inferential purposes later on.

2.2. Skew-normal-Tukey-ℎ distribution

We introduce tail-thickness in the skew-normal distribution by taking the Tukey-ℎ transformation of each component of a random
vector following a  distribution. The Tukey-ℎ transformation is

𝜏ℎ(𝑥) = 𝑥 exp(ℎ𝑥2∕2), 𝑥 ∈ R, ℎ ≥ 0. (3)

Moreover, for 𝒙 = (𝑥1,… , 𝑥𝑝)⊤ ∈ R𝑝, we define

𝝉𝒉(𝒙) = {𝜏ℎ1 (𝑥1),… , 𝜏ℎ𝑝 (𝑥𝑝)}
⊤, 𝒉 = (ℎ1,… , ℎ𝑝)⊤, ℎ𝑖 ≥ 0, 𝑖 ∈ {1,… , 𝑝}. (4)

Definition 1 (Skew-Normal-Tukey-ℎ Distribution). A random vector 𝒀 ∈ R𝑝 with the stochastic representation 𝒀 = 𝝃+𝝎𝝉𝒉(𝒁), where
𝒁 ∼  𝑝(𝟎, �̄� , 𝜼) and �̄� is a 𝑝 × 𝑝 correlation matrix, is said to have a multivariate skew-normal-Tukey-ℎ distribution. Here 𝝃 ∈ R𝑝

is the location parameter, 𝝎 = diag(𝜔11,… , 𝜔𝑝𝑝) is a 𝑝 × 𝑝 diagonal scale matrix such that 𝜔𝑖𝑖 > 0, 𝑖 ∈ {1,… , 𝑝}, 𝜼 ∈ R𝑝 is the
skewness parameter, and 𝒉 is the tail-thickness parameter vector such that 𝒉 = (ℎ1,… , ℎ𝑝)⊤ ∈ R𝑝, ℎ𝑖 ≥ 0, 𝑖 ∈ {1,… , 𝑝}. We denote
𝒀 ∼  𝑝(𝝃,𝝎, �̄� , 𝜼,𝒉).

We define the   distribution with a correlation matrix �̄� and a diagonal scale matrix 𝝎. The �̄� parameter governs the
dependence structure in the model and 𝝎 is a diagonal matrix consisting of the marginal scale parameters. To make all the parameters
identifiable we restrict �̄� to be a correlation matrix. It is immediate from the definition of the   distribution that when 𝒉 = 𝟎
the   distribution reduces to the  distribution. The Tukey-ℎ transformation applied on the marginals of the skew-normal
distribution imposes tail-thickness in the distribution. Moreover, since we can vary the components of the 𝒉 parameter over the
marginals, the resulting distribution can have different kurtosis for different marginals. In this way, we propose an extension of the
skew-normal distribution, capable of handling different marginal tail-thickness. In that sense, the   distribution is different
from the skew-𝑡 distribution. The skew-𝑡 distribution can also be thought of as an extension of the skew-normal distribution for
modeling tail-thickness in the data, but it is incapable of capturing different kurtosis for different marginals.

It should be pointed out that the proposed   distribution belongs to the Lambert-𝑊 × 𝐹 family of distributions [27],
where 𝐹 represents the cumulative distribution function (cdf) of the skew-normal distribution. The main difference is that [27]
proposed the location-scale Lambert-𝑊 × 𝐹 distribution with 𝜇𝑋 = E(𝑋) as the location parameter and 𝜎𝑋 =

√

Var(𝑋) as the scale
parameter, 𝑋 ∼ 𝐹 , and the transformation was applied on (𝑋 − 𝜇𝑋 )∕𝜎𝑋 . For defining the   distribution, we start with a
‘standard’’ skew-normal distribution and apply the Tukey-ℎ transformation on it, and then we use a location-scale transformation
n the transformed random variable.

Since we take a monotonic marginal transformation on each component of a skew-normal random vector, the underlying
opula of the   distribution remains the same as the skew-normal copula [40]. Because the skew-normal copula can be tail-
symmetric, the copula corresponding to the   distribution is also tail-asymmetric. This is not the case for the multivariate
-and-ℎ distribution, for which the underlying copula is the Gaussian copula, hence tail-symmetric.
3
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3. Properties of the   distribution

We outline some basic probabilistic properties of the   distribution such as its pdf, cdf, moments, marginal and conditional
istributions, and canonical form. Due to the   definition using the  distribution, many of the  appealing properties

get transferred to the   distribution. This is one of the reasons we defined the   with the  distribution parameterized
in (2).

3.1. Probability density function of  

In the next proposition we present the pdf of the   distribution. The univariate   pdf can be found using Theorem
1 of [27] using 𝐹 as the skew-normal distribution. We extend Theorem 1 of [27] with 𝐹 as the skew-normal distribution to the
multivariate setup in the next proposition.

Proposition 1. The pdf of 𝒀 ∼  𝑝(𝝃,𝝎, �̄� , 𝜼,𝒉) is, for 𝒚 ∈ R𝑝:

𝑓𝒀 (𝒚) = 2𝜙𝑝{𝒈(𝒚); 𝟎, �̄� + 𝜼𝜼⊤}𝛷

{

𝜼⊤�̄�−1𝒈(𝒚)
√

1 + 𝜼⊤�̄�−1𝜼

} 𝑝
∏

𝑖=1

⎧

⎪

⎨

⎪

⎩

1
𝜔𝑖𝑖

⎛

⎜

⎜

⎝

exp[ 12𝑊0{ℎ𝑖(
𝑦𝑖−𝜉𝑖
𝜔𝑖𝑖

)2}]

ℎ𝑖(
𝑦𝑖−𝜉𝑖
𝜔𝑖𝑖

)2 + exp[𝑊0{ℎ𝑖(
𝑦𝑖−𝜉𝑖
𝜔𝑖𝑖

)2}]

⎞

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

, (5)

here 𝒈(𝒚) = {𝑔1(𝑦1),… , 𝑔𝑝(𝑦𝑝)}⊤, 𝑔𝑖(𝑦𝑖) = ( 𝑦𝑖−𝜉𝑖𝜔𝑖𝑖
) exp[− 1

2𝑊0{ℎ𝑖(
𝑦𝑖−𝜉𝑖
𝜔𝑖𝑖

)2}], 𝑖 ∈ {1,… , 𝑝}, and 𝑊0(⋅) is the principal branch of the
Lambert’s-𝑊 function.

Proof. Consider the transformation 𝑧 = 𝑥 exp(ℎ𝑥2∕2). Then ℎ𝑧2 = ℎ𝑥2 exp(ℎ𝑥2) ⇒ ℎ𝑥2 = 𝑊0(ℎ𝑧2) ⇒ 𝑥 = 𝑧 exp{−𝑊0(ℎ𝑧2)∕2}, where
0(⋅) is the principal branch of the Lambert’s-𝑊 function [20]. This essentially means that 𝑊0(⋅) is the inverse function of the

unction 𝑓 (𝑥) = 𝑥 exp(𝑥), 𝑥 ∈ R. Although the inverse of 𝑓 (𝑥) is not unique when 𝑥 < 0, it is unique when 𝑥 > 0. For us the argument
f 𝑊0(⋅) is ℎ𝑧2 ≥ 0, which makes the inverse of the Tukey-ℎ transformation unique (see also Lemma 5 in [27]). Hence, the inverse
f the Tukey-ℎ transformation (3) is

𝜏−1ℎ (𝑧) = 𝑧 exp{−𝑊0(ℎ𝑧2)∕2}, (6)

nd it is a one-to-one function as it should be since 𝜏ℎ(𝑧) is one-to-one for ℎ ≥ 0. Moreover,

𝜕
𝜕𝑧

𝜏−1ℎ (𝑧) =
exp{𝑊0(ℎ𝑧2)∕2}

ℎ𝑧2 + exp{𝑊0(ℎ𝑧2)}
,

and is obtained using the fact that 𝑊 ′
0 (𝑧) = 1∕[𝑧 + exp{𝑊0(𝑧)}]. With the form of 𝜏−1ℎ (𝑧) and 𝜕𝜏−1ℎ (𝑧)∕𝜕𝑧 it is straightforward to

onclude that the pdf of 𝒀 reduces to (5). □

The pdf of the   distribution is given in closed form in Proposition 1 and it involves the principal branch 𝑊0(⋅) of the
ambert’s-𝑊 function. Although 𝑊0(⋅) does not have a closed form, it is a well studied function and the function has been already
mplemented in many softwares, including in R [36] in the LambertW package by [26]. This is an advantage of the  
istribution over the multivariate 𝑔-and-ℎ distribution in the sense that the inverse of the Tukey 𝑔-and-ℎ transformation is not in a

closed form. As a result, the computation of the pdf and the log-likelihood function of the   distribution is somewhat simpler
compared to that of the multivariate 𝑔-and-ℎ distribution.

To illustrate the effects of the skewness and the tail-thickness parameters of the   distribution, we present the contour

plots of  2(𝟎,diag(1, 1), �̄� , 𝜼,𝒉) probability densities with �̄� =
(

1 0.4
0.4 1

)

for four different pairs of 𝜼 and 𝒉: 𝜼 = (0, 0)⊤

and 𝒉 = (0, 0)⊤ corresponding to a normal density; 𝜼 = (0, 0)⊤ and 𝒉 = (0.05, 0.1)⊤ corresponding to a normal-Tukey-ℎ density;
= (−1, 2)⊤ and 𝒉 = (0, 0)⊤ corresponding to a  density; and 𝜼 = (−1, 2)⊤ and 𝒉 = (0.05, 0.1)⊤ corresponding to a   density.

For comparison we also plot the density contours of a skew-𝑡 distribution with 𝝃 = (0, 0)⊤, 𝜴 =
(

2 −1.6
−1.6 5

)

, 𝜶 = (−1.02, 2.15)⊤,

and 𝜈 = 5, and a Student’s-𝑡 distribution with these same parameters (i.e., the same skew-𝑡 with 𝜶 = 𝟎). The 𝜴 and 𝜶 parameters

are obtained so that they correspond to �̄� =
(

1 0.4
0.4 1

)

and 𝜼 = (−1, 2)⊤ using the relationship between the parameters of the

 and the  parameterizations. All the density contours are plotted in Fig. 1. The contours are drawn for the levels with
pproximate coverage probabilities 0.05, 0.25, 0.5, 0.75, and 0.95. The density contour plots in the first row correspond to the
ensity contours of the second row when the corresponding skewness parameters are set to zero. Although the contours in the first
ow are all symmetric, their symmetry differs from each other. More precisely, in Fig. 1, the normal and the Student’s-𝑡 probability
ontours are centrally symmetric whereas the normal-Tukey-ℎ probability contours are sign-invariant symmetric, which is a special
ase of central symmetry. It can be concluded from Fig. 1 that the shapes of the Student’s-𝑡 and skew-𝑡 density contours are similar to
hat of the normal and the skew-normal densities, respectively, with more spacing in-between the different levels for the formers due
o thicker tails. The contours of the normal-Tukey-ℎ density and the   density look similar to the normal and the skew-normal
ensity contours, respectively, but the former have been stretched along the two axes. Since the extent of this stretching can be
ifferent along the two axes, the   density contours can represent a variety of shapes with changes in the skewness and the
ail-thickness parameters.
4



Journal of Multivariate Analysis 200 (2024) 105260S. Mondal and M.G. Genton

f

P

Fig. 1. Bivariate probability density contours of various distributions. Contours are given so that their coverage probabilities are approximately 0.05, 0.25, 0.5,
0.75, and 0.95.

3.2. Cumulative distribution function of  

The cdf of the   distribution can be obtained in closed form involving the principal branch 𝑊0(⋅) of the Lambert’s-𝑊
unction as shown next.

roposition 2. The cdf of 𝒀 ∼  𝑝(𝝃,𝝎, �̄� , 𝜼,𝒉) is 𝐹𝒀 (𝒚) = 2𝛷𝑝+1(𝒚∗∗; 𝟎,𝜴∗∗) where 𝛷𝑝+1 is the multivariate Gaussian cdf of

dimension 𝑝 + 1, 𝒚∗∗ =
{

𝜏−1ℎ1

(

𝑦1 − 𝜉1
𝜔11

)

,… , 𝜏−1ℎ𝑝

( 𝑦𝑝 − 𝜉𝑝
𝜔𝑝𝑝

)

, 0
}⊤

and 𝜴∗∗ =
(

�̄� + 𝜼𝜼⊤ −𝜼
−𝜼⊤ 1

)

.

Proof. Let 𝒀 = 𝝃 + 𝝎𝝉𝒉(𝒁), where 𝒁 ∼  𝑝(𝟎, �̄� , 𝜼). Then the cdf of 𝒀 is

𝐹𝒀 (𝒚) = Pr(𝑌1 ≤ 𝑦1,… , 𝑌𝑝 ≤ 𝑦𝑝) = Pr
[

𝑍1 ≤ 𝜏−1ℎ1

(

𝑦1 − 𝜉1
𝜔11

)

,… , 𝑍𝑝 ≤ 𝜏−1ℎ𝑝

( 𝑦𝑝 − 𝜉𝑝
𝜔𝑝𝑝

)]

= 𝐹𝒁

{

𝜏−1ℎ1

(

𝑦1 − 𝜉1
𝜔11

)

,… , 𝜏−1ℎ𝑝

( 𝑦𝑝 − 𝜉𝑝
𝜔𝑝𝑝

)}

= 2𝛷𝑝+1(𝒚∗∗; 𝟎,𝜴∗∗), 𝒚 ∈ R𝑝,

where 𝜏−1ℎ (𝑧) is given in (6). The cdf of 𝒁, 𝐹𝒁 (⋅), is obtained using Proposition 12 of [34]. □

3.3. Marginal distributions of  

Similar to the  distribution, the marginals of the   distribution are also from the same family, as shown in the next
proposition.

Proposition 3. Let 𝒀 ∼  𝑝(𝝃,𝝎, �̄� , 𝜼,𝒉) and consider the partition 𝒀 = (𝒀 ⊤
1 , 𝒀

⊤
2 )

⊤ with 𝒀 𝑖 of size 𝑝𝑖 (𝑖 ∈ {1, 2}) and such that
𝑝1 + 𝑝2 = 𝑝, with corresponding partitions of the parameters in blocks of matching sizes, as follows:

𝝃 =
(

𝝃1
𝝃2

)

,𝝎 =
(

𝝎11 𝟎
𝟎 𝝎22

)

, �̄� =
(

�̄� 11 �̄� 12
�̄� 21 �̄� 22

)

, 𝜼 =
(

𝜼1
𝜼2

)

,𝒉 =
(

𝒉1
𝒉2

)

.

Then 𝒀 ∼   (𝝃 ,𝝎 , �̄� , 𝜼 ,𝒉 ), 𝑖 ∈ {1, 2}.
5
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Proof. Since, 𝒀 ∼  𝑝(𝝃,𝝎, �̄� , 𝜼,𝒉), then by definition there exists a random vector 𝒁 ∼  𝑝(𝟎, �̄� , 𝜼) such that 𝒀 = 𝝃+𝝎𝝉𝒉(𝒁).
onsider the partition 𝒁 = (𝒁⊤

1 ,𝒁
⊤
2 )

⊤, similar to 𝒀 . Then, 𝒁 𝑖 ∼  𝑝𝑖 (𝟎, �̄� 𝑖𝑖, 𝜼𝑖), 𝑖 ∈ {1, 2}, and 𝒀 𝑖 = 𝝃𝑖 + 𝝎𝑖𝑖𝝉𝒉𝑖 (𝒁 𝑖). Hence,
𝑖 ∼  𝑝𝑖 (𝝃𝑖,𝝎𝑖𝑖, �̄� 𝑖𝑖, 𝜼𝑖,𝒉𝑖), 𝑖 ∈ {1, 2}. □

Although the marginals of the   remain in the same family, the same cannot be said for any general affine transformation
f the   distribution. The distribution of an arbitrary affine transformation of a   random vector is not of a known
ype.

.4. Mean and variance–covariance of  

The mean vector and the variance–covariance matrix of the   distribution can be obtained in closed form. The next
roposition presents these results.

roposition 4. Let 𝒀 ∼  𝑝(𝝃,𝝎, �̄� , 𝜼,𝒉). The mean vector 𝝁 = E(𝒀 ) and variance–covariance matrix 𝜮 = (𝜎𝑖𝑗 ) = Var(𝒀 ) are
efined by:

𝜇𝑖 = 𝜉𝑖 + 𝜔𝑖𝑖

√

2
𝜋

𝜂𝑖
√

1 − ℎ𝑖{1 − ℎ𝑖(1 + 𝜂2𝑖 )}
, if ℎ𝑖 <

1
1 + 𝜂2𝑖

,

𝜎𝑖𝑖 = 𝜔2
𝑖𝑖

[

1 + 𝜂2𝑖
{1 − 2ℎ𝑖(1 + 𝜂2𝑖 )}3∕2

− 2
𝜋

𝜂2𝑖
(1 − ℎ𝑖){1 − ℎ𝑖(1 + 𝜂2𝑖 )}2

]

, if ℎ𝑖 <
1

2(1 + 𝜂2𝑖 )
,

𝜎𝑖𝑗 = 𝜔𝑖𝜔𝑗

[

√

det(𝑨(𝑖𝑗))
√

det(�̄� 𝑖,𝑗 + 𝜼𝑖,𝑗𝜼⊤𝑖,𝑗 )
𝑎(𝑖𝑗)12 − 2

𝜋
𝜂𝑖𝜂𝑗

√

(1 − ℎ𝑖)(1 − ℎ𝑗 ){1 − ℎ𝑖(1 + 𝜂2𝑖 )}{1 − ℎ𝑗 (1 + 𝜂2𝑗 )}

]

,

if 𝑨(𝑖𝑗) is positive definite,

here 𝜼𝑖,𝑗 = (𝜂𝑖, 𝜂𝑗 )⊤, �̄� 𝑖,𝑗 =
(

1 �̄�𝑖𝑗
�̄�𝑖𝑗 1

)

, 𝑨(𝑖𝑗) = {(�̄� 𝑖,𝑗 + 𝜼𝑖,𝑗𝜼⊤𝑖,𝑗 )
−1 − 𝑯 𝑖,𝑗}−1 =

(

𝑎(𝑖𝑗)11 𝑎(𝑖𝑗)12
𝑎(𝑖𝑗)12 𝑎(𝑖𝑗)22

)

, 𝑯 𝑖,𝑗 = diag(ℎ𝑖, ℎ𝑗 ), 𝑖 ≠ 𝑗, and

, 𝑗 ∈ {1,… , 𝑝}.

roof. Since 𝒀 ∼  𝑝(𝝃,𝝎, �̄� , 𝜼,𝒉), then 𝒀 can be written as 𝒀 = 𝝃 + 𝝎𝝉𝒉(𝒁), where 𝒁 ∼  𝑝(𝟎, �̄� , 𝜼). Then using the fact
𝑖 ∼  (0, 1, 𝜂𝑖):

E{𝜏ℎ𝑖 (𝑍𝑖)} = ∫R
𝑥 exp(ℎ𝑖𝑥2∕2)2𝜙(𝑥; 0, 1 + 𝜂2𝑖 )𝛷

⎛

⎜

⎜

⎜

⎝

𝜂𝑖𝑥
√

1 + 𝜂2𝑖

⎞

⎟

⎟

⎟

⎠

d𝑥

= ∫R

√

1 + 𝜂2𝑖
√

1 − ℎ𝑖(1 + 𝜂2𝑖 )
𝑡 2
√

2𝜋
√

1 + 𝜂2𝑖

exp(−𝑡2∕2)𝛷

⎛

⎜

⎜

⎜

⎝

𝜂𝑖𝑡
√

1 − ℎ𝑖(1 + 𝜂2𝑖 )

⎞

⎟

⎟

⎟

⎠

√

1 + 𝜂2𝑖
√

1 − ℎ𝑖(1 + 𝜂2𝑖 )
d𝑡

(

using the change of variable 𝑡 =
{

√

1 − ℎ𝑖(1 + 𝜂2𝑖 )∕
√

1 + 𝜂2𝑖

}

𝑥
)

=

√

1 + 𝜂2𝑖
1 − ℎ𝑖(1 + 𝜂2𝑖 )

E(𝑋𝑖) with 𝑋𝑖 ∼ 
(

0, 1, 𝜂𝑖∕
√

1 − ℎ𝑖(1 + 𝜂2𝑖 )
)

=
√

2
𝜋

𝜂𝑖
√

1 − ℎ𝑖{1 − ℎ𝑖(1 + 𝜂2𝑖 )}
, ℎ𝑖(1 + 𝜂2𝑖 ) < 1, 𝑖 ∈ {1,… , 𝑝};

E[{𝜏ℎ𝑖 (𝑍𝑖)}2] = ∫R
𝑥2 exp(ℎ𝑖𝑥2)2𝜙(𝑥; 0, 1 + 𝜂2𝑖 )𝛷

⎛

⎜

⎜

⎜

⎝

𝜂𝑖𝑥
√

1 + 𝜂2𝑖

⎞

⎟

⎟

⎟

⎠

d𝑥

= ∫R

1 + 𝜂2𝑖
1 − 2ℎ𝑖(1 + 𝜂2𝑖 )

𝑡2 2
√

2𝜋
√

1 + 𝜂2𝑖

exp(−𝑡2∕2)𝛷

⎛

⎜

⎜

⎜

⎝

𝜂𝑖𝑡
√

1 − 2ℎ𝑖(1 + 𝜂2𝑖 )

⎞

⎟

⎟

⎟

⎠

√

1 + 𝜂2𝑖
√

1 − 2ℎ𝑖(1 + 𝜂2𝑖 )
d𝑡

(

using the change of variable 𝑡 =
{

√

1 − 2ℎ𝑖(1 + 𝜂2𝑖 )∕
√

1 + 𝜂2𝑖

}

𝑥
)

=
1 + 𝜂2𝑖

{1 − 2ℎ𝑖(1 + 𝜂2𝑖 )}3∕2
E(𝑋2

𝑖 ) with 𝑋𝑖 ∼ 
(

0, 1, 𝜂𝑖∕
√

1 − 2ℎ𝑖(1 + 𝜂2𝑖 )
)

=
1 + 𝜂2𝑖

2 3∕2
, 2ℎ𝑖(1 + 𝜂2𝑖 ) < 1, 𝑖 ∈ {1,… , 𝑝}.
6
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Hence:

Var{𝜏ℎ𝑖 (𝑍𝑖)} =
1 + 𝜂2𝑖

{1 − 2ℎ𝑖(1 + 𝜂2𝑖 )}3∕2
− 2

𝜋
𝜂2𝑖

(1 − ℎ𝑖){1 − ℎ𝑖(1 + 𝜂2𝑖 )}2
, ℎ𝑖 <

1
2(1 + 𝜂2𝑖 )

, 𝑖 ∈ {1,… , 𝑝};

E{𝜏ℎ𝑖 (𝑍𝑖)𝜏ℎ𝑗 (𝑍𝑗 )} = ∫R2
𝑥1𝑥2 exp{(ℎ𝑖𝑥21 + ℎ𝑗𝑥

2
2)∕2}2𝜙2(𝒙; 𝟎, �̄� 𝑖,𝑗 + 𝜼𝑖,𝑗𝜼⊤𝑖,𝑗 )𝛷

⎛

⎜

⎜

⎜

⎝

𝜼⊤𝑖,𝑗 �̄�
−1
𝑖,𝑗 𝒙

√

1 + 𝜼⊤𝑖,𝑗 �̄�
−1
𝑖,𝑗 𝜼𝑖,𝑗

⎞

⎟

⎟

⎟

⎠

d𝒙

= ∫R2
𝑥1𝑥2

√

det(𝑨(𝑖𝑗))
√

det(�̄� 𝑖,𝑗 + 𝜼𝑖,𝑗𝜼⊤𝑖,𝑗 )
2𝜙2(𝒙; 𝟎,𝑨(𝑖𝑗))𝛷

⎛

⎜

⎜

⎜

⎝

𝜼⊤𝑖,𝑗 �̄�
−1
𝑖,𝑗 𝝎𝑨(𝑖𝑗)𝝎−1

𝑨(𝑖𝑗)𝒙
√

1 + 𝜼⊤𝑖,𝑗 �̄�
−1
𝑖,𝑗 𝜼𝑖,𝑗

⎞

⎟

⎟

⎟

⎠

d𝒙

=

√

det(𝑨(𝑖𝑗))
√

det(�̄� 𝑖,𝑗 + 𝜼𝑖,𝑗𝜼⊤𝑖,𝑗 )
E(𝑋𝑖𝑋𝑗 ) =

√

det(𝑨(𝑖𝑗))
√

det(�̄� 𝑖,𝑗 + 𝜼𝑖,𝑗𝜼⊤𝑖,𝑗 )
E(𝑋𝑖𝑋𝑗 )𝑎

(𝑖𝑗)
12 , 𝑨(𝑖𝑗) is positive definite, 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ {1,… , 𝑝},

where (𝑋𝑖, 𝑋𝑗 )⊤ ∼  2

(

𝟎,𝑨(𝑖𝑗),𝝎𝑨(𝑖𝑗) �̄�−1
𝑖,𝑗 𝜼𝑖,𝑗∕

√

1 + 𝜼⊤𝑖,𝑗 �̄�
−1
𝑖,𝑗 𝜼𝑖,𝑗

)

and 𝝎𝑨(𝑖𝑗) = {diag(𝑨(𝑖𝑗))}1∕2. The moments related to the 
distribution are obtained from Chapter 2 (univariate) and Chapter 5 (multivariate) of [13]. The rest of the proof is straightforward
and hence omitted. □

To this point, we have closed-form expressions of the mean vector and the variance–covariance matrix for the  
distribution. However, we cannot have a closed-form expression for its moment generating function or characteristic function. This
is because the distribution of any general affine transformation of the   distribution is not known.

3.5. Marginal skewness and kurtosis of  

Here we discuss some results related to the skewness and kurtosis of the   distribution. The Mardia’s measures of
ultivariate skewness and kurtosis [32] for the   distribution cannot be derived in closed form. However, their univariate

ounterparts can be derived. Similar to the skew-𝑡 distribution, the Pearson’s measures of skewness and excess-kurtosis are also
nbounded for the univariate   distribution, suggesting that it is also the case in the multivariate setting.

roposition 5. The Pearson’s measures of skewness and excess-kurtosis of 𝑌 ∼  1(0, 1, 1, 𝜂, ℎ) are 𝛾1 = 𝜇3∕𝜇
3∕2
2 and 𝛾2 = 𝜇4∕𝜇2

2−3,
where 𝜇2 = Var(𝑌 ), 𝜇3 = E{𝑌 − E(𝑌 )}3 = E(𝑌 3) − 3E(𝑌 2)E(𝑌 ) + 2E(𝑌 )2, 𝜇4 = E{𝑌 − E(𝑌 )}4 = E(𝑌 4) − 4E(𝑌 3)E(𝑌 ) + 6E(𝑌 2)E(𝑌 )2 − 3E(𝑌 )4

ith:

E(𝑌 3) =
√

2
𝜋

(1 + 𝜂2)3∕2

{1 − 3ℎ(1 + 𝜂2)}2

[

2𝜂3 + 3𝜂{1 − 3ℎ(1 + 𝜂2)}
{(1 + 𝜂2)(1 − 3ℎ)}3∕2

]

, ℎ < 1
3(1 + 𝜂2)

,

E(𝑌 4) =
3(1 + 𝜂2)

{1 − 4ℎ(1 + 𝜂2)}5∕2
, ℎ < 1

4(1 + 𝜂2)
.

Proof. The expressions of E(𝑌 ), E(𝑌 2), and Var(𝑌 ) are given in Proposition 4. Since 𝑌 ∼  (0, 1, 1, 𝜂, ℎ), we have 𝑌 = 𝜏ℎ(𝑍),
where 𝑍 ∼  (0, 1, 𝜂). Hence,

E(𝑌 3) = ∫R
𝑥3 exp(3ℎ𝑥2∕2)2𝜙(𝑥; 0, 1 + 𝜂2)𝛷

(

𝜂𝑥
√

1 + 𝜂2

)

d𝑥

= 1
√

1 − 3ℎ(1 + 𝜂2) ∫R
𝑥32𝜙

(

𝑥; 0,
(1 + 𝜂2)

1 − 3ℎ(1 + 𝜂2)

)

𝛷

(

𝜂
{1 − 3ℎ(1 + 𝜂2)}1∕2

(1 + 𝜂2)−1∕2

{1 − 3ℎ(1 + 𝜂2)}−1∕2
𝑥

)

d𝑥

= 1
√

1 − 3ℎ(1 + 𝜂2)
E(𝑋3) with 𝑋 ∼ 

(

0,
(1 + 𝜂2)

1 − 3ℎ(1 + 𝜂2)
,

𝜂
{1 − 3ℎ(1 + 𝜂2)}1∕2

)

=
√

2
𝜋

(1 + 𝜂2)3∕2

{1 − 3ℎ(1 + 𝜂2)}2

[

2𝜂3 + 3𝜂{1 − 3ℎ(1 + 𝜂2)}
{(1 + 𝜂2)(1 − 3ℎ)}3∕2

]

, ℎ < 1
3(1 + 𝜂2)

,

nd

E(𝑌 4) = ∫R
𝑥4 exp(2ℎ𝑥2)2𝜙(𝑥; 0, 1 + 𝜂2)𝛷

(

𝜂𝑥
√

1 + 𝜂2

)

d𝑥

= 1
√

1 − 4ℎ(1 + 𝜂2) ∫R
𝑥42𝜙

(

𝑥; 0,
(1 + 𝜂2)

1 − 4ℎ(1 + 𝜂2)

)

𝛷

{

𝜂
{1 − 4ℎ(1 + 𝜂2)}1∕2

(1 + 𝜂2)−1∕2

{1 − 4ℎ(1 + 𝜂2)}−1∕2
𝑥

}

d𝑥

= 1
√

E(𝑋4) with 𝑋 ∼ 
(

0,
(1 + 𝜂2)

2
,

𝜂
2 1∕2

)

7

1 − 4ℎ(1 + 𝜂2) 1 − 4ℎ(1 + 𝜂 ) {1 − 3ℎ(1 + 𝜂 )}
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Fig. 2. Plots of the measures of skewness and kurtosis for the  1(0, 1, 1, 𝜂, ℎ) distribution. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

Fig. 3. Boxplots of estimated 𝜈 parameter against the true ℎ parameter in (a) and estimated ℎ against the true 𝜈 parameter in (b). The red dots in each plot
orrespond to the means of the estimates based on 100 replicates. (For interpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

=
3(1 + 𝜂2)

{1 − 4ℎ(1 + 𝜂2)}5∕2
, ℎ < 1

4(1 + 𝜂2)
.

The 3rd and 4th order moments of the  distribution are obtained from Chapter 2 of [13]. □

We provide plots of the 𝛾1 and 𝛾2 measures for the  1(0, 1, 1, 𝜂, ℎ) distribution against 𝜂 and ℎ for different fixed ℎ and 𝜂,
respectively, in Fig. 2. From the plots, it is clear that the parameter 𝜂 dictates the extent of skewness in the distribution. Moreover,
for a fixed 𝜂, the extent of skewness increases with increase in ℎ and vice-versa. Similarly, the extent of the tail-thickness is dictated
by the parameter ℎ and for a fixed ℎ, the tail-thickness increases with increase in 𝜂 and vice-versa. Here we only plot 𝛾2 against
ℎ for positive 𝜂 as 𝛾2 is only a function of 𝜂2. The plots show how the effect of 𝜂 and ℎ on skewness and kurtosis are intertwined.
Nevertheless, we associate the parameter 𝜂 with the skewness and the parameter ℎ with the tail-thickness of the   distribution.
It is also worth pointing out from the plots that the 𝛾2 measure cannot be less than zero for the   distribution. Hence, the
  distribution is not suitable for scenarios when tail-thickness of the data is less than that of the Gaussian distribution.

The ℎ parameter of the   distribution is the counterpart of the 𝜈 parameter of the skew-𝑡 distribution since these two
arameters primarily control the tail-thickness in their respective distributions. The relationship between ℎ and 𝜈 is studied here
sing two simulation experiments. In the first experiment we simulate 500 realizations from  1(0, 1, 1, 1.5, ℎ), where ℎ varies
n the interval [0.02, 1]. We fit the skew-𝑡 distribution to the simulated   data for varying ℎ with the R [36] package sn [9]

and note the estimate of 𝜈. For each ℎ, we repeat this experiment 100 times and present the boxplots of 𝜈 estimates as a function of
ℎ in Fig. 3(a). Moreover, the estimates’ means are indicated by the red dots. Similar experiment results are provided in Fig. 3(b),
where we present the boxplots of the 100 estimates of ℎ obtained by fitting the   distribution to 100 replicates of size 500 from
the skew-𝑡 distribution with location, scale, and skewness parameter as 0, 1, and 1.5, with varying degrees of freedom 𝜈 ∈ [0.7, 5.3].
rom the two boxplots in Fig. 3, we can see how the two tail-thickness parameters of the   and the skew-𝑡 are related. As 𝜈
8
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Fig. 4. Curves obtained by smoothing the median of �̂�s from fitted bivariate skew-𝑡 based on 100 replicates from  2 as a function of true ℎ2 for different
alues of ℎ1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

n the skew-𝑡 distribution increases, the kurtosis decreases and that corresponds to the decrease in ℎ in the   distribution and
ice-versa.

A similar experiment in the bivariate case yields some interesting results. In this experiment, we simulate 500 realizations from

 2

((

0
0

)

, 𝐈2,
(

1 0.3
0.3 1

)

,
(

−1.5
2

)

,
(

ℎ1
ℎ2

))

with varying ℎ2 ∈ [0.01, 1], for fixed ℎ1 ∈ {0.2, 0.4, 0.6, 0.8, 1}. We fit a bivariate

skew-𝑡 distribution to the   data and note the estimate of 𝜈. Based on 100 replicates, we plot the median of �̂�s against ℎ2
for different ℎ1 in Fig. 4. Moreover, we smooth the curve using local polynomial fitting. From this plot we see that a particular �̂�
can be obtained for different pairs of ℎ1 and ℎ2. For instance, the line �̂� = 1 cuts all the curves in the plot. From here we conclude
that the skew-𝑡 distribution is not suitable for scenarios when there is a great disparity between marginal kurtosis. When ℎ2 is very
mall and ℎ1 is large, the skew-𝑡 model puts more emphasis on ℎ1 and the overall estimate of 𝜈 in that case becomes small, which
orresponds to heavier tail in the fitted distribution. As ℎ2 increases, the true distribution becomes more heavy-tailed but the fitted
istribution becomes less heavy-tailed.

.6. Conditional distribution of  

Before deriving the conditional distribution of the   family, we first discuss the result about the conditional distribution
f the  distribution. To do that, we need to revisit the family of the extended skew-normal distribution [4,6,8,19] but with the
-𝜼 parameterization, similar to the definition of the  distribution in Section 2.1. A 𝑝-variate random vector 𝒀 has an extended

kew-normal distribution if its pdf is

𝑓𝒀 (𝒚) =
1

𝛷(𝜏)
𝜙𝑝(𝒚; 𝝃 + 𝜏𝜼,𝜳 + 𝜼𝜼⊤)𝛷

⎧

⎪

⎨

⎪

⎩

𝜏 + 𝜼⊤𝜳−1(𝒚 − 𝝃)
√

1 + 𝜼⊤𝜳−1𝜼

⎫

⎪

⎬

⎪

⎭

, 𝒚 ∈ R𝑝, (7)

where 𝝃 ∈ R𝑝 is the location parameter, 𝜳 ∈ R𝑝×𝑝 is the symmetric positive definite scale matrix, 𝜼 ∈ R𝑝 is the skewness parameter,
and 𝜏 ∈ R is the extension parameter. We denote 𝒀 ∼  𝑝(𝝃,𝜳 , 𝜼, 𝜏). From the pdf of the  distribution in (7) we have, when
this extension parameter 𝜏 = 0, that the  distribution reduces to the  distribution. Like the  distribution, a random
vector 𝒀 ∼  𝑝(𝝃,𝜳 , 𝜼, 𝜏) also has a concise stochastic representation

𝒀 = 𝝃 + 𝜏𝜼 + 𝜼𝑈 +𝑾 , (8)

where 𝑈
𝑑
= (𝑍|𝑍 + 𝜏 > 0), 𝑍 ∼  (0, 1), 𝑾 ∼ 𝑝(𝟎,𝜳 ), and 𝑍 and 𝑾 are independently distributed. The last statement is directly

obtained from Proposition 1 of [6] (see (10) there with 𝜈 → ∞). As a consequence of this stochastic representation, the marginals
of the  distribution also remain in the same family and the parameters of the marginal distribution are just the corresponding
marginal parameters, similar to the  distribution. We need this definition of the  distribution because the conditionals of
the  family belong to the  family.

Let 𝒀 ∼  𝑝(𝝃,𝜳 , 𝜼), and consider the partition of 𝒀 = (𝒀 ⊤
1 , 𝒀

⊤
2 )

⊤ with 𝒀 𝑖 of size 𝑝𝑖 (𝑖 ∈ {1, 2}) and such that 𝑝1 + 𝑝2 = 𝑝,
with corresponding partitions of the parameters in blocks of matching sizes. Then the conditional distribution of 𝒀 1 given 𝒀 2 = 𝒚2,
𝒚2 ∈ R𝑝2 , is

(𝒀 1|𝒀 2 = 𝒚2) ∼  𝑝1 (𝝃1.2, �̄� 11.2, �̄�1.2, 𝜏1.2), (9)

where 𝝃1.2 = 𝝃1 +𝜳 12𝜳−1
22 (𝒚2 − 𝝃2), 𝜳 11.2 = 𝜳 11 −𝜳 12𝜳−1

22𝜳 21, 𝜼1.2 = 𝜼1 −𝜳 12𝜳−1
22 𝜼2, �̄�1.2 = 𝜼1.2∕

√

1 + 𝜼⊤2𝜳
−1
22 𝜼2, and 𝜏1.2 = 𝜼⊤2𝜳

−1
22 (𝒚2 −

𝝃2)∕
√

1 + 𝜼⊤2𝜳
−1
22 𝜼2. This result can be verified by the fact that the conditional distribution of the  family belongs to the

extended skew-normal distribution proposed by [6] (see Section 5.3.2 in [13]) and by reparameterizing to the 𝜳 -𝜼 parameterization.
9
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In the next proposition we derive the conditional distribution of the   family. We show that the conditional distributions
f the  family and the   family are related.

roposition 6. Let 𝒀 ∼  𝑝(𝝃,𝝎, �̄� , 𝜼,𝒉), and consider the partition of 𝒀 = (𝒀 ⊤
1 , 𝒀

⊤
2 )

⊤ with 𝒀 𝑖 of size 𝑝𝑖 (𝑖 ∈ {1, 2}) and such
hat 𝑝1 + 𝑝2 = 𝑝, with corresponding partitions of the parameters in blocks of matching sizes. Then the conditional distribution of 𝒀 1 given
2 = 𝒚2 is

(𝒀 1|𝒀 2 = 𝒚2)
𝑑
= 𝝉𝒉1 (𝒀 0), 𝒀 0 ∼  𝑝1 (𝝃1.2, �̄� 11.2, �̄�1.2, 𝜏1.2),

here 𝝃1.2 = �̄� 12�̄�
−1
22 𝒈2(𝒚2), �̄� 11.2 = �̄� 11 − �̄� 12�̄�

−1
22 �̄� 21, 𝝉𝒉1 (⋅) is the same as in (4), 𝒈(𝒚) is the same as in (5), 𝒈(𝒚) = {𝒈1(𝒚1), 𝒈2(𝒚2)}⊤

with 𝒈1(𝒚1) = {𝑔1(𝑦1),… , 𝑔𝑝1 (𝑦𝑝1 )}
⊤ and 𝒈2(𝒚2) = {𝑔𝑝1+1(𝑦𝑝1+1),… , 𝑔𝑝(𝑦𝑝)}⊤, �̄�1.2 = (𝜼1 − �̄� 12�̄�

−1
22 𝜼2)∕

√

1 + 𝜼⊤2 �̄�
−1
22 𝜼2, and 𝜏1.2 =

𝜼⊤2 �̄�
−1
22 𝒈2(𝒚2)∕

√

1 + 𝜼⊤2 �̄�
−1
22 𝜼2.

roof. From Proposition 3, the marginal pdf of 𝒀 2 is

𝑓𝒀 2
(𝒚2) = 2𝜙𝑝2{𝒈2(𝒚2); 𝟎, �̄� 22 + 𝜼2𝜼⊤2 }𝛷

{

𝜼⊤2 �̄�
−1
22 𝒈2(𝒚2)

√

1 + 𝜼⊤2 �̄�
−1
22 𝜼2

} 𝑝
∏

𝑖=𝑝1+1

⎧

⎪

⎨

⎪

⎩

1
𝜔𝑖𝑖

⎛

⎜

⎜

⎝

exp[ 12𝑊0{ℎ𝑖(
𝑦𝑖−𝜉𝑖
𝜔𝑖𝑖

)2}]

ℎ𝑖(
𝑦𝑖−𝜉𝑖
𝜔𝑖𝑖

)2 + exp[𝑊0{ℎ𝑖(
𝑦𝑖−𝜉𝑖
𝜔𝑖𝑖

)2}]

⎞

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

, 𝒚2 ∈ R𝑝2 .

Hence, the conditional pdf of 𝒀 1|𝒀 2 = 𝒚2 is, for 𝑦1 ∈ R𝑝
1:

𝑓𝒀 1|𝒀 2=𝒚2 (𝒚1) =
𝑓𝒀 (𝒚)
𝑓𝒀 2

(𝒚2)
=

𝜙𝑝{𝒈(𝒚); 𝟎, �̄� + 𝜼𝜼⊤}𝛷
⎧

⎪

⎨

⎪

⎩

𝜼⊤�̄�−1𝒈(𝒚)
√

1 + 𝜼⊤�̄�−1𝜼

⎫

⎪

⎬

⎪

⎭

𝜙𝑝2{𝒈2(𝒚2); 𝟎, �̄� 22 + 𝜼2𝜼⊤2 }𝛷
⎧

⎪

⎨

⎪

⎩

𝜼⊤2 �̄�
−1
22 𝒈2(𝒚2)

√

1 + 𝜼⊤2 �̄�
−1
22 𝜼2

⎫

⎪

⎬

⎪

⎭

𝑝1
∏

𝑖=1

⎧

⎪

⎨

⎪

⎩

1
𝜔𝑖𝑖

⎛

⎜

⎜

⎝

exp[ 12𝑊0{ℎ𝑖(
𝑦𝑖−𝜉𝑖
𝜔𝑖𝑖

)2}]

ℎ𝑖(
𝑦𝑖−𝜉𝑖
𝜔𝑖𝑖

)2 + exp[𝑊0{ℎ𝑖(
𝑦𝑖−𝜉𝑖
𝜔𝑖𝑖

)2}]

⎞

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

.

rom the pdf given above, we can see that it is the density function of 𝝉𝒉1 (𝒀 0), where 𝒀 0
d
= [𝒁1|{𝒁2 = 𝒈2(𝒚2)}] and 𝒁 = (𝒁⊤

1 ,𝒁
⊤
2 )

⊤ ∼
 𝑝(𝟎, �̄� , 𝜼). Hence, from (9), we have 𝒀 0 ∼  𝑝1 (𝝃1.2, �̄� 11.2, �̄�1.2, 𝜏1.2). □

Since the conditional distribution of the   family can be viewed as a component-wise Tukey-ℎ transformation on the
 , closed-form expressions of its mean vector and variance–covariance matrix can be derived. The conditional mean and the
ariance–covariance matrix will be helpful for using the   model for various formal statistical purposes such as regression
odeling, time-series analysis, and spatial modeling. In the next three propositions we provide the mathematical expressions of the

lements of the conditional mean vector and the conditional variance–covariance matrix.

roposition 7. Let 𝒀 0 be defined as in Proposition 6. The mean vector 𝝁 = E{𝝉𝒉1 (𝒀 0)} is:

𝜇𝑖 =
1

√

1 − (�̄�11.2𝑖𝑖 + �̄�21.2𝑖 )ℎ𝑖
exp

⎧

⎪

⎨

⎪

⎩

(𝜉1.2𝑖 + 𝜏1.2�̄�1.2𝑖 )
2ℎ𝑖

2(1 − (�̄�11.2𝑖𝑖 + �̄�21.2𝑖 )ℎ𝑖)

⎫

⎪

⎬

⎪

⎭

𝛷(𝜏𝑖)
𝛷(𝜏1.2)

{

𝜉𝑖 + �̃�𝑖𝛿𝑖
𝜙(𝜏𝑖)
𝛷(𝜏𝑖)

}

,

where 𝝃1.2 = (𝜉1.21 ,… , 𝜉1.2𝑝1 )
⊤, diag(�̄� 11.2) = (�̄�11.211 ,… , �̄�11.2𝑝1𝑝1

)⊤, �̄�1.2 = (�̄�1.21 ,… , �̄�1.2𝑝1 )
⊤, 𝜉𝑖 =

𝜉1.2𝑖+𝜏1.2 �̄�1.2𝑖
1−(�̄�11.2𝑖𝑖+�̄�

2
1.2𝑖

)ℎ𝑖
, �̃�𝑖 =

√

�̄�11.2𝑖𝑖+�̄�
2
1.2𝑖

1−(�̄�11.2𝑖𝑖+�̄�
2
1.2𝑖

)ℎ𝑖
,

̃ 𝑖 =
�̄�1.2𝑖

√

�̄�11.2𝑖𝑖

1
√

1−(�̄�11.2𝑖𝑖+�̄�
2
1.2𝑖

)ℎ𝑖
, �̃�0𝑖 =

𝜏1.2
√

�̄�11.2𝑖𝑖+
�̄�1.2𝑖

√

�̄�11.2𝑖𝑖

{

𝜏1.2 �̄�1.2𝑖+𝜉1.2𝑖 (�̄�11.2𝑖𝑖+�̄�
2
1.2𝑖

)ℎ𝑖

1−(�̄�11.2𝑖𝑖+�̄�
2
1.2𝑖

)ℎ𝑖

}

√

�̄�11.2𝑖𝑖+�̄�
2
1.2𝑖

, 𝛿𝑖 = �̃�𝑖
√

1+�̃�𝑖
2 , 𝜏𝑖 =

�̃�0𝑖
√

1+�̃�2𝑖
, ℎ𝑖 < 1

�̄�11.2𝑖𝑖+�̄�
2
1.2𝑖

,

∈ {1,… , 𝑝1}.

roof. From (8) it can be established that 𝑌0𝑖 ∼  1(𝜉1.2𝑖 , �̄�11.2𝑖𝑖 , �̄�1.2𝑖 , 𝜏1.2), 𝑖 ∈ {1,… , 𝑝1}. Then:

𝜇𝑖 = E(𝑌0𝑖 ) = ∫R
𝑥 exp(ℎ𝑖𝑥2∕2)

1
𝛷(𝜏1.2)

𝜙(𝑥; 𝜉1.2𝑖 + 𝜏1.2�̄�1.2𝑖 , �̄�11.2𝑖𝑖 + �̄�21.2𝑖 )𝛷

⎧

⎪

⎨

⎪

⎩

𝜏1.2 + �̄�1.2𝑖 (𝑥 − 𝜉1.2𝑖 )∕�̄�11.2𝑖𝑖
√

1 + �̄�21.2𝑖∕�̄�11.2𝑖𝑖

⎫

⎪

⎬

⎪

⎭

d𝑥

= exp
⎡

⎢

⎢

(𝜉1.2𝑖 + 𝜏1.2�̄�1.2𝑖 )
2ℎ𝑖

2{1 − (�̄�11.2 + �̄�2 )ℎ𝑖}

⎤

⎥

⎥

1
𝛷(𝜏1.2)

1
√

2𝜋
√

�̄� + �̄�2
10
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𝜔

P

× ∫R
𝑥 exp

⎡

⎢

⎢

⎢

⎢

⎣

−1
2

{

𝑥 −
𝜉1.2𝑖+𝜏1.2 �̄�1.2𝑖

1−(�̄�11.2𝑖𝑖+�̄�
2
1.2𝑖

)ℎ𝑖

}2

{

�̄�11.2𝑖𝑖+�̄�
2
1.2𝑖

1−(�̄�11.2𝑖𝑖+�̄�
2
1.2𝑖

)ℎ𝑖

}

⎤

⎥

⎥

⎥

⎥

⎦

𝛷

⎧

⎪

⎨

⎪

⎩

𝜏1.2 + �̄�1.2𝑖 (𝑥 − 𝜉1.2𝑖 )∕�̄�11.2𝑖𝑖
√

1 + �̄�21.2𝑖∕�̄�11.2𝑖𝑖

⎫

⎪

⎬

⎪

⎭

d𝑥

= exp

⎧

⎪

⎨

⎪

⎩

(𝜉1.2𝑖 + 𝜏1.2�̄�1.2𝑖 )
2ℎ𝑖

2(1 − (�̄�11.2𝑖𝑖 + �̄�21.2𝑖 )ℎ𝑖)

⎫

⎪

⎬

⎪

⎭

1
√

1 − (�̄�11.2𝑖𝑖 + �̄�21.2𝑖 )ℎ𝑖

𝛷(𝜏𝑖)
𝛷(𝜏1.2) ∫R

𝑥 1
𝛷(𝜏𝑖)

𝜙(𝑥; 𝜉𝑖, �̃�2
𝑖 )𝛷{�̃�0𝑖 + �̃�𝑖�̃�

−1
𝑖 (𝑥 − 𝜉𝑖)}d𝑥

= 1
√

1 − (�̄�11.2𝑖𝑖 + �̄�21.2𝑖 )ℎ𝑖
exp

⎧

⎪

⎨

⎪

⎩

(𝜉1.2𝑖 + 𝜏1.2�̄�1.2𝑖 )
2ℎ𝑖

2(1 − (�̄�11.2𝑖𝑖 + �̄�21.2𝑖 )ℎ𝑖)

⎫

⎪

⎬

⎪

⎭

𝛷(𝜏𝑖)
𝛷(𝜏1.2)

{

𝜉𝑖 + �̃�𝑖𝛿𝑖
𝜙(𝜏𝑖)
𝛷(𝜏𝑖)

}

.

The last step is obtained from the moments of the extended skew-normal distribution from [13] (see Section 5.3.4). □

Proposition 8. Let 𝒀 0 be defined as in Proposition 6, and let 𝜮 = (𝜎𝑖𝑗 ) = Var{𝝉𝒉1 (𝒀 0)}. Then:

𝜎𝑖𝑖 =
1

√

1 − 2(�̄�11.2𝑖𝑖 + �̄�21.2𝑖 )ℎ𝑖
exp

⎧

⎪

⎨

⎪

⎩

(𝜉1.2𝑖 + 𝜏�̄�1.2𝑖 )
2ℎ𝑖

1 − 2(�̄�11.2𝑖𝑖 + �̄�21.2𝑖 )ℎ𝑖

⎫

⎪

⎬

⎪

⎭

𝛷(𝜏𝑖)
𝛷(𝜏1.2)

{

𝜉2𝑖 + �̃�2
𝑖 − 𝜏𝑖

𝜙(𝜏𝑖)
𝛷(𝜏𝑖)

�̃�2
𝑖 𝛿

2
𝑖 + 2

𝜙(𝜏𝑖)
𝛷(𝜏𝑖)

𝜉𝑖�̃�𝑖𝛿𝑖

}

− 𝜇2
𝑖 ,

where 𝝃1.2 = (𝜉1.21 ,… , 𝜉1.2𝑝1 )
⊤, diag(�̄� 11.2) = (�̄�11.211 ,… , �̄�11.2𝑝1𝑝1

)⊤, �̄�1.2 = (�̄�1.21 ,… , �̄�1.2𝑝1 )
⊤, 𝜉𝑖 =

𝜉1.2𝑖+𝜏1.2 �̄�1.2𝑖
1−2(�̄�11.2𝑖𝑖+�̄�

2
1.2𝑖

)ℎ𝑖
,

̃ 𝑖 =

√

�̄�11.2𝑖𝑖+�̄�
2
1.2𝑖

1−2(�̄�11.2𝑖𝑖+�̄�
2
1.2𝑖

)ℎ𝑖
, �̃�𝑖 =

�̄�1.2𝑖
√

�̄�11.2𝑖𝑖

1
√

1−2(�̄�11.2𝑖𝑖+�̄�
2
1.2𝑖

)ℎ𝑖
, �̃�0𝑖 =

𝜏1.2
√

�̄�11.2𝑖𝑖+
�̄�1.2𝑖

√

�̄�11.2𝑖𝑖

{

𝜏1.2 �̄�1.2𝑖+2𝜉1.2𝑖 (�̄�11.2𝑖𝑖+�̄�
2
1.2𝑖

)ℎ𝑖

1−2(�̄�11.2𝑖𝑖+�̄�
2
1.2𝑖

)ℎ𝑖

}

√

�̄�11.2𝑖𝑖+�̄�
2
1.2𝑖

, 𝛿𝑖 =
�̃�𝑖

√

1+�̃�𝑖
2 , 𝜏𝑖 =

�̃�0𝑖
√

1+�̃�2𝑖
,

𝜇𝑖 is the same as in Proposition 7, and ℎ𝑖 <
1

2(�̄�11.2𝑖𝑖+�̄�
2
1.2𝑖

)
, 𝑖 ∈ {1,… , 𝑝1}.

roof. We have:

E(𝑌 2
0𝑖
) = ∫R

𝑥2 exp(ℎ𝑖𝑥2)
1

𝛷(𝜏1.2)
𝜙(𝑥; 𝜉1.2𝑖 + 𝜏1.2�̄�1.2𝑖 , �̄�11.2𝑖𝑖 + �̄�21.2𝑖 )𝛷

⎧

⎪

⎨

⎪

⎩

𝜏1.2 + �̄�1.2𝑖 (𝑥 − 𝜉1.2𝑖 )∕�̄�11.2𝑖𝑖
√

1 + �̄�21.2𝑖∕�̄�11.2𝑖𝑖

⎫

⎪

⎬

⎪

⎭

d𝑥

= exp

⎧

⎪

⎨

⎪

⎩

(𝜉1.2𝑖 + 𝜏1.2�̄�1.2𝑖 )
2ℎ𝑖

1 − 2(�̄�11.2𝑖𝑖 + �̄�21.2𝑖 )ℎ𝑖

⎫

⎪

⎬

⎪

⎭

1
𝛷(𝜏1.2)

1
√

2𝜋
√

�̄�11.2𝑖𝑖 + �̄�21.2𝑖

× ∫R
𝑥2 exp

⎡

⎢

⎢

⎢

⎢

⎣

−1
2

{

𝑥 −
𝜉1.2𝑖+𝜏1.2 �̄�1.2𝑖

1−2(�̄�11.2𝑖𝑖+�̄�
2
1.2𝑖

)ℎ𝑖

}2

�̄�11.2𝑖𝑖+�̄�
2
1.2𝑖

1−2(�̄�11.2𝑖𝑖+�̄�
2
1.2𝑖

)ℎ𝑖

⎤

⎥

⎥

⎥

⎥

⎦

𝛷

⎧

⎪

⎨

⎪

⎩

𝜏1.2 + �̄�1.2𝑖 (𝑥 − 𝜉1.2𝑖 )∕�̄�11.2𝑖𝑖
√

1 + �̄�21.2𝑖∕�̄�11.2𝑖𝑖

⎫

⎪

⎬

⎪

⎭

d𝑥

= exp

⎧

⎪

⎨

⎪

⎩

(𝜉1.2𝑖 + 𝜏1.2�̄�1.2𝑖 )
2ℎ𝑖

1 − 2(�̄�11.2𝑖𝑖 + �̄�21.2𝑖 )ℎ𝑖

⎫

⎪

⎬

⎪

⎭

1
√

1 − 2(�̄�11.2𝑖𝑖 + �̄�21.2𝑖 )ℎ𝑖

𝛷(𝜏𝑖)
𝛷(𝜏1.2) ∫R

𝑥2 1
𝛷(𝜏𝑖)

𝜙(𝑥; 𝜉𝑖, �̃�2
𝑖 )𝛷{�̃�0𝑖 + �̃�𝑖�̃�

−1
𝑖 (𝑥 − 𝜉𝑖)}d𝑥

= 1
√

1 − 2(�̄�11.2𝑖𝑖 + �̄�21.2𝑖 )ℎ𝑖
exp

⎧

⎪

⎨

⎪

⎩

(𝜉1.2𝑖 + 𝜏�̄�1.2𝑖 )
2ℎ𝑖

1 − 2(�̄�11.2𝑖𝑖 + �̄�21.2𝑖 )ℎ𝑖

⎫

⎪

⎬

⎪

⎭

𝛷(𝜏𝑖)
𝛷(𝜏1.2)

{

𝜉2𝑖 + �̃�2
𝑖 − 𝜏𝑖

𝜙(𝜏𝑖)
𝛷(𝜏𝑖)

�̃�2
𝑖 𝛿

2
𝑖 + 2

𝜙(𝜏𝑖)
𝛷(𝜏𝑖)

𝜉𝑖�̃�𝑖𝛿𝑖

}

,

The last step is obtained from the moments of the extended skew-normal distribution from [13] (see Section 5.3.4). □

Proposition 9. Let 𝒀 0 be defined as in Proposition 6, and let 𝜮 = (𝜎𝑖𝑗 ) = Var{𝝉𝒉1 (𝒀 0)}. Then:

𝜎𝑖𝑗 =

√

det{(𝜴−1
𝑖,𝑗 −𝑯 𝑖,𝑗 )−1}

√

det(𝜴𝑖,𝑗 )
exp

[

−1
2
{�̃�⊤

𝑖,𝑗𝜴
−1
𝑖,𝑗 �̃�𝑖,𝑗 − �̃�⊤

𝑖,𝑗 (𝜴𝑖,𝑗 −𝜴𝑖,𝑗𝑯 𝑖,𝑗𝜴𝑖,𝑗 )−1�̃�𝑖,𝑗}
]

×
𝛷(𝜏𝑖,𝑗 )
𝛷(𝜏1.2)

{

(�̃�𝑖,𝑗 )12 − 𝜏𝑖,𝑗
𝜙(𝜏𝑖,𝑗 )
𝛷(𝜏𝑖,𝑗 )

(�̃�𝑖,𝑗 )11(�̃�𝑖,𝑗 )22(�̃�𝑖,𝑗 )1(�̃�𝑖,𝑗 )2 + 𝜉1.2𝑖𝜉1.2𝑗

+
𝜙(𝜏𝑖,𝑗 )
𝛷(𝜏𝑖,𝑗 )

𝜉1.2𝑖 (�̃�𝑖,𝑗 )22(�̃�𝑖,𝑗 )2 +
𝜙(𝜏𝑖,𝑗 )
𝛷(𝜏𝑖,𝑗 )

𝜉1.2𝑗 (�̃�𝑖,𝑗 )11(�̃�𝑖,𝑗 )1

}

− 𝜇𝑖𝜇𝑗 ,
11
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𝑖

P

𝑯

a

𝑯

where 𝝃𝑖,𝑗 = (𝜉1.2𝑖 , 𝜉1.2𝑗 )
⊤, 𝜳 𝑖,𝑗 =

(

�̄�11.2𝑖𝑖 �̄�11.2𝑖𝑗
�̄�11.2𝑖𝑗 �̄�11.2𝑗𝑗

)

, 𝜼𝑖,𝑗 = (�̄�1.2𝑖 , �̄�1.2𝑗 )
⊤, 𝜴𝑖,𝑗 = 𝜳 𝑖,𝑗 + 𝜼𝑖,𝑗𝜼⊤𝑖,𝑗 , �̃�𝑖,𝑗 = 𝝃𝑖,𝑗 + 𝜏1.2𝜼𝑖,𝑗 , 𝑯 𝑖,𝑗 =

(

ℎ𝑖 0
0 ℎ𝑗

)

,

�̃�𝑖,𝑗 = (𝐈2−𝜴𝑖,𝑗𝑯 𝑖,𝑗 )−1�̃�𝑖,𝑗 , �̃�𝑖,𝑗 = (𝜴−1
𝑖,𝑗 −𝑯 𝑖,𝑗 )−1, �̃�0𝑖,𝑗 =

𝜏1.2+𝜼⊤𝑖,𝑗𝜳
−1
𝑖,𝑗 (�̃�𝑖,𝑗−𝝃𝑖,𝑗 )

√

1+𝜼⊤𝑖,𝑗𝜳
−1
𝑖,𝑗 𝜼𝑖,𝑗

, �̃�𝑖,𝑗 =
�̃�𝑖,𝑗𝜳−1

𝑖,𝑗 𝜼𝑖,𝑗
√

1+𝜼⊤𝑖,𝑗𝜳
−1
𝑖,𝑗 𝜼𝑖,𝑗

, �̃�𝑖,𝑗 = {diag(�̃�𝑖,𝑗 )}1∕2, ̄̃𝜴𝑖,𝑗 = �̃�−1
𝑖,𝑗 �̃�𝑖,𝑗 �̃�−1

𝑖,𝑗 ,

𝜹𝑖,𝑗 = (1 + �̃�⊤
𝑖,𝑗

̄̃𝜴𝑖,𝑗 �̃�𝑖,𝑗 )−1∕2 ̄̃𝜴𝑖,𝑗 �̃�𝑖,𝑗 , 𝜇𝑖, 𝜇𝑗 are the same as in Proposition 7, and ℎ𝑖 <
1

2(�̄�11.2𝑖𝑖+�̄�
2
1.2𝑖

)
, ℎ𝑗 < 1

2(�̄�11.2𝑗𝑗 +�̄�
2
1.2𝑗

)
, 𝑖, 𝑗 ∈ {1,… , 𝑝1},

≠ 𝑗.

roof. We have, for 𝒙𝑖,𝑗 = (𝑥𝑖, 𝑥𝑗 )⊤:

E(𝑌𝑖𝑌𝑗 ) = ∫R2
𝑥𝑖𝑥𝑗 exp(ℎ𝑖𝑥2𝑖 ∕2) exp(ℎ𝑗𝑥

2
𝑗∕2)

𝜙2(𝒙𝑖,𝑗 ; 𝝃𝑖,𝑗 + 𝜏1.2𝜼𝑖,𝑗 ,𝜳 𝑖,𝑗 + 𝜼𝑖,𝑗𝜼⊤𝑖,𝑗 )

𝛷(𝜏1.2)
𝛷

⎧

⎪

⎨

⎪

⎩

𝜏1.2 + 𝜼⊤𝑖,𝑗𝜳
−1
𝑖,𝑗 (𝒙𝑖,𝑗 − 𝝃𝑖,𝑗 )

√

1 + 𝜼⊤𝑖,𝑗𝜳
−1
𝑖,𝑗 𝜼𝑖,𝑗

⎫

⎪

⎬

⎪

⎭

d𝒙𝑖,𝑗

=

√

det{(𝜴−1
𝑖,𝑗 −𝑯 𝑖,𝑗 )−1}

√

det(𝜴𝑖,𝑗 )
exp

[

−1
2
{�̃�⊤

𝑖,𝑗𝜴
−1
𝑖,𝑗 �̃�𝑖,𝑗 − �̃�⊤

𝑖,𝑗 (𝜴𝑖,𝑗 −𝜴𝑖,𝑗𝑯 𝑖,𝑗𝜴𝑖,𝑗 )−1�̃�𝑖,𝑗}
]

× 1
𝛷(𝜏1.2) ∫R2

𝑥𝑖𝑥𝑗𝜙2

(

𝒙𝑖,𝑗 ; (𝐈2 −𝜴𝑖,𝑗𝑯 𝑖,𝑗 )−1�̃�𝑖,𝑗 , (𝜴−1
𝑖,𝑗 −𝑯 𝑖,𝑗 )−1

)

𝛷

⎧

⎪

⎨

⎪

⎩

𝜏1.2 + 𝜼⊤𝑖,𝑗𝜳
−1
𝑖,𝑗 (𝒙𝑖,𝑗 − 𝝃𝑖,𝑗 )

√

1 + 𝜼⊤𝑖,𝑗𝜳
−1
𝑖,𝑗 𝜼𝑖,𝑗

⎫

⎪

⎬

⎪

⎭

d𝒙𝑖,𝑗

=

√

det{(𝜴−1
𝑖,𝑗 −𝑯 𝑖,𝑗 )−1}

√

det(𝜴𝑖,𝑗 )
exp

[

−1
2
{�̃�⊤

𝑖,𝑗𝜴
−1
𝑖,𝑗 �̃�𝑖,𝑗 − �̃�⊤

𝑖,𝑗 (𝜴𝑖,𝑗 −𝜴𝑖,𝑗𝑯 𝑖,𝑗𝜴𝑖,𝑗 )−1�̃�𝑖,𝑗}
]

× 1
𝛷(𝜏1.2) ∫R2

𝑥𝑖𝑥𝑗𝜙2(𝒙𝑖,𝑗 ; �̃�𝑖,𝑗 , �̃�𝑖,𝑗 )𝛷{�̃�0𝑖,𝑗 + �̃�⊤
𝑖,𝑗 �̃�

−1
𝑖,𝑗 (𝒙𝑖,𝑗 − �̃�𝑖,𝑗 )}d𝒙𝑖,𝑗

=

√

det{(𝜴−1
𝑖,𝑗 −𝑯 𝑖,𝑗 )−1}

√

det(𝜴𝑖,𝑗 )
exp

[

−1
2
{�̃�⊤

𝑖,𝑗𝜴
−1
𝑖,𝑗 �̃�𝑖,𝑗 − �̃�⊤

𝑖,𝑗 (𝜴𝑖,𝑗 −𝜴𝑖,𝑗𝑯 𝑖,𝑗𝜴𝑖,𝑗 )−1�̃�𝑖,𝑗}
]

×
𝛷(𝜏𝑖,𝑗 )
𝛷(𝜏1.2)

{

(�̃�𝑖,𝑗 )12 − 𝜏𝑖,𝑗
𝜙(𝜏𝑖,𝑗 )
𝛷(𝜏𝑖,𝑗 )

(�̃�𝑖,𝑗 )11(�̃�𝑖,𝑗 )22(�̃�𝑖,𝑗 )1(�̃�𝑖,𝑗 )2 + 𝜉1.2𝑖𝜉1.2𝑗

+
𝜙(𝜏𝑖,𝑗 )
𝛷(𝜏𝑖,𝑗 )

𝜉1.2𝑖 (�̃�𝑖,𝑗 )22(�̃�𝑖,𝑗 )2 +
𝜙(𝜏𝑖,𝑗 )
𝛷(𝜏𝑖,𝑗 )

𝜉1.2𝑗 (�̃�𝑖,𝑗 )11(�̃�𝑖,𝑗 )1

}

.

The last step is obtained from the moments of the extended skew-normal distribution from [13] (see Section 5.3.4). □

3.7. Canonical form of the   distribution

Consider a 𝑝-variate random vector 𝑿 ∼  𝑝(𝝃,𝜴,𝜶). It can be shown that there exists a matrix 𝑯 ∈ R𝑝×𝑝 such that
(𝑿 − 𝝃) ∼  𝑝(𝟎, 𝐈𝑝,𝜶∗), where 𝜶∗ = (𝛼∗, 0,… , 0)⊤, 𝛼∗ =

√

𝜶⊤�̄�𝜶, and 𝜴 = 𝝎�̄�𝝎. [18] showed that the matrix 𝑯 is of the
form 𝑯 = 𝑸𝜴−1∕2, where 𝑸 is obtained from the spectral decomposition of 𝑸⊤𝜦𝑸 = 𝜴−1∕2𝜮𝜴−1∕2, 𝜮 = Var(𝑿) = 𝜴 − 2

𝜋𝝎𝜹𝜹
⊤𝝎,

nd 𝜹 = (1 + 𝜶⊤�̄�𝜶)−1∕2�̄�𝜶. The distribution of 𝑯(𝑿 − 𝝃) is defined as the canonical form of the  distribution.
Similarly, we can define the canonical form of the  distribution. Consider a random vector 𝑿 ∼  𝑝(𝝃,𝜳 , 𝜼). Using

𝜴 = 𝜳 + 𝜼𝜼⊤ and 𝜼 = 𝝎𝜹, the relations between the parameterizations of the  and the  , the distribution of 𝑯(𝑿 − 𝝃)
is obtained as  𝑝(𝟎, 𝐈𝑝 −

𝜶∗𝜶∗⊤

1+𝜶∗⊤𝜶∗ ,
𝜶∗

√

1+𝜶∗⊤𝜶∗
). Hence, the canonical form of the  distribution is defined by the distribution of

∗(𝑿 − 𝝃) ∼  𝑝(𝟎, 𝐈𝑝, 𝜼∗), where 𝜼∗ = (𝜂∗, 0,… , 0)⊤, 𝜂∗ =
√

𝜶⊤�̄�𝜶, and 𝑯∗ =

(

√

1 + 𝜶⊤�̄�𝜶 𝟎⊤
𝟎 𝐈𝑝−1

)

𝑯 .

The canonical form of the  or the  distribution is useful for deriving Mardia’s measures of multivariate skewness and
kurtosis [32] and the measures of multivariate skewness and kurtosis introduced by [31] since they are invariant under affine
transformations of the variable. Moreover, using the canonical form, the unique mode of the  distribution can be derived;
see Proposition 5.14 in [13]. Hence, the canonical form is used mainly to reduce the dimensionality of various problems when
applicable.

For the   distribution, we define the canonical form by taking the component-wise Tukey-ℎ transformation of the canonical
form of the latent  random vector.

Proposition 10. Suppose 𝒀 ∼  𝑝(𝝃,𝝎, �̄� , 𝜼,𝒉). We define the canonical form of the   by the distribution of

−1 ∗ ∗ −1 −1 ∗
12

𝝎 (𝒀 − 𝝃) = 𝝉𝒉[𝑯 𝝉𝒉 {𝝎 (𝒀 − 𝝃)}] ∼  𝑝(𝟎, 𝐈𝑝, 𝐈𝑝, 𝜼 ,𝒉),
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𝜼

t

𝑯

m
t

4

l

𝑖
e

where 𝝉−1𝒉 (𝒛) = {𝜏−1ℎ1
(𝑧1),… , 𝜏−1ℎ𝑝

(𝑧𝑝)}⊤, 𝜏−1ℎ (𝑧) is same as in (6), 𝜼∗ = (𝜂∗, 0,… , 0)⊤, 𝜂∗ =
√

𝜶⊤�̄�𝜶, 𝜴 = �̄� + 𝜼𝜼⊤, 𝜶 = (1 +

⊤�̄�−1𝜼)−1∕2{diag(𝜴)}1∕2�̄�−1𝜼, �̄� = {diag(𝜴)}−1∕2𝜴{diag(𝜴)}−1∕2, 𝑯∗ =

(

√

1 + 𝜶⊤�̄�𝜶 𝟎⊤
𝟎 𝐈𝑝−1

)

𝑯 , 𝑯 = 𝑸𝜴−1∕2, 𝑸 is obtained from

he spectral decomposition of 𝑸⊤𝜦𝑸 = 𝜴−1∕2𝜮𝜴−1∕2, and 𝜮 = �̄� +
(

1 − 2
𝜋

)

𝜼𝜼⊤.

Proof. We have 𝒀 = 𝝃 + 𝝎𝝉𝒉(𝒁), where 𝒁 ∼  𝑝(𝟎, �̄� , 𝜼). Moreover, let 𝒁∗ be the canonical transform of 𝒁, and 𝒁∗ =

∗𝒁 ∼  𝑝(𝟎, 𝐈𝑝, 𝜼∗). Here, 𝑯∗ =

(

√

1 + 𝜶⊤�̄�𝜶 𝟎⊤
𝟎 𝐈𝑝−1

)

𝑯 , 𝑯 = 𝑸𝜴−1∕2, 𝑸 is obtained from the spectral decomposition of

𝑸⊤𝜦𝑸 = 𝜴−1∕2𝜮𝜴−1∕2, and 𝜮 = Var(𝒁) = �̄� +
(

1 − 2
𝜋

)

𝜼𝜼⊤. Hence, 𝝎−1(𝒀 − 𝝃) = 𝝉𝒉(𝒁∗) ∼  𝑝(𝟎, 𝐈𝑝, 𝐈𝑝, 𝜼∗,𝒉). □

Since the canonical form of the   distribution is not exactly an affine transformation, it cannot be used for deriving the
easures of multivariate skewness and kurtosis introduced by [31,32]. However, it can be used for reducing the dimensionality of

he problem, when applicable, such as simulating observations from the   distribution.

. Inference for the   distribution

In this section, we discuss how to estimate parameters and perform tests for the   distribution.

4.1. Parameter estimation for the   distribution

To estimate the parameters of the   distribution, we use the method of maximizing the likelihood function. Suppose
𝒀 1,… , 𝒀 𝑛 is a random sample of size 𝑛 from the  𝑝(𝝃,𝝎, �̄� , 𝜼,𝒉) distribution with 𝒀 𝑖 = (𝑌𝑖1,… , 𝑌𝑖𝑝)⊤, 𝑖 ∈ {1,… , 𝑛}. For an
observed sample 𝒚1,… , 𝒚𝑛, with 𝒚𝑖 = (𝑦𝑖1,… , 𝑦𝑖𝑝)⊤, 𝑖 ∈ {1,… , 𝑛}, the log-likelihood function based on (5) is

𝓁(𝜽) = ln(2) −
𝑛𝑝
2

ln(2𝜋) − 𝑛
2
ln{det(�̄� + 𝜼𝜼⊤)} − 1

2

𝑛
∑

𝑖=1
𝒈(𝒚𝑖)⊤(�̄� + 𝜼𝜼⊤)−1𝒈(𝒚𝑖) +

𝑛
∑

𝑖=1
𝛷

{

𝜼⊤�̄�−1𝒈(𝒚𝑖)
√

1 + 𝜼⊤�̄�𝜼

}

− 𝑛
𝑝
∑

𝑗=1
ln(𝜔𝑗𝑗 ) +

𝑛
∑

𝑖=1

𝑝
∑

𝑗=1

1
2
𝑊0

{

ℎ𝑗

( 𝑦𝑖𝑗 − 𝜉𝑗
𝜔𝑗𝑗

)2}

−
𝑛
∑

𝑖=1

𝑝
∑

𝑗=1
ln

(

ℎ𝑗

( 𝑦𝑖𝑗 − 𝜉𝑗
𝜔𝑗𝑗

)2

+ exp

[

𝑊0

{

ℎ𝑗

( 𝑦𝑖𝑗 − 𝜉𝑗
𝜔𝑗𝑗

)2}])

,

(10)

where 𝜽 = (𝝃⊤,diag(𝝎)⊤, vech(�̄� )⊤, 𝜼⊤,𝒉⊤)⊤, where vech(�̄� )⊤ is the vector of all the upper-off-diagonal elements of �̄� . We estimate
the parameters in 𝜽 by maximizing 𝓁(𝜽) with respect to 𝜽. This maximization cannot be done analytically and has to be performed
numerically. Hence, for a 𝑝-dimensional problem, we need to perform a {4𝑝+𝑝(𝑝−1)∕2}-dimensional numerical optimization, which
becomes difficult when 𝑝 is large. We can tackle this problem in a different way.

Since 𝒀 1,… , 𝒀 𝑛
i.i.d.∼  𝑝(𝝃,𝝎, �̄� , 𝜼,𝒉), we also have that 𝑌1𝑗 ,… , 𝑌𝑛𝑗

i.i.d.∼  1(𝜉𝑗 , 𝜔𝑗𝑗 , 1, 𝜂𝑗 , ℎ𝑗 ), 𝑗 ∈ {1,… , 𝑝}, from
Proposition 3. Based on the 𝑗th marginal data, the marginal log-likelihood function is

𝓁𝑗 (𝜉𝑗 , 𝜔𝑗𝑗 , 𝜂𝑗 , ℎ𝑗 ) = ln(2) − 𝑛
2
ln(2𝜋) − 𝑛

2
ln(1 + 𝜂2𝑗 ) −

1
2

𝑛
∑

𝑖=1

𝑔𝑗 (𝑦𝑖𝑗 )2

1 + 𝜂2𝑗
+

𝑛
∑

𝑖=1
𝛷

⎧

⎪

⎨

⎪

⎩

𝜂𝑗𝑔𝑗 (𝑦𝑖𝑗 )
√

1 + 𝜂2𝑗

⎫

⎪

⎬

⎪

⎭

− 𝑛 ln(𝜔𝑗𝑗 )

+
𝑛
∑

𝑖=1

1
2
𝑊0

{

ℎ𝑗

( 𝑦𝑖𝑗 − 𝜉𝑗
𝜔𝑗𝑗

)2}

−
𝑛
∑

𝑖=1
ln

(

ℎ𝑗

( 𝑦𝑖𝑗 − 𝜉𝑗
𝜔𝑗𝑗

)2

+ exp

[

𝑊0

{

ℎ𝑗

( 𝑦𝑖𝑗 − 𝜉𝑗
𝜔𝑗𝑗

)2}])

,

(11)

𝑗 ∈ {1,… , 𝑝}. We estimate 𝜉𝑗 , 𝜔𝑗𝑗 , 𝜂𝑗 , and ℎ𝑗 , by maximizing the log-likelihood function for the 𝑗th marginal 𝓁𝑗 (𝜉𝑗 , 𝜔𝑗𝑗 , 𝜂𝑗 , ℎ𝑗 ),
𝑗 ∈ {1,… , 𝑝}. Therefore, by performing four-dimensional numerical optimization 𝑝 times, we obtain the marginal maximum
ikelihood estimates (MLEs) for 𝝃, 𝝎, 𝜼, and 𝒉.

At this point, we are yet to obtain the estimate for �̄� . From the definition of the   distribution, we have 𝒀 𝑖
d
= 𝝃+𝝎𝝉𝒉(𝒁 𝑖),

∈ {1,… , 𝑛} and 𝒁1,… ,𝒁𝑛
i.i.d.∼  𝑝(𝟎, �̄� , 𝜼). With the marginal MLEs �̂�, �̂�, �̂�, and �̂� of 𝝃, 𝝎, 𝜼, and 𝒉, we can compute an

stimate for the latent  observations. Then, �̂� 𝑖 = 𝝉−1
�̂�
{�̂�−1(𝒀 𝑖 − �̂�)}, 𝑖 ∈ {1,… , 𝑛} are the estimates for 𝒁1,… ,𝒁𝑛. Assuming that,

�̂�1,… , �̂�𝑛
i.i.d.∼  𝑝(𝟎, �̄� , �̂�) we can estimate �̄� .

We use the EM algorithm for the  distribution for estimating �̄� , keeping the location and the skewness parameters fixed at
𝟎 and �̂�. The EM algorithm does not ensure that the estimate of �̄� will be a correlation matrix, but the estimate is a covariance
matrix, which can be easily converted to its corresponding correlation matrix. We use this correlation matrix as an estimate for �̄� .
In the next section, we will justify the effectiveness of the described method for estimating parameters using a simulation study.
Moreover, if we use the marginal MLEs of 𝝃, 𝝎, 𝜼 and 𝒉 and the estimate of �̄� obtained from the EM algorithm as the initial value
for the numerical maximization of 𝓁(𝜽) in (10), we can converge to the joint MLEs of 𝜽 in very few iterations. Although it does
not completely tackle the problem of high-dimensional numerical maximization, this specific selection of initial values reduces the
run-time of the numerical maximization greatly. Moreover, we will show in our simulation study that the initial parameter values
13

obtained in the aforementioned way are close to the joint MLEs and can be directly used for high-dimensional problems as the
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computation required for estimating the initial estimates is lower than that for estimating the MLEs numerically when 𝑝 is large. In
the next subsection, we describe the EM algorithm for the  distribution in details. Note that instead of computing the marginal
MLEs of the parameters one can use the iterative generalized method of moments (IGMM) estimators proposed by [26]. IGMM is
also based on the estimates of the latent observations and from there estimating the parameters corresponding to the latent random
vector. While using the IGMM estimators for the   distribution one has to keep in mind that the location and the scale
parameters used in its definition are not the mean and the marginal standard deviation of the latent random vectors, unlike the
proposal of [26]. The IGMM has to be adapted accordingly for getting the correct estimates of the parameters.

4.2. EM algorithm for the  distribution

The EM algorithm for the skew-normal distribution is a well-researched topic. Interested readers are directed to the recent paper
by [1] and the references therein for more on this topic. In this section, we put forward an EM algorithm for the skew-normal
distribution with 𝜳 -𝜼 parameterization (see (2)), which is new in the literature. Moreover, we are only concerned with the scenario
when we need to estimate the scale parameter 𝜳 while the location 𝝃 = 𝟎 and the skewness parameter 𝜼 is known.

Consider a random sample 𝒁1,… ,𝒁𝑛
i.i.d.∼  𝑝(𝟎,𝜳 , 𝜼0), where 𝜼0 is given. The log-likelihood of an observed sample 𝒛1,… , 𝒛𝑛

is

𝓁(𝜳 ) = −
𝑛𝑝
2

ln(2𝜋) − 𝑛
2
ln{det(𝜳 + 𝜼0𝜼⊤0 )} −

1
2

𝑛
∑

𝑖=1
𝒛⊤𝑖 (𝜳 + 𝜼0𝜼⊤0 )

−1𝒛𝑖 +
𝑛
∑

𝑖=1
ln

⎧

⎪

⎨

⎪

⎩

2𝛷

⎛

⎜

⎜

⎜

⎝

𝜼⊤0𝜳
−1𝒛𝑖

√

1 + 𝜼⊤0𝜳
−1𝜼0

⎞

⎟

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

.

sing the stochastic representation of the  distribution we can represent 𝒁1,… ,𝒁𝑛 as (𝒁 𝑖|𝑈𝑖 = 𝑢𝑖)
i.i.d.∼ 𝑝(𝑢𝑖𝜼0,𝜳 ), 𝑈𝑖

i.i.d.∼
 (0, 1), 𝑖 ∈ {1,… , 𝑛} and obtain the conditional pdf of (𝑈𝑖|𝒁 𝑖 = 𝒛𝑖) as

𝑓𝑈𝑖|𝒁𝑖=𝒛𝑖 (𝑢) ∝ 𝜙𝑝(𝒛𝑖; 𝑢𝑖𝜼0,𝜳 )𝜙(𝑢; 0, 1) = 𝜙𝑝(𝒛𝑖; 𝟎,𝜳 + 𝜼0𝜼⊤0 )𝜙{𝑢; 𝜼
⊤
0 (𝜳 + 𝜼0𝜼⊤0 )

−1𝒛𝑖, 1 − 𝜼⊤0 (𝜳 + 𝜼0𝜼⊤0 )
−1𝜼0}

= 𝜙𝑝(𝒛𝑖; 𝟎,𝜳 + 𝜼0𝜼⊤0 )𝜙
(

𝑢; 𝜏𝑖, 1∕(1 + 𝛼2)
)

, 𝑢 > 0, 𝑖 ∈ {1,… , 𝑛},

here 𝛼2 = 𝜼⊤0𝜳
−1𝜼0 and 𝜏𝑖 = (𝜼⊤0𝜳

−1𝒛𝑖)∕(1 + 𝛼2). Hence, the conditional distribution of the latent variables 𝑈𝑖 given the observable
𝑖 is truncated normal:

(𝑈𝑖|𝒁 𝑖 = 𝒛𝑖)
i.i.d∼  

(

0; 𝜏𝑖, 1∕(1 + 𝛼2)
)

, 𝑖 ∈ {1,… , 𝑛}.

oreover, the first and second order raw moments of (𝑈𝑖|𝒁 𝑖 = 𝒛𝑖) are

𝑣1𝑖 = E(𝑈𝑖|𝒁 𝑖 = 𝒛𝑖) =
𝜏𝑖 +

𝜙(𝜏𝑖)
𝛷(𝜏𝑖)

√

1 + 𝛼2
, 𝑣2𝑖 = E(𝑈2

𝑖 |𝒁 𝑖 = 𝒛𝑖) =
1 + 𝜏2𝑖 + 𝜏𝑖

𝜙(𝜏𝑖)
𝛷(𝜏𝑖)

1 + 𝛼2
, 𝑖 ∈ {1,… , 𝑛},

where 𝜏𝑖 =
√

1 + 𝛼2𝜏𝑖 = (𝜼⊤0𝜳
−1𝒛𝑖)∕(

√

1 + 𝛼2).
From the hierarchical representation above, the complete log-likelihood for 𝜳 based on the observed data 𝒛 = (𝒛1,… , 𝒛𝑛)⊤ and

the missing data 𝒖 = (𝑢1,… , 𝑢𝑛)⊤ is

𝓁𝑐 (𝜳 |𝒛, 𝒖) = −
𝑛𝑝
2

ln(2𝜋) + 𝑛
2
ln{det(𝜦)} − 1

2

𝑛
∑

𝑖=1
𝒛⊤𝑖 𝜦𝒛𝑖 + 𝜼⊤0𝜦

𝑛
∑

𝑖=1
𝑢𝑖𝒛𝑖 −

1
2
𝜼⊤0𝜦𝜼0

𝑛
∑

𝑖=1
𝑢2𝑖 +

𝑛
2
ln
( 2
𝜋

)

− 1
2

𝑛
∑

𝑖=1
𝑢2𝑖 ,

where 𝜦 = 𝜳−1.
Let 𝒁 = (𝒁1,… ,𝒁𝑛)⊤ be the observable random sample and 𝑼 = (𝑈1,… , 𝑈𝑛)⊤ be the latent random sample. Then the E-Step at

the (𝑘 + 1)th iteration of the EM algorithm is

𝑄(𝜳 |𝜳 (𝑘)) = E𝜳 (𝑘){𝓁𝑐 (𝜳 |𝒁,𝑼 )|𝒁 = 𝒛}

= −
𝑛𝑝
2

ln(2𝜋) + 𝑛
2
ln{det(𝜦)} − 1

2

𝑛
∑

𝑖=1
𝒛⊤𝑖 𝜦𝒛𝑖 + 𝜼⊤0𝜦

𝑛
∑

𝑖=1
𝑣(𝑘)1𝑖 𝒛𝑖 −

1
2
𝜼⊤0𝜦𝜼0

𝑛
∑

𝑖=1
𝑣(𝑘)2𝑖 + 𝑛

2
ln
( 2
𝜋

)

− 1
2

𝑛
∑

𝑖=1
𝑣(𝑘)2𝑖 ,

here 𝜳 (𝑘) is the estimated value of 𝜳 in the 𝑘th step, 𝜦(𝑘) = {𝜳 (𝑘)}−1,

𝑣(𝑘)1𝑖 =
𝜏(𝑘)𝑖 +

𝜙(𝜏(𝑘)𝑖 )

𝛷(𝜏(𝑘)𝑖 )
√

1 + {𝛼(𝑘)}2
, 𝑣(𝑘)2𝑖 =

1 + {𝜏(𝑘)𝑖 }2 + 𝜏(𝑘)𝑖
𝜙(𝜏(𝑘)𝑖 )

𝛷(𝜏(𝑘)𝑖 )

1 + {𝛼(𝑘)}2
,

̄(𝑘)𝑖 = [1 + {𝛼(𝑘)}2]−1∕2𝜼⊤0𝜦
(𝑘)𝒛𝑖, 𝛼(𝑘) =

√

𝜼⊤0𝜦
(𝑘)𝜼0. To get the (𝑘 + 1)th estimate of 𝜳 , we maximize 𝑄(𝜳 |𝜳 (𝑘)) with respect to 𝜳 and

pdate 𝜳 (𝑘+1) = argmax{𝑄(𝜳 |𝜳 (𝑘))}.
Since 𝜳 is a symmetric positive definite matrix according to our definition of the  distribution, we can write 𝜳−1 = 𝜦 = 𝑪⊤𝑪,

where 𝑪 ∈ R𝑝×𝑝 is a nonsingular matrix. Hence,

𝑄(𝜳 |𝜳 (𝑘)) ∝ 𝑛 ln{det(𝑪⊤𝑪)} − 1
𝑛
∑

𝒛⊤𝑖 𝑪
⊤𝑪𝒛𝑖 + 𝜼⊤0𝑪

⊤𝑪
𝑛
∑

𝑣(𝑘)1𝑖 𝒛𝑖 −
1𝜼⊤0𝑪

⊤𝑪𝜼0
𝑛
∑

𝑣(𝑘)2𝑖
14
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⇒
𝜕𝑄(𝜳 |𝜳 (𝑘))

𝜕𝑪
= 𝑛(𝑪⊤)−1 − 𝑪

𝑛
∑

𝑖=1
𝒛𝑖𝒛⊤𝑖 + 𝑪

𝑛
∑

𝑖=1

(

𝜼0𝑣
(𝑘)
1𝑖 𝒛

⊤
𝑖 + 𝑣(𝑘)1𝑖 𝒛𝑖𝜼

⊤
0

)

− 𝑪𝜼0𝜼⊤0
𝑛
∑

𝑖=1
𝑣(𝑘)2𝑖 = 𝟎

⇒(𝑪⊤𝑪)−1 = 1
𝑛

𝑛
∑

𝑖=1
𝒛𝑖𝒛⊤𝑖 + 𝜼0𝜼⊤0

(

1
𝑛

𝑛
∑

𝑖=1
𝑣(𝑘)2𝑖

)

− 1
𝑛

𝑛
∑

𝑖=1

(

𝜼0𝑣
(𝑘)
1𝑖 𝒛

⊤
𝑖 + 𝑣(𝑘)1𝑖 𝒛𝑖𝜼

⊤
0

)

.

herefore, we update

𝜳 (𝑘+1) = 1
𝑛

𝑛
∑

𝑖=1
𝒛𝑖𝒛⊤𝑖 + 𝜼0𝜼⊤0

(

1
𝑛

𝑛
∑

𝑖=1
𝑣(𝑘)2𝑖

)

− 1
𝑛

𝑛
∑

𝑖=1

(

𝜼0𝑣
(𝑘)
1𝑖 𝒛

⊤
𝑖 + 𝑣(𝑘)1𝑖 𝒛𝑖𝜼

⊤
0

)

.

e stop the algorithm when {𝓁(𝜳 (𝑘+1))∕𝓁(𝜳 (𝑘)) − 1} is sufficiently close to zero.

4.3. Tests based on the   distribution

It is a well-known fact [28] that the Fisher information matrix of the  and the  distributions is singular when the
kewness parameter, 𝜶 or 𝜼, is set to zero. As a result, we cannot use the Wald type test or the likelihood ratio test (LRT) for
esting the null hypothesis that the skewness parameter is zero based on the  or the  distribution. Although the asymptotic
istribution of the LRT statistic is 𝜒2

𝑝 for the univariate  or the univariate  distribution, i.e., for 𝑝 = 1, the same is not true
or 𝑝 > 1; see [34]. The explanation of why the asymptotic distribution of the LRT statistic is 𝜒2

1 for the univariate  or the
univariate  is still an open problem.

For the skew-𝑡 distribution, this singularity of the Fisher information matrix does not occur when the skewness parameter is set
to zero. Hence, we can perform the test of the null hypothesis that the skewness parameter is zero based on the skew-𝑡 distribution
using the Wald type test or the LRT. Next, we show that the Fisher information matrix of the  2 distribution, when the
skewness parameter is set to zero, remains nonsingular.

Proposition 11. The Fisher information matrix for a bivariate random vector 𝒀 ∼  2(𝝃,𝝎, �̄� , 𝜼,𝒉) is nonsingular when 𝜼 = 𝟎.

Proof. From (10), the log-likelihood function for 𝒀 = 𝒚 = (𝑦1, 𝑦2)⊤ is

𝓁(𝜽) = − ln(𝜋) − 1
2
ln{det(�̄� + 𝜼𝜼⊤)} − 1

2
𝒈(𝒚)⊤(�̄� + 𝜼𝜼⊤)−1𝒈(𝒚) + ln

⎡

⎢

⎢

⎢

⎣

𝛷

⎧

⎪

⎨

⎪

⎩
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√

1 + 𝜼⊤�̄�−1𝜼

⎫

⎪

⎬

⎪

⎭

⎤

⎥

⎥

⎥

⎦

+
2
∑

𝑖=1

(

− ln(𝜔𝑖𝑖) +
1
2
𝑊0

(

ℎ𝑖𝑥
2
𝑖
)

− ln
[

ℎ𝑖𝑥
2
𝑖 + exp

{

𝑊0
(

ℎ𝑖𝑥
2
𝑖
)}]

)

,

here 𝑥𝑖 = (𝑦𝑖 − 𝜉𝑖)∕𝜔𝑖𝑖, 𝑖 ∈ {1, 2}. The score functions of all the parameters are obtained by differentiating the log-likelihood with

espect to the parameters. Assuming that �̄� =
(

1 𝜌
𝜌 1

)

, the score functions of all the parameters, when 𝜼 = 𝟎, are listed below for
= 1, 𝑗 = 2 or 𝑖 = 2, 𝑗 = 1:

𝑆𝜉𝑖 =
1
𝜔𝑖𝑖

⎛

⎜

⎜

⎜

⎝

𝑥𝑖 − 𝜌𝑥𝑗 exp
{

1
2𝑊0(ℎ𝑖𝑥2𝑖 ) −

1
2𝑊0(ℎ𝑗𝑥2𝑗 )

}

(1 − 𝜌2)[ℎ𝑖𝑥2𝑖 + exp{𝑊0(ℎ𝑖𝑥2𝑖 )}]
+

ℎ𝑖𝑥𝑖[ℎ𝑖𝑥2𝑖 + 3 exp{𝑊0(ℎ𝑖𝑥2𝑖 )}]

[ℎ𝑖𝑥2𝑖 + exp{𝑊0(ℎ𝑖𝑥2𝑖 )}]2
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,
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𝑥4𝑖 exp
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−

ℎ𝑖𝑥4𝑖 + 3𝑥2𝑖 exp{𝑊0(ℎ𝑖𝑥2𝑖 )}
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⎟
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𝑆𝜌 =
𝑔1(𝑦1)𝑔2(𝑦2)
(1 − 𝜌2)

−
𝜌

(1 − 𝜌2)2
{𝑔21 (𝑦1) + 𝑔22 (𝑦2) − 2𝜌𝑔1(𝑦1)𝑔2(𝑦2)} +

𝜌
(1 − 𝜌2)

.

From the form of the score functions we can observe that they are not linearly dependent when 𝜼 = 𝟎 and hence the Fisher
nformation matrix, which is the variance–covariance matrix of the score vector, is nonsingular when 𝜼 = 𝟎. □

Proposition 11 demonstrates that the Fisher information matrix of the   distribution is nonsingular when 𝜼 = 𝟎 for 𝑝 = 2.
ur conjecture is that this statement remains true for 𝑝 > 2. We justify this by plotting, in Fig. 5, the histogram of the LRT statistic

or testing 𝐻 ∶ 𝜼 = 𝟎 vs 𝐻 ∶ 𝜼 ≠ 𝟎 for 𝑝 ∈ {2, 3, 4}, based on samples of size 5000 and 1000 replicates. Along with the histograms,
15
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Fig. 5. Histograms of the LRT statistic for testing 𝐻0 ∶ 𝜼 = 𝟎 vs 𝐻1 ∶ 𝜼 ≠ 𝟎 for  𝑝 when 𝑝 ∈ {2, 3, 4} based on samples of size 5000 and 1000 replicates. The
red curves indicate the pdf of the 𝜒2

𝑝 distribution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)

e also plot the 𝜒2
𝑝 pdf. The plots indicate that the asymptotic distribution of the LRT statistic indeed follows 𝜒2

𝑝 , for 𝑝 ∈ {2, 3, 4}.
This would not have been the case if the Fisher information matrix was singular for 𝜼 = 𝟎.

Although we have justified the nonsingularity of the Fisher information matrix for the   distribution when 𝜼 = 𝟎, we do
ot have the mathematical form of the Fisher information matrix. As a result, we cannot use the Wald type test for testing 𝜼 = 𝟎.
e have to rely on the LRT for that:

• Testing 𝐻0 ∶ 𝜼 = 𝟎 vs 𝐻1 ∶ 𝜼 ≠ 𝟎, given that 𝒉 ≠ 𝟎: Since the Fisher information matrix of the   distribution when 𝜼 = 𝟎
is nonsingular, given that 𝒉 ≠ 𝟎, we use the asymptotic distribution of the LRT statistic for conducting the test.

• Testing 𝐻0 ∶ 𝒉 = 𝟎 vs 𝐻1 ∶ 𝒉 ≠ 𝟎, given that 𝜼 ≠ 𝟎: Under the null hypothesis the   distribution becomes the 
distribution. The Fisher information matrix of the  distribution is nonsingular when 𝜼 ≠ 𝟎. Hence, under the null hypothesis
we can use the asymptotic distribution of the LRT statistic for conducting the test.

• Testing 𝐻0 ∶ 𝜼 = 𝟎 and 𝒉 = 𝟎 vs 𝐻1 ∶ 𝜼 ≠ 𝟎 or 𝒉 ≠ 𝟎: Under the null hypothesis, the Fisher information matrix is singular.
Hence, we cannot use the LRT anymore for this testing problem. However, since the asymptotic distribution of the LRT statistic
for testing 𝜂 = 0 vs 𝜂 ≠ 0 based on the univariate  is 𝜒2

1 , we can use the LRT for testing 𝐻𝑖0 ∶ 𝜂𝑖 = 0, ℎ𝑖 = 0 vs
𝐻𝑖1 ∶ 𝜂𝑖 ≠ 0 or ℎ𝑖 ≠ 0, 𝑖 ∈ {1,… , 𝑝}. We reject 𝐻0 if any of the 𝐻𝑖0 gets rejected. Note here that the rejection region for
testing 𝐻𝑖0 vs 𝐻𝑖1, 𝑖 ∈ {1,… , 𝑝}, has to be computed subject to Bonferroni’s correction.

5. Simulation study

We conduct two simulation studies in this section: one to demonstrate the effectiveness of the parameter estimation method
described in Sections 4.1 and 4.2, and another to show in which scenarios the   distribution is more suitable compared to
the skew-𝑡 distribution.

5.1.   parameter estimation

We test the methodology for   parameter estimation in a simulation study. We simulate observations of size 𝑛 = 50,

100, 200, 500, and 1000 from a  3(𝝃,𝝎, �̄� , 𝜼,𝒉), with 𝝃 = (0.8,−0.6, 1.3)⊤, 𝝎 = diag(3, 5, 2), �̄� =
⎛

⎜

⎜

⎝

1 −0.5 0.3
−0.5 1 −0.2
0.3 −0.2 1

⎞

⎟

⎟

⎠

,

𝜼 = (−1.5, 2, 0.5)⊤ and 𝒉 = (0.02, 0.08, 0.03)⊤. Based on the simulated data, we estimate the parameters by the methodology described
in Sections 4.1 and 4.2. We repeat the process 100 times and summarize the estimated parameter in boxplots in Fig. 6. Alongside
the estimates obtained from the methodology described in Section 4.1 (indicated as mMLE (short for marginal MLE) for 𝝃, 𝝎, 𝜼, 𝒉
and as EM for �̄� in Fig. 6) we also report the MLEs of all the parameters. The boxplots indicate that the methodology is working
reasonably well for estimating the parameters from the   model. Moreover, as the sample size increases, the variance of the
estimates decreases, as it should. Hence, we can say that the parameter estimation methodology described in Sections 4.1 and 4.2 is
justified. The boxplots also show that the estimates of the parameters obtained from the EM algorithm are not very different from
the MLEs, although they have more variability. The variability difference between the two estimation methods also decreases as the
sample size increases. For problems with high dimensions where the computation of the exact MLEs are infeasible, one can use the
methodology described in Sections 4.1 and 4.2 as an alternative. Moreover, these estimates are an excellent choice for the starting
values of the parameters when optimizing the exact log-likelihood for computing the MLEs.

5.2. Comparison between the   and the skew-𝑡 distributions

In this simulation study we show that when there is a great disparity between the marginal kurtosis values in a multivariate
dataset, the   distribution is more appropriate than the skew-𝑡 distribution. We generate 500 random samples from a three-
16

dimensional vine copula to create a trivariate dataset in Uniform(0, 1) scale. In this vine copula model, variables 1 and 2 are related
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𝛿

Fig. 6. Boxplots of the parameter estimates (100 replicates) of a  3 distribution obtained from the methodology in Sections 4.1 and 4.2 for different
sample sizes 𝑛, given as mMLE (marginal MLE) for 𝝃, 𝝎, 𝜼, 𝒉 and as EM for �̄� along with the MLE boxplots. The red line in each plot indicates the true
parameter value. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

with a Gaussian copula with 𝜌 = 0.5, variables 1 and 3 are related with a Clayton copula with parameter 4.8 and variables 2 and
3 given variable 1 are related with a Gumbel copula with parameter 1.9. On the trivariate simulated data, we transform the 1st
component to the standard normal scale, the 2nd component to the Cauchy 𝑡1 scale, and the 3rd component to the Student’s-𝑡10
scale. We fit both the   and the skew-𝑡 distribution to this simulated data. The Akaike information criterion (AIC) computed
for the   and the skew-𝑡 are 4393 and 4848, respectively, suggesting the   distribution is more suitable for this simulated
dataset, compared to the skew-𝑡 distribution.

We perform similar experiments where we generate 500 observations from a three-dimensional multiple-scaled generalized
hyperbolic () distribution [41] and from a three-dimensional 𝑡-SAS distribution [16]. For the  distribution we use

the following parameters: 𝝁 = (0, 0, 0)⊤, 𝜮 =
⎛

⎜

⎜

⎝

1 0.3 −0.2
0.3 1 −0.4
−0.2 −0.4 1

⎞

⎟

⎟

⎠

, 𝜷 = (3, 0.5,−0.2)⊤, 𝝀 = (2, 1, 4)⊤, 𝜸 = (
√

3,
√

0.2,
√

0.25)⊤, and

= 1. For the 𝑡-SAS distribution, we use a three-dimensional 𝑡-copula with correlation matrix
⎛

⎜

⎜

⎝

1 0.3 −0.2
0.3 1 −0.4
−0.2 −0.4 1

⎞

⎟

⎟

⎠

to generate

observations on the uniform scale. For the Sinh-Arcsinh (SAS) transformation, we use (−0.7, 1), (0.2, 0.6), and (0.5, 0.8) as our (𝑔, ℎ)
(for skewness and tail-thickness, as used in [16]) parameters for the three marginals, respectively. Finally, we scale the marginals
by 1, 1.2, and 1.8, respectively. When the   and the skew-𝑡 models are fitted to the  dataset the obtained AICs are
9982 and 10110, and for the 𝑡-SAS dataset, the AICs are 6606 and 6634. The AICs for both studies suggest that the   is a better
fit to these two datasets compared to the skew-𝑡 model.

We provide the contour plots of the bivariate marginal pdfs of the   and the skew-𝑡 distributions fitted to the three
simulated datasets in Fig. 7. The bivariate marginal pdfs for the   distribution are obtained based on the MLEs and also based
on the estimates from the EM algorithm. The contours are plotted for the 0.25, 0.5, 0.75, and 0.95 approximate probability regions.
The plots show that, as expected, the skew-𝑡 distribution cannot handle different tail-thickness for different marginals, and instead
tries to find the best compromise with a single parameter, 𝜈. In scenarios like this, the   distribution is more appropriate.
Moreover, in the first row of Fig. 7 we see from the contour plots that the difference between the bivariate marginal pdfs obtained
based on the MLE and the EM algorithm is small for the vine copula dataset. However, in the second and third rows of Fig. 7 the
dissimilarity between the two   parameter estimation methods is more prominent, especially for the (𝑌1, 𝑌3) pair. Finally, it is
clear from the plots that the marginal bivariate   pdf contours obtained from the MLEs are more suitable for all three datasets
compared to the skew-𝑡 counterparts.

6. Data applications

We use two data applications to illustrate the effectiveness of the   distribution over the skew-𝑡 in certain situations. The
parameter estimates and standard errors for the two data applications, as well as log-likelihood and AIC values along with computing
times, are given in Sections S1 and S2 of the supplementary material.
17
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Fig. 7. Bivariate contours of the marginal bivariate pdfs obtained from the fitted   using Sections 4.1 and 4.2 methodology (green), from the fitted
  using MLEs (red) and from the fitted skew-𝑡 (blue) distributions to trivariate vine copula data (first row),  data (second row), and 𝑡-SAS data
third row). The contours correspond to 0.25, 0.5, 0.75, and 0.95 approximate probability regions. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

.1. Italian wine dataset

We consider a trivariate dataset consisting of the amount of chloride, glycerol and magnesium in a particular type of wine. The
ata were obtained from [23] and originally consist of measurements on 28 chemicals from 178 samples of Italian wines. Among
hese 178 samples, 48 originated from the Barbera region, 59 from the Barolo region, and 71 from the Grignolino region. Here we
se the variables chloride, glycerol and magnesium for the Grignolino region as previously analyzed by Azzalini and Capitanio [13]
ith a skew-𝑡 distribution, hence 𝑝 = 3 variables and 𝑛 = 71 observations.

The sample estimate of the marginal Pearson’s measure of kurtosis for this dataset are 7.7, 21.1, and 7.9, which suggest that the
  distribution might be more suitable for this dataset compared to the skew-𝑡 distribution. We fit both the   and the

kew-𝑡 distribution to this dataset. The contour plots of the bivariate marginal pdfs obtained from the two fitted distributions are
resented in Fig. 8. For the   model we have produced the contours of the bivariate marginal pdfs using MLEs (in red) and
he EM algorithm estimates (in green) along with the skew-𝑡 bivariate marginal pdfs (in blue). One can see visually that the  
istribution fits the data better than the skew-𝑡. Moreover, the contour plots indicate that there are some discrepancies between
he two estimation methodologies based on the   distribution, specifically for the magnesium-chloride pair, but much less in
he other two pairs. The difference is likely due to a relatively small sample size (𝑛 = 71). The AIC corresponding to the  
istribution and the skew-𝑡 distribution are 1474 and 1492, respectively. Hence, for this dataset, the   distribution is a better
odel than the skew-𝑡 distribution. Moreover, assuming that 𝜼 ≠ 𝟎, the 𝑝-value for testing 𝐻 ∶ 𝒉 = 𝟎 vs 𝐻 ∶ 𝒉 ≠ 𝟎 is 2.53 × 10−14,
18
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Fig. 8. Bivariate contours of the marginal bivariate pdfs obtained from the fitted   using Sections 4.1 and 4.2 methodology (green), from the fitted
  using MLE (red) and the skew-𝑡 (blue) distributions to the wine data. The contours correspond to 0.25, 0.5, 0.75, and 0.95 approximate probability
regions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

using the LRT based on the   distribution. This suggests that 𝒉 ≠ 𝟎 for this dataset. Using the LRT for testing 𝐻0 ∶ 𝜼 = 𝟎 vs
𝐻1 ∶ 𝜼 ≠ 𝟎 when 𝒉 ≠ 𝟎 is 1.6 × 10−5, hence confirming the apparent skewness in the data.

Although we have considered this classical dataset, originally used to motivate the skew-𝑡 distribution in the book [13], for the
purpose of comparing the differences between the   and the skew-𝑡 distributions, a further analysis shows that the variables
in this dataset are not much dependent. In fact, the independent marginal   and independent marginal skew-𝑡 distributions
yield better AIC (1466 and 1467, respectively) compared to the multivariate   distribution. The AIC suggests for this dataset
that the independent marginal   distribution is the most suitable. It is worth pointing out here that both the independent
marginal   and independent marginal skew-𝑡 distributions are not special cases of the multivariate   and multivariate
skew-𝑡 distributions, respectively. The next data application shows a clearer comparison between the multivariate skew-𝑡 and the
multivariate   distribution as we use a multivariate dataset with stronger dependence.

6.2. Saudi Arabian wind speed dataset

We analyze the dependence structure of the daily average, minimum, and maximum wind speed in the city of Sharurah in
southern Saudi Arabia, at 100 meters in height (a typical hub height for wind turbines), in the year 2015. Understanding the
dependence and distribution of these variables is important for setting up wind farms for harvesting wind energy. We remove a
quadratic trend from all three variables and fit an AR(1) time series model to the detrended data marginally to obtain residuals. A
Ljung–Box test shows that there is no significant serial correlation left in all three residuals. Hence, the residuals can be treated as
a random sample of size 𝑛 = 365 from a trivariate distribution.

The sample estimates of the marginal Pearson’s measure of kurtosis for the three variables are 3.0, 7.5, and 4.4, which means
that the residuals corresponding to the average windspeed have a Gaussian-like tail and the other two residuals have heavier tails
than the Gaussian distribution. This indicates that the   distribution may be more apt for this dataset compared to the skew-𝑡
distribution. We fit both the   and the skew-𝑡 distribution to the residuals. Similar to the previous contour plots, we have
produced in Fig. 9 the contours of the bivariate marginal pdfs using MLEs (in red) and the EM algorithm estimates (in green) along
with the skew-𝑡 bivariate marginal pdfs (in blue). The plots indicate that the   distribution is more suitable here for capturing
different tail-thickness for different marginals, compared to the skew-𝑡 distribution. This conclusion is further validated by the AIC
which is 3274 for the   distribution and is 3432 for the skew-𝑡 distribution. Moreover, the difference between the contours
obtained from the MLEs and from the EM algorithm estimates for the   distribution are very close to each other. Similar
to the wine dataset, we can perform the following tests: assuming that 𝜼 ≠ 𝟎, the 𝑝-value for testing 𝐻0 ∶ 𝒉 = 𝟎 vs 𝐻1 ∶ 𝒉 ≠ 𝟎
is 9.7 × 10−35, using the LRT based on the   distribution, which confirms that the data here are not from a skew-normal
distribution; 𝐻0 ∶ 𝜼 = 𝟎 vs 𝐻1 ∶ 𝜼 ≠ 𝟎 when 𝒉 ≠ 𝟎 is 2.56 × 10−13, which confirms the presence of skewness in the data. The
independent marginal   and independent marginal skew-𝑡 distributions yield much worse AIC (3551 and 3562, respectively)
compared to the multivariate   distribution.

7. Discussion

In this article, we have introduced the multivariate   distribution, a new extension of the multivariate skew-normal
distribution for modeling heavy-tailed data. We have compared our proposed distribution with the skew-𝑡 distribution, another
extension of the skew-normal distribution for adapting tail-thickness. Unlike the skew-𝑡 distribution, our proposal is capable of
handling data with different kurtosis for different marginals. As a consequence, the   model can be used as a robust
model, as suggested by [15] for the skew-𝑡, for modeling outliers. Moreover, the   distribution can capture outliers in
some marginals while having Gaussian-like distributions in other marginals. We have discussed various appealing stochastic and
19
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Fig. 9. Bivariate contours of the marginal bivariate pdfs obtained from the fitted   using the EM algorithm (green), from the fitted   using MLE
red) and the skew-𝑡 (blue) distributions to the wind speed residuals. The contours correspond to 0.25, 0.5, 0.75, and 0.95 approximate probability regions. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

nferential properties of the   distribution in detail. A methodology for parameter estimation of the   distribution was
lso provided.

There are other proposals in the multivariate setup for modeling varying marginal tail-thickness, such as the  distribution
by [41] and the 𝑡-SAS distribution by [16]. However, they lack appealing stochastic properties, such as a tractable conditional
distribution and an explicit form of conditional mean and variance, unlike the   model. How the   model performs
ompared to these other multivariate models for modeling varying marginal tail-thickness is left as a future research direction.

The   distribution can be further generalized by extending the idea of using transformation to induce tail-thickness in the
istribution to the extended skew-normal (𝑆𝑁) family and the unified skew-normal (𝑈𝑁) family [5]. In Section 3.1, we have

discussed how the   distribution induces tail-thickness in the  distribution by stretching the distribution along different
axes, and this stretching can be different for different marginals. This idea could be further generalized where the stretching occurs
along arbitrary directions.

The EM algorithm in Section 4.2 discussed how we can estimate the scale matrix 𝜳 of an  𝑝(𝟎,𝜳 , 𝜼0) distribution, given that
0 is fixed. However, we need this 𝜳 to be a correlation matrix, not a covariance matrix. This is achieved by transforming the final
stimate of 𝜳 from covariance to a correlation matrix. The EM algorithm for the scenario when 𝜳 is a correlation matrix is an open
roblem.

The R-codes and real data for Sections 5 and 6 are available on a GitHub repository: https://github.com/sagnikind/Skew-normal-
ukey-h.
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