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Abstract

We introduce a new copula model for non-stationary replicated spatial data. It is

based on the assumption that a common factor exists that controls the joint depen-

dence of all the observations from the spatial process. As a result, our proposal can

model tail dependence and tail asymmetry, unlike the Gaussian copula model. More-

over, we show that the new model can cover a full range of dependence between tail

quadrant independence and tail dependence. Although the log-likelihood of the

model can be obtained in a simple form, we discuss its numerical computational

issues and ways to approximate it for drawing inference. Using the estimated copula

model, the spatial process can be interpolated at locations where it is not observed.

We apply the proposed model to temperature data over the western part of

Switzerland, and we compare its performance with that of its stationary version and

with the Gaussian copula model.
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1 | INTRODUCTION

Traditionally, many geostatistical applications have used Gaussian random fields for modelling spatial data. This bias toward Gaussian models is

mainly due to the ease of inference based on Gaussian assumptions. Indeed, a mean vector and a covariance matrix can completely characterize a

Gaussian model. Moreover, the marginal and conditional distributions of Gaussian random vectors are readily available in explicit forms. These are

the main reasons behind the popularity of Gaussian random fields in geostatistical applications. However, Gaussian random fields also have some

shortcomings. For example, the Gaussian model assumes symmetry for all the marginals and fails to capture potential outliers in the data. Further-

more, the Gaussian model is not appropriate when data show some signs of extremal dependence. Therefore, there is a need for more flexible

spatial models that address these shortcomings.

In the statistical literature, different types of non-Gaussian random fields have been introduced to tackle the shortcomings of the Gaussian

model. We discuss a few broad classes of non-Gaussian random fields next. A popular non-Gaussian modelling approach for analysing spatial data

is the trans-Gaussian random field, obtained by taking a non-linear monotone transformation of a Gaussian random field. Examples of such models

are log-normal random fields (Cressie, 1993; De Oliveira, 2006), Box–Cox transformation (De Oliveira et al., 1997), square-root transformation

(Johns et al., 2003), and power transformations (Allcroft & Glasbey, 2003). For these models, one has to posit the possible transformation respon-

sible for making the data non-Gaussian. If the correct transformation is used, the data can be made Gaussian by taking the inverse transformation,

and inference can be made based on the Gaussian model. Instead of looking for this inverse transformation, one can model the original data

directly and draw inference on the original scale. The Tukey g-and-h random field introduced by Xu and Genton (2017) is an example of such a

non-Gaussian model where inference can be drawn directly on the original scale and the transformation is estimated from the data. Another

approach for constructing non-Gaussian models is by mixing the Gaussian process with a random variable or with one or more independent
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random processes. For instance, Palacios and Steel (2006) and Fonseca and Steel (2011) introduced a non-Gaussian model by mixing the scale

parameter of a Gaussian model at each location. Ma (2009b) proposed a method to construct non-Gaussian random fields by multiplying a ran-

dom scale factor with a Gaussian random field yielding elliptically contoured random fields. Ma (2009a) later introduced χ2 random fields by sum-

ming the squares of m independent Gaussian processes. Yin and Craigmile (2018) presented the heteroscedastic asymmetric spatial process by

mixing two dependent Gaussian random fields and transforming the resulting mixed process. Various non-Gaussian distributions can be used to

construct non-Gaussian random fields. For instance, the skew-normal distribution used by Kim and Mallick (2004), Zhang and El-Shaarawi (2010),

Genton and Zhang (2012), and Rimstad and Omre (2014). The t-distribution and the skew-t distribution have also been extended to random fields

by Røislien and Omre (2006) and Bevilacqua et al. (2021). Marchenko and Genton (2010) created a non-Gaussian random field using log-

skew-elliptical distribution. Zareifard and Khaledi (2013) proposed a non-Gaussian random field by scale mixing a unified skew-Gaussian process.

A crucial problem with the Gaussian model is that it fails to adequately model data that show signs of extremal dependence. In some

geostatistical applications, such as studies related to extreme natural events, sometimes the extremal dependence is of particular interest. To cap-

ture the extremal dependence, if there is any, we need suitable models. The families of non-Gaussian random fields that are mentioned so far are

not designed to capture potential extremal dependence. While trans-Gaussian random fields have no tail dependence, mixing distributions and

t-distributions can handle tail dependence. Models based on the theory of copulas can be useful for constructing non-Gaussian spatial models

capable of capturing extremal dependence. A copula is a p-variate distribution function of a p-variate random vector distributed over the ½0,1�p
hypercube with marginals distributed uniformly over the interval ½0,1�. Sklar (1959) showed that for any p-dimensional distribution F with marginal

distribution functions F1,…,Fp there exists a p-variate copula C such that

Fðx1,…,xpÞ¼CfF1ðx1Þ,…,FpðxpÞg, ðx1,…,xpÞ > ¼ x�ℝp:

Moreover, Sklar (1959) also showed that any combination of any p-dimensional copula C with any p univariate marginal distributions F1,…,Fp

results in a p-variate joint distribution function.

The theory of copulas has been used in constructing non-Gaussian spatial models. For example, Bárdossy (2006) introduced a non-Gaussian

spatial model based on the chi-squared copula. Furthermore, Bárdossy and Li (2008) proposed a v-transformed copula, by taking a nonmonotonic

transformation of multivariate normal variables and Bárdossy (2011) used another copula-based approach for modelling non-Gaussian

groundwater data. The copula models based on the v-transformed copula can handle marginal and joint skewness but fail to model tail depen-

dence. Moreover, the likelihood functions of these models are difficult to compute in high dimensions. The construction of flexible models for

handling non-Gaussian spatial data with extremal dependence can be achieved by using vine copulas. Gräler and Pebesma (2011) and Gräler

(2014) introduced non-Gaussian spatial models using vine copula and Erhardt et al. (2015) used a C-vine copula to model non-Gaussian spatial

data. For these models, the composite likelihood method has been used for parameter estimation. These models are very capable of modelling tail

dependence but lack interpretability. Krupskii et al. (2018) introduced the factor copula model for modelling stationary non-Gaussian processes

and later Castro-Camilo and Huser (2020) generalized it for non-stationary non-Gaussian processes. The factor copula model is easy to interpret

and can model replicated spatial data that show signs of tail dependence and tail asymmetry. Krupskii and Genton (2017, 2019) extended the idea

of the factor copula model to spatio-temporal and multivariate non-Gaussian processes, respectively.

The factor copula model introduced by Krupskii and Genton (2019) is in the multivariate setting. In the univariate case, that model observed

at location s�ℝd is of the following form:

WðsÞ¼ZðsÞþαU0EU
0 þαUEUðsÞ�αL0EL

0�αLELðsÞ, ð1Þ

with αU0 > 0,α
U >0,αL0 > 0,α

L > 0,ZðsÞ is a Gaussian process with mean 0 and with some correlation function, and EU
0 , EUðsÞ, EL

0 and ELðsÞ are mutually

independent unit exponential random variables, Eð1Þ. Here, we term EU
0 and EL

0 as the upper and the lower common factor, respectively, and EUðsÞ
and ELðsÞ as the upper and the lower independent factor, respectively. Due to the use of both common and independent factors for both upper

and lower tails, this model is appropriate for modelling data with upper and/or lower tail dependence. In this work, we use the one-sided version

of WðsÞ from Equation (1) and generalize it further for accommodating non-stationary datasets as well. Thus, the new model is of the following

form:

WðsÞ¼ZðsÞþα0ðsÞE0þαEðsÞ, ð2Þ

with α0ðsÞ>0,α>0,ZðsÞ is a Gaussian process with mean 0 and with some correlation function (e.g., exponential or Matérn), and E0 �Eð1Þ, EðsÞ is
a white noise process with Eð1Þ marginals, and E0 and EðsÞ are independently distributed. The copula governed by the model in Equation (2)

is tail-asymmetric with a stronger upper tail than the lower tail as we are only considering the upper common factor from Equation (1) in the

model in Equation (2). As a result, the model in Equation (2) is appropriate for datasets with upper tail dependence. Lower tail dependence can be

modelled using the reflected copula of (2). Although models that can handle both lower and upper tail dependence are also desirable, in practice,
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we mostly see datasets with either lower or upper tail dependence. Hence, the proposed model can be applied to many real datasets. The model

in Equation (2) is a generalized version of the model proposed by Castro-Camilo and Huser (2020) for which α¼0 and the model proposed by

Krupskii et al. (2018) for which α¼0 and α0ðsÞ is constant. Moreover, Castro-Camilo and Huser (2020) introduced non-stationarity in the model

by proposing locally stationary models and allowing the parameters to change smoothly with locations, whereas the model in Equation (2)

assumes global non-stationarity.

The proposed model has some similarities with spatial convolution-type models with non-stationary kernels. The main difference is that a

convolution process involves an integral over a Lévy process with independent increments whereas in the proposed model, we use a finite num-

ber of additive exponential factors (one common and n independent factors where n is the number of spatial locations). Both methods can handle

non-stationary non-Gaussian data; however, even stationary non-Gaussian convolution models are not computationally tractable because no like-

lihood is available in closed form; see Krupskii and Huser (2022) and references therein.

In this paper, Section 2 focuses on the properties of the model in Equation (2) and covers new important tail properties of this model. We pre-

sent how to draw inference based on the model in Section 3, where we discuss how to estimate the model parameters with the exact and the

Vecchia approximated log-likelihood, and how to make predictions at new locations based on the model. In Section 4, we justify our methods for

drawing inference by a simulation study. Finally, in Section 5, we apply our model to a spatial dataset of daily average temperatures in

Switzerland.

2 | THE NON-STATIONARY FACTOR COPULA MODEL

2.1 | The model and its copula

Suppose the processWðsÞ from Equation (2) has been observed at n locations s1,…,sn and write W¼ðW1,…,WnÞ > , where

Wi ¼WðsiÞ¼ZðsiÞþα0ðsiÞE0þαEðsiÞ¼Ziþα0iE0þαE i, i� f1,…,ng, ð3Þ

and Z¼ðZ1,…,ZnÞ > follows a multivariate Gaussian distribution, with zero mean and a covariance matrix ΣZ obtained from some correlation func-

tion. Moreover, E0,E1,…,En are i.i.d. Eð1Þ random variables that are independent of Z. From the definition of W, we can derive the correlation

between the variables at two locations Wi1 and Wi2 :

CorrðWi1 ,Wi2 Þ¼ CorrðZi1 ,Zi2 Þþα0i1α0i2
� �

=
Y

j � fi1, i2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þα20jþα2

q
, i1, i2 ¼1,…,n:

Consequently, we can see that when CorrðZi1 ,Zi2 Þ¼1,CorrðWi1 ,Wi2 Þ¼
1þα0i1 α0i2Q

j � fi1 ,i2g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þα2

0j
þα2

p ≤1. This suggests that even if the latent process at two

locations is perfectly correlated, it does not mean the process WðsÞ at those two locations will also be perfectly correlated. Moreover, when

CorrðZi1 ,Zi2 Þ¼0,CorrðWi1 ,Wi2 Þ≠0. This is due to the presence of the common factor E0 at every location.

In the next proposition, we provide the closed-form expressions of the marginal cumulative distribution function (cdf) and the marginal proba-

bility density function (pdf) of the processWðsÞ.
Proposition 1. Consider the process WðsÞ observed at n locations as given in Equation (3). Then the cdf of Wj is

FWj ðwÞ¼ΦðwÞ� 1
α�α0j

αexp
0:5
α2

�w
α

� �
Φ w�1

α

� �
�α0j exp

0:5

α20j
� w
α0j

 !
Φ w� 1

α0j

� �( )
, ð4Þ

where Φð�Þ is the cdf of the univariate standard normal distribution, j¼1,…,n.

Proof. Because E0 and E j are independent Eð1Þ random variables, the pdf of Xj ¼ α0jE0þαE j is obtained as

fXj ðxÞ¼ ðα�α0jÞ�1 exp �x
α

� �
� exp � x

α0j

� �	 

:

The cdf of Wj then can be written as
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FWj
ðwÞ¼PðZjþXj ≤wÞ¼

ð∞
0
Φðw�xÞfXj

ðxÞdx:

The proof can be completed using the following identity:

ð∞
0
Φðw�xÞexp �x

α

� �
dx¼ αΦðwÞ�αexp

0:5
α2

�w
α

� �
Φ w�1

α

� �
:

□ □ ▪

From the cdf of Wj, we can find the expression of its pdf, fWj ðwÞ, by differentiating Equation (4) with respect to w. Moreover, let fWðwÞ be
the pdf of W from Equation (3). Although the exact mathematical expression cannot be found explicitly, we can have a simplified form of fWðwÞ.
Proposition 2. The pdf of W is of the following form:

fWðwÞ¼ 1
α

� �nð
ℝþ

exp �0:5wðv0Þ > Σ�1
Z wðv0Þþ0:5yðv0Þ > H�1yðv0Þ

n o
Φn 0;�yðv0Þ,Hð Þexpð�v0Þdv0, ð5Þ

where Φnð�;μ,ΣÞ is the cdf of an n-variate Gaussian random vector with mean μ and covariance matrix

Σ,wðv0Þ¼ ðw1�α01v0,…,wn�α0nv0Þ > , yðv0Þ¼Htðv0Þ,H¼ð1=α2ÞΣZ , tðv0Þ¼ fsðv0Þ1α�1,…,sðv0Þnα�1g > , and

sðv0Þ¼ fsðv0Þ1,…,sðv0Þng > ¼Σ�1
Z wðv0Þ.

Proof. Let W ∗ ¼ðW ∗
1 ,…,W

∗
n Þ > ,W ∗

j ¼ZjþαE j, j� f1,…,ng, and α0 ¼ðα01,…,α0nÞ > . The pdf of W ∗ is

fW ∗ ðwÞ ¼
ð
ℝn

þ

ϕnðw;αv ,ΣZÞexp �Pn
j¼1

vj

 !
dv, αv ¼ αðv1,…,vnÞ > ,

¼ 1ffiffiffiffiffiffi
2π

p� �n 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðΣZÞ

p ð
ℝn

þ

exp �1
2

ðw�αvÞ > Σ�1
Z ðw�αvÞþ2

Xn
j¼1

vj

( )" #
dv

¼ expð�0:5w > Σ�1
Z wþ0:5y > H�1yÞ Qn

j¼1

1
α

 !

�
ð
ℝn

þ

1ffiffiffiffiffiffi
2π

p� �n
detðHÞ1=2

exp �1
2
ðv�yÞ > H�1ðv�yÞ

	 

dv

¼ expð�0:5w > Σ�1
Z wþ0:5y > H�1yÞ 1

α

� �n
Φnð0;�y,HÞ,

where ϕnð�;μ,ΣÞ is the pdf of an n-variate Gaussian random vector with mean μ and covariance matrix Σ, y¼Ht,

H¼ð1=α2ÞΣZ , t¼ðs1α�1,…,snα�1Þ > , and s¼ðs1,…,snÞ > ¼Σ�1
Z w. The proof can be completed using the stochastic representation

of W¼W ∗ þE0α0. □ □ ▪

To compute fWð�Þ, we use the expression of fWð�Þ from Equation (5) and perform the integration numerically using the Gauss–Laguerre quad-

rature method (Stroud & Secrest, 1966).

Next, suppose the cdf of W is FWð�Þ. Then the copula corresponding to the distribution of W is

CWðuÞ¼ FWfF�1
W1

ðu1Þ,…,F�1
Wn

ðunÞg, ð6Þ

where u¼ðu1,…,unÞ > and ui � ½0,1�, i¼1,…,n. Although F�1
Wi
ð�Þ can be easily obtained numerically because of the simplified form of FWi

ð�Þ, we can-

not compute CWð�Þ as the explicit functional form of FWð�Þ is not known and numerically obtaining it is very challenging, especially when n is not

small. Nevertheless, we can compute the copula density corresponding to the distribution of W that is

cWðuÞ¼ fWfF�1
W1

ðu1Þ,…,F�1
Wn

ðunÞg
fW1fF�1

W1
ðu1Þg�…� fWnfF�1

Wn
ðunÞg

, u¼ðu1,…,unÞ > � ½0,1�n: ð7Þ

Instead of modelling directly with WðsÞ from Equation (3), here, we perform the modelling using its copula. In this way, we can have arbitrary

marginal distributions for WðsÞ, keeping the joint dependence the same. As a result, we can have a more flexible model.

4 of 15 MONDAL ET AL.
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2.2 | Tail order of the underlying copula

Tail dependence properties of the copula CW linking realizations Wðs1Þ and Wðs2Þ of the process WðsÞ as defined in (3) have been studied in

Krupskii and Genton (2019) (see their proposition 1). Let δj ¼ α0j=α, j¼1,2. The copula CW has upper tail dependence if δ1 > 1 and δ2 > 1. In this

section, we show that CW allows for a full range of dependence between tail quadrant independence and tail dependence. The new results related

to the tail order coefficient of WðsÞ were not explored in Krupskii and Genton (2019). Let κU be the upper tail order of CW such that

CR
Wðu,uÞ� uκUℓðuÞ,u!0þ,

for some slowly varying function ℓðuÞ, where

CR
Wðu1,u2Þ¼�1þu1þu2þCWð1�u1,1�u2Þ

is the reflected copula. Here, κU ¼2 corresponds to tail quadrant independence, and if 1 < κU <2, then the copula CW is said to have intermediate

tail dependence (such as that of the normal copula). The strongest dependence is achieved when κU ¼1; in particular, κU ¼1 if CW has upper tail

dependence. As the next proposition shows, κU cannot exceed 2 in our model. This is not the case for the Gaussian copula which can model situa-

tions with κU >2. Note that this constraint is not very restrictive because for real data with positive dependence, κU ≤2.
Proposition 3. Let δL ¼ minðδ1,δ2Þ and δU ¼ maxðδ1,δ2Þ, and assume δL <1. The upper tail order of the copula CW is given by the formula:

κU ¼
2�δL, δL <1,δU >1,

1þð1�δLÞ=δU, δL <1,δU <1,δLþδU >1,

2, δLþδU ≤1:

8><>:

Proof. We consider the case δ2 < δ1 < 1. Other cases are considered analogously. It follows that

1�CWð1�u,1�uÞ�2u�uκUℓðuÞ, u!0þ andCWð1�u,1�uÞ¼ FW F�1
1 ð1�uÞ,F�1

2 ð1�uÞ� �
,

where FW is the joint cdf of ðWðs1Þ,Wðs2ÞÞ > , and Fj is the marginal cdf of WðsjÞ, j¼1,2. From (3), we find that

FWðz1,z2Þ¼
ð
ℝ3

þ

Φ2ðz1�α10v0�αv1,z2�α20v0�αv2;ρÞexpð�v0�v1�v2Þdv2dv1dv0:

Using the integration by parts formula with respect to v1 and v2, we get

FWðz1,z2Þ ¼
ð∞
0
fI0ðv0Þ� I1ðv0Þ� I2ðv0Þþ I12ðv0Þgdv0, where

I0ðv0Þ ¼Φ2ðz1�α10v0,z2�α20v0;ρÞexpð�v0Þ,
I1ðv0Þ ¼Φ2ðz1�α10v0�ρ=α,z2�α20v0�1=α;ρÞexpfðδ2�1Þv0þ0:5=ðαÞ2� z2=αg,
I2ðv0Þ ¼Φ2ðz1�α10v0�1=α,z2�α20v0�ρ=α;ρÞexpfðδ1�1Þv0þ0:5=ðαÞ2� z1=αg,
I12ðv0Þ ¼Φ2ðz1�α10v0�1=α�ρ=α,z2�α20v0�ρ=α�1=α;ρÞexpfðδ12�1Þv0þ0:5ðρ ∗

12Þ2� z1=α� z2=αg,

with δ12 ¼ δ1þδ2 and ðρ ∗
12Þ2 ¼2ð1þρÞ=α2. The marginal distribution of Wj is

FjðzÞ ¼ΦðzÞ� αj0 expf�z=αj0þ0:5=ðαj0Þ2gΦðz�1=αj0Þ
h

�αexpf�z=αþ0:5=ðαÞ2gΦðz�1=αÞ
i
=ðαj0�αÞ, j¼1,2:

Let zj ¼ F�1
j ð1�1=nÞ. It implies that zj ¼ αlognþ0:5=α�αlogð1�δjÞþϵj , ϵj ¼Oðn1�1=δj Þ, where
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1
n

1� exp �ϵj
αj

� �� �
¼� δj

1�δj
n�1=δj exp

0:5

α2j0
� 0:5
ααj0

þ 1
δj
logð1�δjÞ� ϵj

αj0

 !
:

Note that Φ2ðz1�α10v0,z2�α20v0;ρÞ¼Φðz1�α10v0Þþoð1=n2Þ if v0 < ð1=δ2�ϵÞlogn for any ϵ>0 because

z2�α20v0 > αϵlognþOð1Þ. Furthermore, Φ2ðz1�α10v0,z2�α20v0;ρÞ¼ oð1=n2Þ and Φðz1�α10v0Þ¼ oð1=n2Þ if v0 > ð1=δ1þϵÞlogn
because z1�α10v0 < �αϵlognþOð1Þ. It implies that the second argument in the bivariate normal cdf can be ignored when integrat-

ing I0ðv0Þ over v0 > 0. The same reasoning applies to I1ðv0Þ, I2ðv0Þ and I12ðv0Þ. We can therefore calculate FWðz1,z2Þ using the follow-

ing formula for b>0 which can be obtained using integration by parts:

ð∞
0
Φða�bv0Þexpð�cv0Þdv0 ¼1

c
ΦðaÞ�1

c
Φ a� c

b

� �
exp

c2

2b2
�ac

b

� �
:

Let

A0 ¼ exp
0:5

α210
� z1
α10

 !
¼ n�1=δ1 � exp 0:5

α210
� 0:5
α1α10

þ 1
δ1

logð1�δ1Þ� ϵ1
α10

 !

and

Aj ¼ exp 0:5=α2� zj=α
� �¼1

n
ð1�δjÞ � exp �ϵj

α

� �
, j¼1,2:

Note that

1
1�δ1

A1� δ1
1�δ1

A0 ¼1
n
:

We find that

FWðz1,z2Þ¼ 1�A0� 1
1�δ1

A1� 1
1�δ2

A2þC01A
1�δ1
0 A1þC02A

1�δ2
0 A2

þC12A1A2þC012A
1�δ12
0 A1A2þoð1=n2Þ,

where

C01 ¼ 1
1�δ1

� exp 1�δ1
αα10

�δ1ð1�δ1Þ
2α210

 !
,C02 ¼ 1

1�δ2
� exp ρð1�δ2Þ

αα10
�δ2ð1�δ2Þ

2α210

 !
,

C12 ¼ 1
1�δ12

exp
2ρ
α2

� �
,C012 ¼� 1

1�δ12
exp

2ρ
α2

þð1�δ12Þ2
2α210

� 1
α
� ρ

α

� �
1�δ12
α10

 !
:

Note that A1�δ2
0 A2 ¼O n�ð1þð1�δ2Þ=δ1Þ� �

,A1A2 ¼Oðn�2Þ,A1�δ12
0 A1A2 ¼O n�ð1þð1�δ2Þ=δ1Þ� �

, and A2 ¼ 1
n ð1�δ2Þ 1�ϵ2=αþoðϵ2Þð Þ¼

1
n ð1�δ2ÞþOðn�1=δ2 Þ where 1=δ2 > 1þð1�δ2Þ=δ1. Finally, one can show that

C01A
1�δ1
0 A1 ¼ 1

1�δ1
A0 ) A0þ 1

1�δ1
A1�C01A

1�δ1
0 A1 ¼ 1

1�δ1
A1� δ1

1�δ1
A0 ¼1

n
:

It implies that CWð1�1=n,1�1=nÞ¼1�2=nþOðn�1þð1�δ2Þ=δ1 ÞþOðn�2Þ, and the upper tail order of CW is

κU ¼ minf1þð1�δ2Þ=δ1,2g. □ □ ▪
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Similar to the model proposed by Huser and Wadsworth (2019), the transition between asymptotic dependence and asymptotic indepen-

dence for our model takes place in the interior of the parameter space. This is a very desirable property for the model as the asymptotic tail

behaviour can be estimated from the data. Furthermore, the model can handle the full range of dependence, from asymptotic tail dependence

with κU ¼1 to tail quadrant independence with κU ¼2.

3 | MAXIMUM LIKELIHOOD ESTIMATION AND INTERPOLATION

3.1 | The likelihood function

To estimate the copula parameters corresponding to the model in Equation (3), we rely on maximizing the log-likelihood function. Consider a ran-

dom sample of size N observed from the model in Equation (3) as

wij ¼wiðsjÞ¼ ziðsjÞþα0ðsjÞv0 iþαviðsjÞ, i� f1,…,Ng, j� f1,…,ng: ð8Þ

Moreover, we assume that the samples from each location, that is, w:j ¼ðw1j ,…,wNjÞ > , are not necessarily from the cdf FWj from Equation (4),

but from any arbitrary distribution. To compute the copula likelihood, we need to transform the data to a uniform scale. To do that, we use the

nonparametric uniform scores, defined as uij ¼frankðwijÞ�0:5g=N. Moreover, let zi ¼ðzi1,…,zinÞ > and zij ¼ F�1
Wj
ðuij,θFÞ, i¼1,…,N, j¼1,…,n.

As we use the data transformed to uniform scores, they are assumed to be from Uð0,1Þ approximately, however, they are not mutually inde-

pendent anymore. The extent of dependence vanishes as the number of replicates, N, goes to infinity and the maximum likelihood estimates

(MLE) obtained by maximizing the pseudo-log-likelihood are consistent and asymptotically normal, provided the copula is correctly specified. From

Equation (7), the pseudo-log-likelihood is

ℓðz1,…,zNÞ¼
XN
i¼1

logffWðzi;θF ,θΣÞg�
Xn
j¼1

logffWj ðzij;θFÞg
" #

, ð9Þ

where θΣ is the parameter vector which corresponds to the correlation function for constructing ΣZ and θF is the parameter vector compiling the

rest of the parameters used for computing fW in Equation (5).

3.2 | Vecchia approximation

The computation of the full log-likelihood given in Equation (9) involves the computation of fW from Equation (5). This involves computing

Φnð�;μ,ΣÞ, the n-dimensional cdf of a Gaussian random vector with mean μ and covariance matrix Σ and n is the same as the number of locations

in our study. Whenever n goes beyond 20 (which is often the case in applications) the exact computation of Φnð�;μ,ΣÞ in our setting cannot be

done accurately. This is due to the fact that for our model, we have seen in computing the log-likelihood at the true parameters when n>20 that

�yðv0Þ ð8v0 > 0Þ from Equation (5) is a large positive vector and as a result the true value of Φnð0; �yðv0Þ,HÞ is very close to zero and hence is dif-

ficult to compute accurately. As a result, for applications with the number of locations of more than 20, we compute the log-likelihood using the

Vecchia approximation (Vecchia, 1988). Consider an n-dimensional joint copula density function c1:nð�Þ written as

c1:nðu1,…,unÞ¼ cnj1:ðn�1Þðunju1,…,un�1Þcðn�1Þj1:ðn�2Þðun�1ju1,…,un�2Þ…c3j1:2ðu3ju1,u2Þc1:2ðu1,u2Þ

) logfc1:nðu1,…,unÞg¼ logfc1:2ðu1,u2Þgþ
Xn
j¼3

logfcjj1:ðj�1Þðujju1,…,uj�1Þg, ð10Þ

where uj � ½0,1�, j¼1,…,n. The idea of the Vecchia approximation is, instead of conditioning on all the variables in the last expression, to condition

only on a few variables. Suppose the variables u1,…,un are ordered in some particular way as u½1� ,…,u½n� , and we only use the previous n0 ð2< n0 �
nÞ ranked variables for conditioning the jth variable, j¼3,…,n. In this way the copula log-likelihood from Equation (10) can be rewritten as

MONDAL ET AL. 7 of 15
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logfc1:nðu1,…,unÞg ¼ logfc1:2ðu1,u2Þgþ
Xn
j¼3

logfcjj1:ðj�1Þðujju1,…,uj�1Þg

¼ logfc½1�:½2�ðu½1� ,u½2�Þgþ
Xn
j¼3

logfc½j�j½1�:½j�1�ðu½j�ju½1�,…,u½j�1�Þg

¼ logfc½1�:½2�ðu½1� ,u½2�Þgþ
Xn0
j¼3

logfc½j�j½1�:½j�1�ðu½j�ju½1�,…,u½j�1�Þgþ
Xn

j¼n0þ1

logfc½j�j½1�:½j�1�ðu½j�ju½1�,…,u½j�1�Þg

≈ logfc½1�:½2�ðu½1� ,u½2�Þgþ
Xn0
j¼3

logfc½j�j½1�:½j�1�ðu½j�ju½1�,…,u½j�1�Þgþ
Xn

j¼n0þ1

logfc½j�j½j�n0 �:½j�1�ðu½j�ju½j�n0 � ,…,u½j�1�Þg

¼
Xn

j¼n0þ1

logfc½j�n0 �:½j�ðu½j�n0 �,…,u½j�Þg� logfc½j�n0 �:½j�1�ðu½j�n0 �,…,u½j�1�Þg
 �þ logfc½1�:½n0 �ðu½1�,…,u½n0 �Þg:

Moreover, using the setup used to write the log-likelihood in Equation (9), the Vecchia approximation of the pseudo-log-likelihood is

ℓVðz1,…,zNÞ ¼
XN
i¼1

Xn
j¼n0þ1

logff ½j�n0 �:½j�ðz½j�n0 �,…,z½j�;θF ,θΣÞg

�
XN
i¼1

Xn
j¼n0þ2

logff ½j�n0 �:½j�1�ðz½j�n0 � ,…,z½j�1�;θF ,θΣÞg�
XN
i¼1

Xn
j¼1

logffWj
ðzij;θFÞg,

ð11Þ

where f½j�n0 �:½j�ðz½j�n0 � ,…,z½j�Þ is the corresponding ðn0þ1Þ-dimensional marginal pdf of fWð�Þ from Equation (5). For computing ℓVðz1,…,zNÞ in

Equation (11), we need only to compute Φn0þ1ðμ,ΣÞ which enables us to fit the copula for applications with the number of locations being more

than 20. Hence, for applications with more than 20 locations, it is not possible to evaluate the exact pseudo-log-likelihood and the Vecchia

approximation of the pseudo-log-likelihood gives us an avenue to estimate the model parameters.

3.3 | Conditional copula and interpolation

Using a sample as in the setup given in Equation (8), we can estimate the copula parameters either by maximizing the full log-likelihood in

Equation (9) or the Vecchia approximation of the log-likelihood in Equation (11). From the estimated copula, we can predict the spatial process at

new locations. Suppose the estimated copula parameters based on the samples at n locations are θ̂F and θ̂Σ. For a given data vector ðu1,…,unÞ > ,

the conditional copula at a new location s0 is

Ĉ0jnðu0ju1,…,unÞ¼
ðu0
0
cnþ1ðu1,…,un,u; θ̂F , θ̂ΣÞdu=cnðu1,…,un; θ̂F , θ̂ΣÞ,

where cnþ1ð�Þ and cnð�Þ are the corresponding nþ1 and n dimensional copula densities. The copula densities can be computed from Equation (7).

Similar to the computational issues of the full log-likelihood, the computation of cnð�Þ will involve computing Φnð�;μ,ΣÞ, which becomes problem-

atic when n is more than 20. We suggest using the estimated conditional copula Ĉ0jn0 ðu0juð1Þ,…,uðn0ÞÞ, where ðuð1Þ,…,uðn0ÞÞ > are n0 observations

from n0 nearest neighbors of s0, and n0 � n. From the estimated conditional copula, we can compute different quantities such as the conditional

mean m̂0 and conditional pth-quantile bq0p as
m̂0 ¼

ð1
0
u0dĈ0jnðu0ju1,…,unÞ, bq0p ¼ Ĉ

�1

0jnðpju1,…,unÞ:

These quantities are computed numerically and Ĉ0jnðu0ju1,…,unÞ can also be replaced by Ĉ0jn0 ðu0juð1Þ,…,uðn0ÞÞ in order to make computation feasi-

ble. Note that the estimates are all in copula scale. To get the estimates in the original scale, we need to transform the estimates using the inverse

of the estimated marginal cdf at the prediction location s0.

4 | SIMULATION STUDY

We provide a simulation study for comparing the estimates obtained from maximizing the exact log-likelihood and the Vecchia approximated log-

likelihood. For this study, we simulate observations from the process WðsÞ, where s� ½0,1�� ½0,1�, with α0ðsÞ¼ expðbþa1s1þa2s2Þ. Moreover, we

assume that the correlation function corresponding to the latent Gaussian process is the Matérn correlation function of the following form:

8 of 15 MONDAL ET AL.
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ρZðs1,s2Þ¼CorrfZðs1Þ,Zðs2Þg¼ 1

ΓðνÞ2ν�1

ks1� s2k
ϕ

� �ν

Kν
ks1� s2k

ϕ

� �
, ð12Þ

where ks1� s2k is the distance between locations s1 and s2, ν>0 is the smoothness parameter, ϕ>0 is the range parameter, Γð�Þ is the gamma

function, and Kνð�Þ is the modified Bessel function of the second kind of order ν. We select 20 locations randomly on ½0,1�� ½0,1�, and at those

locations, we randomly generate a Gaussian process with the Matérn correlation function using ν¼0:5 and ϕ¼0:167. With the generated latent

Gaussian observations, we generate the target process WðsÞ using b¼0, a1 ¼1,a2 ¼�1, and α¼1:5. Based on samples of size N¼100, 200, and

500, we compute the exact log-likelihood and the Vecchia approximated log-likelihood using n0 ¼5 neighbours and maximize them to get the

maximum likelihood estimates (MLE). For computing the Vecchia approximated log-likelihood, we have used the Morton ordering scheme

(Morton, 1966) and no-ordering scheme where we do not order the observations. Boxplots in Figure 1 show MLEs based on 100 simulations. The

boxplots suggest that the Vecchia approximation yields comparable estimates to the exact log-likelihood, usually for larger sample sizes. In addi-

tion, there is not much difference between the estimates obtained from two different ordering schemes for the Vecchia approximation indicating

that the ordering scheme does not play a big role on the estimates. This finding is similar to what Stein et al. (2004) have observed in their paper.

To justify the last claim, in Table 1, we present the mean squared error (MSE) of the estimates. The MSE of the parameter estimates obtained from

the Vecchia approximation for two different ordering schemes do not show any general patterns like one is always higher or lower than the other,

which makes both of them very similar. Moreover, as we expected, the MSE of the estimates from the exact log-likelihood is smaller for all sample

sizes when compared with that of the Vecchia approximated log-likelihood and the difference becomes smaller as the sample size increases.

5 | TEMPERATURE DATA ANALYSIS

In this section, we analyse the spatial dependence structure of the daily mean temperature in Switzerland using the model from Equation (2). The

data was initially used by Davison et al. (2013). We consider the data from 1 May 2011 to 30 September 2011, 153 days in total, that is, the daily

average temperature during the summer months to ensure the weather pattern remains the same across the region. We analyse data from a total

of 15 weather stations over the western part of Switzerland, with the maximum distance between two stations being 164.44 km. The area of the

study is fairly large, with mountains, and that is why a non-stationary copula model as in Equation (2) may be more appropriate in this case.

The goal of this study is to estimate the copula model parameters and then to interpolate data at new locations. For estimating the parameters,

we use data from 12 randomly chosen weather stations and test the validity of the model on the data from the remaining three weather stations.

F IGURE 1 Boxplots of the parameter MLEs based on 100 simulations. The true values of each parameter are indicated by the red line in
each plot.
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5.1 | Marginal modelling

A subset of the dataset we are using has been already analysed by Krupskii et al. (2018). Similar to Krupskii et al. (2018), we remove the serial

dependence by fitting an autoregressive-moving-average (ARMA) model with lags up to one. Moreover, we include a quadratic trend in the model.

Therefore, the model for the marginals is

temps,t ¼ β0þβ1tþβ2t
2þβ3temps,t�1þβ4ϵs,t�1þϵs,t, ð13Þ

where temps,t is the average temperature measured at location s on day t, s� f1,…,12g and t� f2,…,153g. We assume that the marginal distribu-

tions of ϵs,t are the same for all s, s� f1,…,12g and t� f2,…,153g. The parameters βi , i¼f0,1,…,4g are obtained by minimizing the sum of squared

errors. We found that the skew-t distribution proposed by Azzalini and Capitanio (2003) fits well to the marginals of ϵs,t. Moreover, the Ljung–

Box test at the 5% level of significance indicates that ϵs,t are uncorrelated over time t, up to lag 20, for all locations s� f1,…,12g. Hence, ϵs,t can

be treated as a random sample of size 152 from a spatial process collected over 12 locations.

5.2 | Dependence structure of the data

Next, we study the dependence structure by some preliminary analysis of the dataset. We transform the estimated residuals ϵ̂s,t from the model

given in Equation (13) to uniform scores by us,t ¼frankðϵ̂s,tÞ�0:5g=152, for s� f1,…,12g and t� f2,…,153g. For any

s� f1,…,12g, us,t, t� f2,…,153g has an approximate Uð0,1Þ distribution. From here, we can transform the uniform scores to the normal scores

using the inverse of Φð�Þ, and we write zs,t ¼Φ�1ðus,tÞ. We draw the scatterplots for a few pairs of locations in Figure 2 to check if the dependence

structure is similar to that of a bivariate Gaussian distribution. The scatterplots of normal scores for these pairs of locations show sharp tails and

also show stronger dependence in the lower tail compared with the upper tail. This suggests that the data have asymmetric and tail dependence.

Hence, the data show a dependence structure which cannot be captured by a Gaussian copula.

We justify these claims using the tail-weighted dependence measures QL and QU proposed by Krupskii and Joe (2015) for observations at

each pair of locations using the reflected uniform scores ð1�us,tÞ to have stronger tail dependence in the upper tail compared with the lower tail.

Moreover, for each pair of locations, we compute the tail-weighted dependence measures from simulated data from a Gaussian copula with a cor-

relation same as the ð1�us,tÞ. Because for a Gaussian copula, the lower and the upper tail-weighted dependence measures are the same, because

of its tail-symmetry, we denote it as QN. If the dependence of the data at a pair of locations resembles a Gaussian copula, we expect QL,QU, and

QN to be close to each other for all pairs. If QL (or QU) is higher (lower) than QN for some pairs, we expect the lower (or upper) tail dependence to

be stronger (weaker) than that for a Gaussian copula. We compute

Qk ¼
X

si ,sj , i< j

Qkð1�usi ,t,1�usj ,tÞ=np, k¼ L,U,N,

where np ¼number of distinct location pairs. For the training dataset, QL ¼0:60,QU ¼0:87, and QN ¼0:67. These measures show stronger upper

tail dependence than that of a normal copula and weaker tail dependence than that of a normal copula. Although the lower tail dependence is

TABLE 1 The MSE (based on 100 simulations) of the MLEs of all the parameters, obtained from the exact log-likelihood and the Vecchia
approximated log-likelihood with Morton ordering and with no ordering, are given below.

ϕ ν b a1 a2 α

Exact ð100Þ 0.0077 1.5725 0.0300 0.0274 0.0297 0.0383

Vecchia Morton ð100Þ 0.3086 3.5437 0.0392 0.0501 0.0265 0.0676

Vecchia no-order ð100Þ 0.3146 2.6219 0.0293 0.0387 0.0366 0.0378

Exact ð200Þ 0.0030 0.8059 0.0135 0.0122 0.0094 0.0234

Vecchia Morton ð200Þ 0.0109 1.3949 0.0170 0.0169 0.0181 0.0243

Vecchia no-order ð200Þ 0.0145 1.8526 0.0145 0.0161 0.0188 0.0250

Exact ð500Þ 0.0021 0.1561 0.0055 0.0056 0.0037 0.0066

Vecchia Morton ð500Þ 0.0032 0.8590 0.0081 0.0158 0.0074 0.0264

Vecchia no-order ð500Þ 0.0041 0.3706 0.0089 0.0051 0.0073 0.0166

Note: The sample sizes N are given in parentheses.
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weaker than that of a normal copula, it is still rather close to the normal copula. Hence, using the copula of the model from Equation (2) is more

appropriate for modelling the dependence structure for this dataset, compared with the Gaussian copula.

5.3 | Joint dependence estimation and prediction

We fit the model WðsÞ from Equation (2) to the reflected uniform scores assuming that they are independent over time. Moreover, we assume

that the correlation structure of the latent Gaussian random field is the Matérn correlation function of the form given in Equation (12) and

α0ðsÞ¼ expðbþa1s1þa2s2Þ. We refer to this model as Model 1. For comparison, we also fit the stationary version of Model 1, that is, we assume

α0ðsÞ¼ α0, and refer to it as Model 2. In addition, we fit the Gaussian copula model (Model 3) to this data as well, that is, α0ðsÞ¼0,α¼0. We maxi-

mize the log-likelihood to estimate the model parameters. To assess model adequacy, we provide measures such as the average differences and

the average absolute differences between the model-based estimates by simulation and the corresponding empirical estimates of the correlation

coefficients ρ, QL, and QU. We denote them as Δρ,ΔQL
, and ΔQU

for the average differences and as jΔρj, jΔQL
j, and jΔQU

j for the average absolute dif-

ferences. The results are given in Table 2 for Model 1, Model 2, and Model 3 along with their corresponding Bayesian information criterion (BIC).

We also provide the parameter estimates based on the three models in Table 3, as well as the standard errors for each estimate, which are com-

puted based on 100 bootstrap samples.

The results in Table 2 suggest that Models 1 and 2 both capture the tail dependence very well compared with Model 3. Although Model

3 captures the joint dependence structure better than the other two models, the improvement is very small. The BIC shows that the

non-stationary model is more appropriate for this dataset. The results in Table 3 reveal that the estimates of a1 and a2 from Model 1 are signifi-

cantly away from 0, suggesting that the non-stationary model is more suitable for this dataset.

We now test the three models using the data from three testing locations (see maps in Figure 4). We make predictions at these three loca-

tions using the estimates of Models 1, 2, and 3 and check how the predicted values compare to the actual values by the mean absolute error mea-

sure. For any given location s0, we use the average values observed at the six nearest stations as starting values for temps0,t, t¼1. We compute

the estimated medians of the variable on the uniform ð0,1Þ scale at location s0 and time tþ1 using the uniform scores as discussed in Section 3.3,

using n0 ¼6 (i.e., the 6 nearest neighbours from the training locations for each prediction locations). From there, we convert the estimated median

to residuals using the inverse skew-t distribution. Then we get the prediction in the data scale using the marginal model in Equation (13). We

F IGURE 2 Scatter plots of normal scores for the average temperature data at three pairs of locations: ðs2,s10Þ, ðs1,s8Þ, and ðs4,s9Þ

TABLE 2 Estimates of Δρ, jΔρj,ΔQL
, jΔQL

j,ΔQU
, and jΔQU

j for Model 1, Model 2, and Model 3 are given here.

Model 1 Model 2 Model 3

BIC �2898 �2868 �2865

Δρ=jΔρj �0.03/0.06 �0.04/0.07 �0.01/0.06

ΔQL
=jΔQL

j �0.02/0.02 �0.05/0.05 0.06/0.06

ΔQU
=jΔQU

j �0.06/0.06 �0.05/0.05 �0.20/0.20

Note: We simulated data from the estimated Model 1, 2, and 3 to calculate these values using sample size N = 50,000.
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repeat the process for all t¼2,…,153 to get the predicted average temperatures for all the days at the location s0. The predicted time series, using

Model 1 estimates, of the daily average temperature at the three testing locations are plotted along with the true time series in Figure 3. The

mean absolute error of prediction, calculated using all three stations and all time points t¼2,…,153, based on Model 1 is 1.54, that of Model 2 is

1.56, and that of Model 3 is 1.57, which suggests Model 1 is slightly outperforming Models 2 and 3 in terms of prediction for this dataset.

We also have estimated the 5% and the 95% quantiles of the average temperatures. To do that, we predict the observations at each location

up to time t�1 using the estimated medians as described before, and for time t, we estimate the 5% and the 95% quantiles of the uniform scores

using the methods described in Section 3.3. Then we add the transformed estimated uniform score quantiles using the inverse skew-t distribution

to get the original scale counterparts. We have estimated the 5%, 50%, and 95% quantiles over the whole study region for 11 August 2011. The

spatial predictions for 11 August 2011, based on Model 1 are given in Figure 4 along with the observed values in the training locations. Moreover,

in Figure 4, we have provided the predicted quantiles based on Model 2 and Model 3. The estimates from Model 1 and Model 2 differ a bit for

the 5% quantiles and are very similar for the median and the 95% quantiles. This suggests in terms of prediction that there is not much difference

between Model 1 and Model 2. The difference between Model 1 and Model 3 estimates is higher compared with that between Model 1 and

Model 2. Model 3 overestimates the 5% quantile and underestimates the 95% quantile compared with Model 1 in most of the locations.

6 | DISCUSSION

In this paper, we proposed a new non-stationary copula model for spatial data with replicates that can handle tail dependence and asymmetric

dependence. We studied the tail order of the copula extensively. The parameters of the model can be estimated by maximizing the log-likelihood.

Although the form of the joint copula density is simple, its computation becomes numerically challenging when the number of locations in the

problem goes beyond 20. The Vecchia approximation of the log-likelihood in those cases gives a feasible alternative for estimating the parame-

ters. Moreover, using a spatial dataset of average temperature in Switzerland, we showed how spatial interpolation can be carried out based on

this model.

As the exact joint copula density computation becomes infeasible as the dimension increases, the exact parametric inference also becomes

challenging. Perhaps this problem can be avoided if the Bayesian paradigm is considered for this model. This is one possible avenue of future

research. Moreover, we have seen that the model cannot be applied when we have tail dependence in both upper and lower tails. For that, similar

TABLE 3 Estimates of the different model parameters along with their standard errors in parentheses.

Model ϕ ν b a1 a2 α

Model 1 254:96ð98:38Þ 0:14ð0:02Þ �0:72ð0:69Þ 40:35ð4:62Þ �3:84ð1:27Þ 0:55ð0:04Þ
Model 2 190:86 ð26:59Þ 0:23ð0:02Þ 0:40ð0:35Þ � � 0:55ð0:30Þ
Model 3 423:70 ð14:03Þ 0:05ð0:03Þ � � � �

Note: The standard errors are computed based on 250 bootstrap samples.

F IGURE 3 Based on Model 1, the predicted (in green) daily average temperature for three testing locations along with their corresponding
observed values (in black) from 1 May 2011 to 30 September 2011 are plotted.
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to Krupskii and Genton (2019), we need to add an exponential common factor and independent exponential factor to the model to control the

lower tail dependence. However, in that case, the joint copula density becomes very hard to work with because of its complex structure. A Bayes-

ian framework may be considered here as well. Another possible future research idea could be to extend the proposed model to the space-time

case like in Krupskii and Genton (2017) or with the Lagrangian framework. Furthermore, a direction to explore is to compute the copula and the

copula density in Equations (6) and (7) using neural networks. This might enable us to compute the exact log-likelihoods for dimensions more than

20 as well as might speed up the modelling process greatly. One limitation of our proposed model is that it cannot capture full independence

when the coefficients for common and independent factors are assumed to be positive. This can possibly be addressed by allowing them to be

zeros as well. In that case, the related quantities such as the cdfs and pdfs have to be reformulated in order for them to be valid at the limiting

points. This can be another new direction for further research. Finally, we have proposed the non-stationary model by assuming the coefficients

of the common factor to be a function of space. This assumption can be made for the coefficients of the independent factors as well. That will

yield a more general yet more complex non-stationary model. Codes for fitting the proposed model are available here.
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F IGURE 4 The estimated 5%, 50% (median) and 95% quantiles using Model 1 for average daily temperatures in the area of study for
11 August 2011 in the first row. The 12 training locations with observed temperature data are plotted in white dots and three testing locations
are plotted in red dots. In the second and the third row, we plot the predicted 5%, 50% (median) and 95% quantiles based on Model 2 and Model
3, respectively.
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