
GPU-Accelerated Vecchia Approximations of
Gaussian Processes for Geospatial Data using

Batched Matrix Computations
Qilong Pan1, Sameh Abdulah2, Marc G. Genton12, David E. Keyes2, Hatem Ltaief2, Ying Sun12

Division of Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE),
1 Statistics Program,

2 Extreme Computing Research Center,
King Abdullah University of Science and Technology,

Thuwal, Jeddah 23955, Saudi Arabia

Abstract—Gaussian processes (GPs) are commonly used for
geospatial analysis, but they suffer from high computational
complexity when dealing with massive data. For instance, the
log-likelihood function required in estimating the statistical model
parameters for geospatial data is a computationally intensive pro-
cedure that involves computing the inverse of a covariance matrix
with size n× n, where n represents the number of geographical
locations in the simplest case. As a result, in the literature, studies
have shifted towards approximation methods to handle larger
values of n effectively while maintaining high accuracy. These
methods encompass a range of techniques, including low-rank
and sparse approximations. Among these techniques, Vecchia
approximation is one of the most promising methods to speed
up evaluating the log-likelihood function. This study presents a
parallel implementation of the Vecchia approximation technique,
utilizing batched matrix computations on contemporary GPUs.
The proposed implementation relies on batched linear algebra
routines to efficiently execute individual conditional distributions
in the Vecchia algorithm. We rely on the KBLAS linear algebra
library to perform batched linear algebra operations, reducing
the time to solution compared to the state-of-the-art parallel
implementation of the likelihood estimation operation in the
ExaGeoStat software by up to 700X, 833X, 1380X on 32GB
GV100, 80GB A100, and 80GB H100 GPUs, respectively, with the
largest matrix dimension that can fully fit into the GPU memory
in the dense Maximum Likelihood Estimation (MLE) case. We
also successfully manage larger problem sizes on a single NVIDIA
GPU, accommodating up to 1 million locations with 80GB A100
and H100 GPUs while maintaining the necessary application
accuracy. We further assess the accuracy performance of the
implemented algorithm, identifying the optimal settings for the
Vecchia approximation algorithm to preserve accuracy on two
real geospatial datasets: soil moisture data in the Mississippi
Basin area and wind speed data in the Middle East.

Index Terms—Gaussian processes (GPs), Vecchia approxima-
tion, GPU computing, linear algebra, and batched solvers.

I. INTRODUCTION

Gaussian Processes (GPs) play a crucial role in spatial
statistics applications, where they are employed for modeling
and predicting geospatial data. This is achieved by defining
the mean and covariance functions of the process within a
region. For GPs, a parametric form of the covariance function
defines the correlation between the spatial locations using a

set of parameters, thereby characterizing the dependence of
the spatial data. GPs are employed in many applications, such
as geostatistics, machine learning, and computer vision. How-
ever, a significant challenge arises when dealing with large
datasets collected at irregularly spaced locations where the
computational complexity of the GP modeling and prediction
increases cubically with the number of spatial locations. This
poses a limitation for applications with large spatial datasets.

Numerous studies have addressed the computational issues
associated with large-scale GP modeling and prediction. Most
of the efforts have centered on two main directions: sparse
approximation and low-rank approximation to the covariance
matrix. Examples of the former include covariance tapering
methods [1], [2], [3]. In covariance tapering, the covariance
function is multiplied by a tapering function that decays to
zero as the distance between two locations increases. This
process produces from the original dense covariance method
a sparse one that can be managed less cumbersomely. Other
studies assume the sparsity of the original covariance matrix by
partially including correlation between some spatial locations
and ignoring others, i.e., sparse inverse covariance meth-
ods [4], [5]. Moreover, the emergence of modern hardware
architectures that support low-precision computation, such as
NVIDIA GPUs, has facilitated the optimization of sparse
inverse covariance methods by applying different precisions
to various parts of the dense covariance matrix to reduce the
computational complexity instead of ignoring them [6], [7],
[8]. For the latter, different types of low-rank approximations
are exploited, which allows faster computation and less mem-
ory consumption compared to the original dense matrix [9],
[10], [11], [12].

Vecchia approximation is one of the earliest GP statisti-
cal approximation methods. It involves replacing the high-
dimensional joint distribution of the GP with a product of
univariate conditional distributions. A small set of observations
is conditioned in each conditional distribution, as described
in [13]. This method involves a portion of the locations at once
instead of all the locations in the modeling process, allowing
faster execution and less memory consumption. Vecchia ap-

proximation results in an approximated log-likelihood function
with a computational complexity of O(nm3) instead of the
standard O(n3) complexity. Here, n denotes the number of
spatial locations, and m represents the number of neighbors
considered in the conditional distributions, which is signif-
icantly smaller than n. Another advantage of the Vecchia
approximation is that it is amenable to parallel computing
since terms may be computed independently. However, a chal-
lenge to scaling Vecchia approximation is that it requires small
matrix operations, which can be more suitable to parallelize
on CPUs rather than GPUs. While GPUs are intended to solve
problems with huge computational requirements, numerous
applications, including Vecchia approximation, offer many
small tasks instead. For reviews in Vecchia approximation,
see [14], [15], [16], [17].

The latest TOP500 Supercomputers list released in Novem-
ber 2023 reveals that 9 of the top 10 supercomputers world-
wide use NVIDIA, Intel, or AMD GPU accelerators, allowing
peak performance levels of more than 1.6 ExaFlops/s [18].
GPUs are favored to accelerate tasks because of their supe-
rior computational power and energy efficiency compared to
CPUs. With CPUs in complex matrix operations, accelerators
have traditionally been employed to handle the computation.
GPUs are typically leveraged for computationally-intensive
tasks, while CPUs are better suited for latency-sensitive ones.
However, this approach does not work well with small matrix
operations that do not fully utilize the existing accelerators.
Instead, concurrent batched operations can be used to execute
the same operation across multiple small matrices on a single
GPU to allow better exploitation of the existing hardware [19],
[20].

In this work, we leverage the power of modern GPU ar-
chitectures to accelerate the Vecchia approximation algorithm
of the Gaussian field using batched matrix operations. The
approach applies uniform operations to batches of small matri-
ces to leverage the underlying GPU accelerators. We assess the
execution and accuracy performance of our implementation on
three different NVIDIA GPU accelerators, GV100, A100, and
H100, showing fast execution using batched matrix operations
with an accuracy comparable to the dense solution provided
with the state-of-the-art Gaussian process software, i.e., Ex-
aGeoStat [5]. This study also shows we can handle larger
problem sizes with Vecchia approximation on a single GPU
compared to using exact likelihood. In our numerical study
and real dataset analysis, we find that the suitable number of
neighbors (conditioning set) required for modeling each loca-
tion is at most 60. Vecchia approximation effectively reduces
the memory complexity of the MLE operation from O(n2) to
O(nm2), e.g., m ≤ 60. In the experimental section, we assess
the performance and accuracy of our implemented approach,
emphasizing the benefits of utilizing Vecchia approximation
over the exact likelihood while maintaining the necessary
accuracy.

The paper is structured as follows: In Section II, we
summarize our contributions. In Section III, we review related
work. Section IV provides a comprehensive background for

the paper. Section V offers a detailed explanation of our
proposed implementation. Section VI presents the evaluation
of our implementation from both accuracy and performance
perspectives, and we conclude in Section VII.

II. CONTRIBUTIONS

We summarize the contributions of the paper as follows:
• We introduce a GPU-accelerated implementation of the

well-known Vecchia approximation algorithm for estimat-
ing statistical model parameters in the context of climate
and weather applications.

• We utilize the KBLAS library and batched linear algebra
operations to enhance the speed of our implementation
on contemporary GPU architectures, including those from
NVIDIA, such as GV100, A100, and H100.

• We assess the accuracy of the proposed implementation
through numerical study and two real datasets: a soil
moisture dataset from the Mississippi Basin area and
a wind speed dataset from the Middle East region. We
emphasize identifying the optimal settings that allow the
Vecchia algorithm to achieve performance on par with the
exact MLE operation as implemented in state-of-the-art
HPC geostatistics software, i.e., ExaGeoStat.

• We assess the execution performance of the GPU-based
Vecchia algorithm on three different NVIDIA GPU archi-
tectures, achieving speedups of up to 700X, 833X, 1380X
on 32GB GV100, 80GB A100, and 80GB H100 GPUs,
respectively, compared to the exact MLE operation.

• Our implementation accommodates larger problem sizes
within the same GPU memory, enabling improved mod-
eling for high-resolution geospatial data.

III. RELATED WORK

A. Vecchia Approximation

The Vecchia method, as described in the study on Gaussian
process estimation [13], has been investigated and proven to
be computationally feasible for non-gridded spatial data. The
basic idea behind the Vecchia approximation is to approxi-
mate the full covariance matrix of the Gaussian process by
considering a smaller subset of the data points and using a
conditional independence assumption. This approximation is
particularly useful in cases where the full covariance matrix is
too large to handle efficiently. The study [21] offers an in-depth
examination of the Vecchia method, highlighting its effective-
ness in handling spatial data with various characteristics. In
[21], different spatial orderings are investigated to enhance
the approximation of Gaussian processes via the Vecchia algo-
rithm. Specifically, maximum–minimum distance and random
orderings demonstrate a remarkable 99% relative efficiency of
the approximation algorithm while requiring only a minimal
set of 30 neighboring data points. Furthermore, an idea of
grouping locations that share the most common neighbors
has been introduced to expedite computations while gaining
accuracy. Subsequently, to adapt the Vecchia approximation
for MLE operation, the Fisher scoring optimization algorithm
[22] has been employed, resulting in MLE convergence within

a few iterations. A dedicated R package, GpGp [22], has
also been developed to facilitate these computations. The
GpGp team achieved victory in recent competitions assessing
the effectiveness of existing software in statistical parameter
estimation and prediction, thanks to their utilization of the
GpGp package [23], [24], [25].

A general framework for the Vecchia approximation has
been introduced [14]. This framework unifies the estimation,
prediction, and emulation with the Vecchia approximation
while establishing seamless integration with other Gaussian
approximation methodologies. The method is primarily de-
ployed to approximate the likelihood of statistical models,
particularly in scenarios characterized by expensive com-
putations and complicated modelings. Notable applications
include addressing intractable spatial extremes models [26],
optimizing Bayesian processes at a large scale [17], and ad-
vancing the compositional warpings to construct nonstationary
spatio-temporal covariance models [27]. These applications
underscore the versatility of the Vecchia method in handling
a range of challenging statistical problems.

B. GPU-based Acceleration in Spatial Statistics

GPU accelerators have been employed in spatial statistics
to tackle various problems, aiming to efficiently process large-
scale data and maximize data utilization for parameter estima-
tion in statistical models. For instance, [28] primarily concen-
trates on data parallel approaches for tasks such as spatial
indexing, spatial joins, polygon rasterization, decomposition,
and point interpolation. These approaches are further expanded
to encompass distributed computing nodes by integrating
multiple GPU implementations.

Another example is [29], which focuses on accelerating
the computation of high-order spatial statistics, particularly
in geology, by introducing a GPU-based parallel approach,
significantly enhancing the computational efficiency of high-
order spatial statistics. The key feature of this approach is
the utilization of template-stage parallelism. In a real-world
application involving a large-scale dataset, [30] tackles the
significant computational challenge of handling over 375
million species occurrence records sourced from the global
biodiversity information facility by leveraging GPUs. Their re-
search is notable for the impressive performance enhancements
attained by applying parallel zonal statistics. Furthermore,
[31] presents a novel GPU-accelerated approach for adap-
tive kernel density estimation to address the computational
challenges related to bandwidth determination in spatial point
pattern analysis. This method incorporates optimizations that
reduce algorithmic complexity and harness GPU parallelism,
resulting in significant speed improvements. [32] also under-
scores the importance of expediting geospatial computations
and analytics through shared and distributed memory parallel
platforms. They advocate using GPUs, which boast hundreds
to thousands of processing cores for parallelization. When
working with spatial Gaussian data, these datasets are typically
represented as realizations derived from a Gaussian spatial
random field. The GPU-based parallel solutions presented

in their work underscore the promising potential of GPU
technology in this field.

IV. BACKGROUND

A. Gaussian Process and Likelihood Function

Statistical modeling involves analyzing correlations among
various spatial or spatio-temporal points distributed regularly
or irregularly over a geographical area. In the purely spa-
tial scenario, these datasets are assumed to be realizations
observed from a Gaussian spatial random field. Consider a
set of n locations, s1, . . . , sn ∈ Rd, and their observations,
y = (y1, . . . , yn)

⊤ which is indicated by yi := y (si) ∈ R.
We model the data y with Gaussian process, y ∼ N (µ,Σθ),
where Σθ is a covariance matrix with (i, j) entry determined
by a given covariance function Cθ (si, sj) relying on a vector
of covariance parameters, θ. Without loss of generality, we
assume that y has a mean of zero. Statistical inference about θ
is often based on the Gaussian log-likelihood function, which
entails a cubic computational complexity [5]:

ℓ(θ;y) = −n

2
log(2π)− 1

2
log |Σ(θ)| − 1

2
y⊤Σ(θ)−1y. (1)

The maximum likelihood estimator of θ is the value θ̂
that maximizes ℓ(θ) in the equation (1). Examples of exist-
ing covariance functions are the isotropic Matérn covariance
function [33] in (2) and the power exponential kernel in (3):

C(si, sj) = σ2 2
1−ν

Γ(ν)

(
∥si − sj∥

β

)ν

Kν

(
∥si − sj∥

β

)
, (2)

C(si, sj) = σ2 exp

(
−∥si − sj∥ν

β

)
, (3)

where θ =
(
σ2, β, ν

)⊤
, σ2 is the variance, Γ(·) is the gamma

function, Kν(·) is the Bessel function of the second kind of
order ν, and β > 0 and ν > 0 are range and smoothness
parameters, respectively.

B. Kullback-Leibler (KL) Divergence

KL divergence is a statistical metric to measure the differ-
ence between two given probability distributions. Assuming
two models P and Q, the KL divergence of P from Q is the
amount of information lost when using Q as a model compared
to the actual distribution P . It is represented as DKL(P ∥ Q),
with P and Q representing the two probability distributions
under comparison. KL divergence is used in various fields,
including information theory, machine learning, and statistics.

For two distributions, P and Q of a continuous random
variable, KL divergence is defined as,

DKL(P ∥ Q) =

∫ ∞

−∞
p(x) log

(
p(x)

q(x)

)
dx,

where p and q denote the probability densities of P and Q.
In the Gaussian fields, P = N0(0,Σ0) and Q = N1(0,Σ1),
the KL divergence of N0 and N1 is [34]:

DKL(N0 ∥ N1) =
1

2

{
tr
(
Σ−1

1 Σ0

)
− k + log

|Σ1|
|Σ0|

}
, (4)

where Σ0 := Σ(θ0) and Σ1 := Σ(θ1).
In this paper, we use the KL divergence criterion to assess

the loss of information when relying on the Vecchia approxi-
mation algorithm compared to the exact Gaussian likelihood.
Thus, with the plug-in of the Vecchia approximated Gaussian
likelihood in (4), Q = Na(0,Σa) where Σa represents an
approximated covariance matrix to Σ0, (4) is simplified as,

DKL(N0 ∥ Na) = ℓ0(θ;0)− ℓa(θ;0), (5)

where ℓ0(θ;0) is the exact log-likelihood at the y = 0 while
ℓa(θ;0) is the Vecchia-approximated log-likelihood at y = 0.

C. Batched Linear Algebra Computations

Considering the case of block-sparse matrices, non-zero
elements are clustered in different parts of the matrix, pro-
viding an alternative approach to handling them compared to
using dense or sparse linear solvers. The size of these dense
blocks may suggest treating them as a collection of small,
dense matrices instead. In the literature, performing identical
operations on multiple small dense matrices is known as
batched execution. Therefore, the concept of batched linear al-
gebra routines is often employed in various applications where
the same operations can be applied simultaneously to mul-
tiple small, dense matrices. These operations are performed
independently on each matrix, enabling more efficient use
of computational resources, particularly on high-performance
hardware like GPUs.

Numerous software libraries have facilitated linear algebra
operations in dense and approximate formats. These include
LAPACK [35], SLATE [36], PLASMA [37], HiCMA [38],
H2Opus [39], MAGMA [40], KBLAS [41], and BLIS [42].
Several of these libraries offer methods to enhance effi-
cient batched processing on both CPUs and GPUs, including
batched routines for various Basic Linear Algebra Subpro-
grams (BLAS) and LAPACK operations. The Batched BLAS
extension enhances the traditional BLAS library by enabling
simultaneous processing of multiple small matrices (up to
1024). Its main goal is to diminish the computational burden
caused by frequent function calls. Designed for modern hard-
ware, it optimally utilizes the parallel processing capabilities
of multi-core processors and GPUs [43], [27].

TABLE I: The impact of three data layouts

Pros Cons

P2P Flexible appendage Noncontiguous data
Strided Contiguous data Expensive appendage
Interleave Vectorization Complexity format

In this context, our focus is directed toward GPU-batched
operations. Presently, three commonly used libraries for con-
ducting batched operations are cuBLAS, MAGMA [43], and
KBLAS [41]. It is essential to note that each of the three li-
braries offers distinct data layouts and functions. The functions
are essential to the Vecchia algorithm, and the data layout
greatly impacts the performance. The distinction becomes
especially significant when considering the choice of data

layout, which can be pointer-to-pointer (P2P), strided, or
interleaved formats, as shown in Table I. The P2P data layout
offers the flexibility to append additional data at the end of
the batched data array by adding a pointer. However, this
convenience is offset by the memory loading burden stemming
from the non-contiguous nature of the small matrices, which
are scattered across the global memory on the GPU. Con-
versely, the strided data layout allocates contiguous memory
for the entire collection of small matrices, thus resulting in
efficient access to these matrices. Nevertheless, adding extra
data incurs significant expense in terms of memory usage. On
the other hand, the interleaved layout is distinguished by its
ability to utilize memory through vectorization fully. However,
this benefit is primarily realized for very small matrices (less
than 24) [44].

V. BATCHED VECCHIA APPROXIMATION

This section offers an in-depth description of our proposed
framework for the batched Vecchia algorithm. It commences
by explaining the preprocessing step, which entails reordering
the location set and selecting the nearest neighbors for each
location from previous locations. Subsequently, we delve into
the memory requirements for the batched Vecchia algorithm
with a comprehensive description of the proposed implemen-
tation. Finally, we compare the expected memory usage and
computational complexity of the Vecchia algorithm in contrast
to the exact MLE solution.

A. Reorderings

The initial step of the Vecchia algorithm involves effi-
ciently reordering the locations to identify nearest-neighbor
points for each location. Consequently, selecting the reordering
method plays a crucial role in ensuring the accuracy of the
log-likelihood approximation. This is because, for a given
observation, the selection of nearest neighbors from prior
observations highly depends on the sequence in which the
data is arranged. According to [22], the maximum–minimum
distance (Maxmin) ordering method is identified as suitable
for the Vecchia algorithm. Notably, random ordering achieves
comparable accuracy to Maxmin, as demonstrated in [21].
However, when dealing with large-scale problems, employing
the Maxmin ordering method can become impractical due to
its computational complexity, which can scale as O(n3). Fur-
thermore, the GpGp R package recommends random ordering
for scenarios where locations exceed 100K [22]. Consequently,
random ordering has been used in our experiments. In addition
to random ordering, the Morton ordering method is also
considered, given its efficiency in tile-low rank Cholesky
factorization as reported in [45].

To elucidate the impacts of two distinct ordering methods on
finding the best nearest neighbors, we present an illustrative
example involving a grid of 20 × 20 locations, as depicted
in Figure 1. This example demonstrates that, in contrast to
the Morton ordering method, random ordering confers an
advantage for locations sequenced toward the end of the
ordering process. It retains the nearest neighbors immediately

Fig. 1: The example of random and Morton ordering on
locations 20 × 20. (First row) The 45th and 250th locations
(red stars) in the random ordering are marked with their
nearest neighbors (orange circle); (Second row) The 45th and
250th locations (red stars) in the Morton order algorithm
are marked with their nearest neighbors (orange circle). Blue
circles indicate past locations for a given ordering algorithm.

surrounding a target location. However, this comes initially at
the expense of losing proximity accuracy for locations ordered.
In the experimental section, we will apply both methods to
reorder our locations and empirically demonstrate which can
yield superior results.

B. Batched Vecchia Approximated Likelihood Algorithm

In an analysis involving a set of geospatial data points y
across various locations, and their observed values, when we
apply any reordering τ to the sequence of these locations,
the likelihood expression for the dataset retains its form when
represented as a sequence of conditional densities,

L(θ;y) = pθ (y1, . . . , yn) (6)

= pθ (y
τ
1)

n∏
i=2

pθ
(
yτi | yτ1 , . . . , yτi−1

)
. (7)

Vecchia approximation is expressed as (9) and it replaces
the conditioning vectors

(
yτ1 , . . . , y

τ
i−1

)
with (yτji1 , . . . , y

τ
jimi

)
which are nearest neighbors to the target yτji ; Ji is defined as

{ji1, . . . , jimi} and J = {J1, . . . , Jn}. [21]

pθ,τ,J (y1, . . . , yn) = pθ (y
τ
1)

n∏
i=2

pθ

(
yτi | yτji1 , . . . , y

τ
jimi

)
(8)

= pθ (y
τ
1)

n∏
i=2

pθ
(
yτi | yτ

Ji

)
. (9)

The accuracy of the Vecchia algorithm’s approximation is
dependent on the choice of permutation τ and J , because the
permutation τ creates specific ordering from 2D to 1D and
the J represents the deviations from the exact likelihood. [21]
[13]

To implement the Vecchia algorithm, for each spatial lo-
cation, we must compute a covariance matrix of its nearest
neighbors and a cross-covariance vector between the loca-
tion and its nearest neighbors. Figure 2 depicts the required
scalar/vector/matrix for each spatial location, while Figure 3
shows the contiguous data allocation utilized in the hardware.
yτi and yτ

Ji
(orange) are the ith observation and its neigh-

bors’ observations which exactly match the representation
in equation (9); σi and Σi (green) are the corresponding
variance and covariance matrix for the ith observation and
its neighbors; vi (green) is the cross-covariance matrix of yτi
and yτ

Ji
. For every pair (yτi ,y

τ
Ji
, σi,Σi), their log-likelihoods,

pθ
(
yτi | yτ

Ji

)
, are independent of each other. That is to say,

the task of computing log-likelihood in the (9) can be divided
into n independent tasks. In the log-likelihood computation,
the batched operations are conducted with regard to vi, Σi

(green), yτ
Ji

(orange) where the two dummy dashed vectors
are not used for log-likelihood calculation but purely for
simplifying the batched algorithm.

𝜮𝒎"𝟏 𝒗𝒎"𝟏

𝜎$"%&

𝒚𝑱𝒎"𝟏
𝝉 𝑦$"%'

𝜮𝒎"𝟐 𝒗𝒎"𝟐

𝜎$"&&

𝒚𝑱𝒎"𝟐
𝝉 𝑦$"&'

𝜮𝒏 𝒗𝒏

𝜎+,

𝒚𝑱𝒏
𝝉 𝑦+-

𝜮𝒎 𝒗𝒎

𝒚𝑱𝒎
𝝉

......

dummy

𝜎.,

𝑦.-

Fig. 2: Batched Vecchia algorithm description. Σm:n are con-
structed by the nearest neighbors of yτ

m:n. The batched POTRF
routine is applied to these matrices. After this decomposition,
the resulting outputs are utilized as inputs for the batched
TRSV operation with vm:n and yτ

Jm:n
, separately.

𝜮𝒎"𝟏

𝒚𝑱𝒎"𝟏
𝝉

𝜮𝒎"𝟐

𝒚𝑱𝒎"𝟐
𝝉

𝜮𝒏

𝒚𝑱𝒏
𝝉

𝜮𝒎

𝒚𝑱𝒎
𝝉

......

......
𝒗𝒎"𝟏 𝒗𝒎"𝟐 𝒗𝒏𝒗𝒎

Fig. 3: Contiguous data allocation in the GPU global memory.

Algorithm 1 provides a high-level overview of the batched
operations employed in the Vecchia approximation, as depicted

Algorithm 1 Batched Vecchia algorithm

1: Input: m, n, τ , C(·, ·)
2: Output: ℓ (log-likelihood)
3: τ : {(s1, y1), . . . , (sn, yn)} → {(sτ1 , yτ1), . . . , (sτn, yτn)} ▷

Permutation
4: while m+ 1 ≤ j ≤ n do ▷ Nearest neighbors
5: Jj ← mNearstNeighbors(sτ1 , s

τ
2 , . . . , s

τ
j−1; s

τ
j ,m)

6: end while
7:
8: σm:n ← batchC(sτm:n, s

τ
m:n) ▷ Batched Kernel

9: Σm:n ← batchC(sτJm:n
, sτJm:n

)
10: vm:n ← batchC(sτm:n, s

τ
Jm:n

)
11: yτ

Jm:n

12: σold ← (σm, . . . , σn)
T

13: Lm:n ← batchPOTRF (Σm:n) ▷ Batched operations
14: v′

m:n ← batchTRSV (Lm:n,vm:n)
15: y′τ

jm:n
← batchTRSV (Lm:n,y

τ
jm:n

)
16: Y ′ = (yτ

jm
,yτ

jm+1
, . . . ,yτ

jn
) ▷ Concatenate

17: V ′ = (vm,vm+1, . . . ,vn)
18: vm ← yτ

jm

19: µ′ ← DotProduct(Y ′T ,V ′) ▷ Correction vectors
20: σ′ ← DotProduct(V ′T ,V ′)

21: ℓm ← −computeLogDet(Lm)− µ′
m

2 −
m
2 log(2π)

22: µnew ← µ′
(m+1):n ▷ Vecchia updates

23: σnew ← σold − σ′
(m+1):n

24: while (m+ 1) ≤ i ≤ n do ▷ Univariate Gaussian ℓ

25: ℓi ← − 1
2

((
x−µnew

i

σnew
i

)2

+ log(2π) + 2log(σnew
i)

)
26: end while
27: ℓ← ℓm + ℓ(m+1) + . . .+ ℓn

in Figure 2. The inputs are m, representing the size of the
conditioning set, n, the total number of observations, τ , the
permutation set of the locations, and C(·, ·), the specified
covariance function. The output is the log-likelihood estima-
tion ℓ. The following points outline the specific low-level
implementation details:

• GPU acceleration: In Algorithm 1, lines 9 and 10
describe the utilization of a batched CUDA kernel to
generate the covariance matrix [46], which overcomes
the primary computational bottleneck in Vecchia approx-
imation as discussed in [21]. Following this, we leverage
batched operations, notably the Cholesky decomposition
for symmetric matrices (POTRF) and the subsequent use
of a triangular linear solver (TRSV), as demonstrated in
lines 13, 14, and 15, using the KBLAS library [41]. In
lines 19 and 20, we introduce a CUDA kernel imple-
mentation for dot product computation. In this context,
each thread calculates an individual vector. This approach
is particularly efficient in the Vecchia framework, where
vector sizes typically range from 30 to 120 elements, but
the quantity of vectors extends to 500K or more. Con-
sequently, allocating a single thread for each dot product
operation is more effective than batched processing.

• Data layout: The KBLAS library [41] provides two data
layouts: Point-to-Point (P2P) and strided. The strided
layout is especially beneficial for the Vecchia algorithm
for several reasons. First, it eliminates the need to merge
previous data with new data points since all spatial or
temporal data and observations are preloaded, avoiding
the necessity for streaming access. Second, the strided
layout ensures continuous data storage, enhancing GPU
memory use efficiency. This is particularly important for
managing the large-scale problems typical of the Vecchia
algorithm. The data structure is shown in the Figure 3.

• Memory Allocation: The main memory allocation chal-
lenge in our algorithm arises from the large number of
dense, small matrices. The space complexity for this
part of the algorithm is O(nm2), where m is the size
of each small matrix, and n is the total number of
matrices. Besides, memory allocation for small vectors
has space complexity of O(nm), which is particularly
less impactful in the overall memory usage compared to
the contiguous small matrices. These contiguous matrices
and vectors are stored in the global memory of GPU.

C. Memory Footprint and Arithmetic Complexity of Batched
Vecchia

In this subsection, we analyze the memory footprint and the
arithmetic complexity of the Batched Vecchia implementation
proposed in ExaGeoStat, comparing it to the exact MLE
implementation. The memory footprint of the exact MLE
algorithm is ∼ n2/2 for the symmetric covariance matrix Σ
and ∼ n for the measurements vector y. For the Vecchia
algorithm, each location requires a covariance matrix Σi,
a vector vi, and a measurement vector y, with memory
complexities of ∼ n(m2/2), ∼ nm, and ∼ nm, respectively.
Figure 4 (a) illustrates memory footprint in gigabytes (GB)
for various problem sizes when employing the Vecchia and
exact MLE algorithms. The figure emphatically highlights the
benefits of utilizing the Vecchia approximation, which exhibits
significantly lower memory requirements. The values 30, 60,
90, 120, and 150 represent the number of nearest neighbors
considered for each location, which is represented by m.

The Vecchia algorithm significantly reduces the computa-
tional complexity compared to the exact MLE. For exact MLE,
the complexity primarily stems from the Cholesky factoriza-
tion of the covariance matrix, ∼ n3/3, and the triangular
solve, ∼ n2. In contrast, with the Vecchia approximation,
the complexity for the Cholesky factorization operations is
∼ n(m3/3) (as shown in line 14 in Algorithm 1), and there
are triangular solves with vector vi (line 15) and triangular
solves with vector yi (line 16). Figure 4 (b) demonstrates the
floating-point operations (flops) in Gflops for various problem
sizes when using both the Vecchia and exact MLE algorithms.
The figure shows a significant reduction in the number of
required flops for the Vecchia algorithm, underlining its ef-
ficiency, particularly if it maintains accuracy comparable to
the exact MLE solution.

In these two aforementioned subfigures, we also show the
arithmetic complexity of large conditioning sets m for the
batched Vecchia that exceeds the memory requirement of
the exact MLE. Figure 4 (a) shows that when m = 1200,
the memory requirement of the batched Vecchia algorithm
exceeds the exact MLE algorithm with different problem sizes.
However, Figure 4 (b) shows that Vecchia still requires fewer
flops than exact MLE at the same conditioning set size.

VI. RESULTS AND DISCUSSIONS

In this section, we conduct a series of experiments to
evaluate the accuracy and performance of the batched Vec-
chia algorithm with several goals: (1) Numerically assess the
accuracy of the batched Vecchia algorithm by comparing it
to the exact MLE using KL divergence. (2) Evaluate the
accuracy of the batched Vecchia algorithm using real datasets,
focusing on modeling and prediction accuracy. (3) Examine
the performance of the implemented algorithm across various
NVIDIA GPUs, specifically the GV100, A100, and H100. (4)
Investigate the largest problem size manageable with different
conditioning sets in the Vecchia algorithm on various GPUs.
(5) Discuss optimal parameters for the batched Vecchia ap-
proximation to achieve the best performance while maintaining
the necessary accuracy.

A. Experimental Testbed

We conduct accuracy and performance assessment exper-
iments using a range of GPUs, including a single NVIDIA
GV100 with 32 GB of memory, a single NVIDIA A100 with
80 GB of memory, and an H100 with 80 GB of memory.

Our computational harness is built using gcc version 10.2.0
(12.2.0) and CUDA version 11.4 (11.8). It was linked with
the KBLAS library, Intel MKL 2022.2.1, MAGMA 2.6.0, and
NLopt v2.7.1 optimization libraries. All computations were
performed in double-precision arithmetic, and we conducted
each experimental run five times to verify repeatability. To
assess accuracy and perform qualitative analysis, we utilized
numerical calculations and examined two real datasets: the soil
moisture dataset from the Mississippi River Basin region and
the wind speed dataset from the Middle East region.

B. Numerical Study

In this subsection, we utilize exact log-likelihood calculated
by ExaGeoStat [11], focusing on Gaussian random fields with
problem sizes of 180K and 260K in two-dimensional (2D)
spatial locations. We use the Matérn kernel as described in
(2) and vary the smoothness parameter ν at values of 0.5, 1.5,
and 2.5, corresponding to low, medium, and high smoothness
levels. Additionally, for each level of smoothness, we adjust
the effective range to 0.1, 0.3, and 0.8 to account for low,
medium, and high dependence values, respectively, which
impacts data correlation. Detailed configurations can be found
in Table II as part of our study on Gaussian random fields.

The calculation of the KL divergence is performed using
(5), and the outcomes are visualized in Figure 5 and Figure
6. Across all subfigures, the x-axis corresponds to the size

TABLE II: The cross combinations of low/medium/high
smoothness and low/medium/high effective range. Each entry
in the table represents β, and the 0.1, 0.3, 0.8 are the statis-
tically effective range, i.e., the distance over which spatial
dependencies are significant in the statistical model [23].

ν = 0.5 ν = 1.5 ν = 2.5

effective range=0.1 0.026270 0.017512 0.014290
effective range=0.3 0.078809 0.052537 0.014290
effective range=0.8 0.210158 0.140098 0.114318

of the conditioning set, while the y-axis represents the KL
divergence value, with 0 indicating a perfect match with the
exact MLE operation. Examination of these figures yields
several significant observations:

• The significance of spatial ordering in log-likelihood
approximation cannot be overstated. When it comes
to accuracy, it becomes evident that random ordering
outperforms Morton’s ordering at large-scale problems.
This observation highlights the role of selecting the right
ordering strategy for achieving effective approximations.

• Impact of range and smoothness on approximation dif-
ficulty. The complexity of the approximation escalates
with increases in range or smoothness parameters. A
notable enlarged KL divergence under elevated range or
smoothness conditions evidences this. Consequently, the
additional conditioning points become imperative in the
high-range or high-smoothness scenarios.

• Approximation challenge for large-scale problem size.
The difficulty of approximation is directly proportional
to the size of the problem. The numerical study reveals
an increase in KL divergence when the problem size
escalates from 180K to 260K. This observation suggests
that larger problem sizes necessitate the use of more
conditioning points to maintain approximation accuracy.

C. Accuracy Assessment of Batched Vecchia with Real Data

1) Soil Moisture: This study examines high-resolution daily
soil moisture data obtained from the Mississippi River basin in
the United States on January 1, 2004, as reported in [47]. The
dataset, which was previously utilized in [10] and [5], involves
Gaussian field modeling and contains 2 million irregularly
distributed locations. To manage computational costs, we
randomly selected 250K locations as the training dataset and
25K as the testing dataset. This choice allows us to compare
the estimated parameter vector and predictions obtained via the
Vecchia approximation with those from exact modeling, where
using all 2 million locations would be computationally burden-
some. The data has a spatial resolution of 0.0083 degrees, with
each one-degree difference approximately corresponding to a
distance of 87.5 km. Consequently, we utilize the Great Circle
Distance (GCD) metric to calculate the distances between any
pair of locations based on their original longitude and latitude
values, as described in [5]:(

d

r

)
= hav (φ2 − φ1) + cos (φ1) cos (φ2) hav (λ2− λ1) .

Fig. 4: Comparison of Arithmetic complexity: Vecchia algorithm versus Exact MLE.

Fig. 5: KL divergence under 180K locations with log10
scale (y-axis is KL divergence). The red dashed line is the
recommended threshold for choosing the conditioning size.

Here, the haversine function denoted as hav(·), is defined as
sin2

(·
2

)
= 1−cos(·)

2 , where d represents the distance between
two locations, r is the radius of the sphere, φ1 and φ2 are the
latitudes in radians of locations 1 and 2, respectively, and λ1

and λ2 are their respective longitudes.
The mean value of the raw dataset is removed by a linear

regression model where the response variable is observation,
and explanatory variables are longitude and latitude. The
residuals, as shown in Figure 7, are fitted using a zero-
mean Gaussian process model, which incorporates a power

Fig. 6: KL divergence under 260k locations with log10 scale
(y-axis is KL divergence). The red dash line is the recom-
mended threshold for choosing the conditioning size.

exponential covariance function,

C(d) = σ2 exp{−dα/β},

where d is the distance between two locations and the pa-
rameter vector θ = (σ2, β, α)⊤ represent the variance, range
and smoothness, respectively. For the Vecchia approximated
Gaussian process, six different conditioning sizes (10, 30, 60,
90, 120, 150) with random ordering and 250K subsampling
problem size are considered. We use ExaGeostat [5] to esti-
mate the parameter vectors for the exact Gaussian process. In

Fig. 7: Real datasets residuals: soil moisture and wind speed,
where the observations of soil moisture and the square root of
wind speed served as the response variables, respectively.

the end, the estimated parameter vectors are plugged into the
kriging, and then we obtain the Mean Square Error (MSE) for
the prediction task.

2) Wind Speed: The WRF-ARW (Weather Research and
Forecasting - Advanced Research WRF) model generated a
regional climate dataset specific to the Arabian Peninsula
in the Middle East, as documented in [48]. The model is
configured with a horizontal grid spacing of 5 km, encom-
passing 51 vertical levels, and the highest level of the model
is established at 10 hPa. Geographically, the model’s domain
covers the area from 20°E to 83°E in longitude and from 5°S
to 36°N in latitude. This dataset spans 37 years, with daily
data provided. Each data file contains a complete day’s (24
hours) record of hourly wind speed measurements across 17
distinct atmospheric layers. For this study, we focus on the
dataset from September 1, 2017, starting at 00:00 AM. Our
interest is in wind speed measurements at a height of 10 meters
above the ground, corresponding to the lowest layer, referred
to as layer 0. The method of calculating distances in the wind
speed dataset is consistent with that used in the soil moisture
dataset. The residuals of wind speed are visualized in Figure
7, where we utilized the square root of wind speed as the
response variable and longitude and latitude as explanatory
variables, taking into account the skewed distribution of wind
speed—additionally, the same experimental settings as the
soil moisture dataset were applied. Herein, the initial dataset
comprises 1M locations, from which we randomly extracted
250K locations for training and 25K for testing.

3) Result Analysis: Figure 8 shows the estimated parameter
vectors for both datasets, while Table III highlights the MSE

TABLE III: MSE of ExaGeoStat and Vecchia on soil and wind
dataset (×10−2).

ExaGeoStat
(Exact MLE)

Vecchia
60 90 120 150

Soil 7.832727 7.850310 7.849056 7.850950 7.850904
Wind 2.842985 2.842939 2.842972 2.842967 2.842954

associated with the prediction. During the estimation process,
it was observed that the parameter vector θ, as estimated
through the Vecchia approximation, closely aligns with that
obtained via ExaGeoStat (exact MLE), particularly as the num-
ber of conditioning neighbors increases. Figure 8 illustrates
that, for both datasets, a conditioning size of 60 is optimal
for achieving an estimation close to the exact MLE. Table III
further demonstrates that the Vecchia approximation achieves
a prediction error remarkably close to the actual values when
utilized for predicting missing data.

D. Performance Assessment

In this study, we evaluate the performance of batched Vec-
chia approximation across three distinct GPU architectures:
GV100 (Quadro Volta) with 32 GB, A100(Ampere) with 80
GB, and H100 (Hopper) with 80 GB. The results presented
in this subsection represent the average of five separate runs.
Our objective is to comprehensively understand the efficacy of
our software under varying computational conditions. To this
end, we employ a range of conditioning sizes (batch sizes),
specifically (10, 30, 60, 90, 120, 150). The selection of smaller
sizes is informed by the recommendation of approximately 30
neighbors for optimal Vecchia approximation, as suggested by
[21]. Larger values are chosen in response to the demands
of extensive problem sizes, which may necessitate increased
conditioning sizes. Additionally, we adjust the problem size
for each GPU to leverage their memory capacities fully. This
approach allows us to explore the upper limits of computa-
tional efficiency within the constraints of each hardware con-
figuration. The analysis includes assessing the batched Vecchia
method against ExaGeoStat-GPU. This comparison focuses on
two primary metrics: time and Gflops/sec. Time encompasses
the total duration required for computing the log-likelihood,
which includes the generation of the covariance matrix and
associated log-likelihood operations (POTRF/TRSM/dot prod-
uct). The Gflops/sec metric specifically evaluates the efficiency
of log-likelihood-related operations. The results are depicted in
Figure 9, from which several significant insights are discerned:

• Linear relationship between time and problem size:
Within the same hardware, we observe a linear escala-
tion in time correlating with increases in problem size.
This finding provides a useful framework for predicting
computational time across varying problem scales.

• Comparison with ExaGeoStat-GPU: When evaluated on
the metric of a single likelihood estimation time, the Vec-
chia method with 60 neighbors outperforms ExaGeoStat-
GPU, exhibiting an approximately 700X, 833X, 1380X
speedups compared to exact MLE, where the problem

Fig. 8: The estimated parameter vectors using Vecchia approximation with different conditioning sizes compared to ExaGeoStat
(exact MLE). The first row is the parameter vector for soil moisture, and the second for wind speed.

size is the largest matrix dimension that can fully fit into
the GPU memory for exact MLE. Moreover, considering
the space complexity, the batched Vecchia approximation
can handle larger problem sizes of up to 1 million in a
single GPU.

VII. CONCLUSIONS

Gaussian processes (GPs) are a powerful and flexible tool
used in statistical modeling and machine learning for vari-
ous tasks, including modeling, regression, and classification.
However, GPs encounter a significant computational burden
when dealing with high-dimensional data, prohibiting its use
with massive amounts of data. Thus, many methods have been
proposed to approximate the covariance matrix associated with
the GPs. Among these methods is the Vecchia approximation
algorithm, which allows a large-scale approximation of GPs.

This work presents a parallel implementation of the Vecchia
approximation technique that utilizes batched matrix compu-
tations on modern GPUs. Using batched linear algebra oper-
ations and the KBLAS library, the proposed implementation
significantly reduces the time to solution compared to the state-
of-the-art parallel implementation in the ExaGeoStat software.
The speedup achieved on various GPU models (GV100, A100,
H100) ranges from 700X to 1380X compared to the exact

solution. The implementation can also manage larger problem
sizes, accommodating up to 1 million geospatial locations with
80GB A100 and H100 GPUs while maintaining accuracy.
The study also assesses the accuracy performance of the
Vecchia approximation algorithm on real geospatial datasets,
specifically soil moisture data in the Mississippi Basin area
and wind speed data in the Middle East. The code can be
found at: https://github.com/kaust-es/ParallelVecchiaGP.

ACKNOWLEDGMENT

This research received support from the King Abdullah Uni-
versity of Science and Technology (KAUST) in Saudi Arabia.
Our gratitude extends to the team at the KAUST Supercomput-
ing Laboratory (KSL) and the Extreme Computing Research
Center (ECRC) for providing the computational resources that
were essential for the experiments conducted in this study.
We extend our gratitude to Jie Ren (ECRC/KAUST) and
Mohsin Shaikh (KSL/KAUST) for their assistance throughout
the project.

REFERENCES

[1] R. Furrer, M. G. Genton, and D. Nychka, “Covariance tapering for
interpolation of large spatial datasets,” Journal of Computational and
Graphical Statistics, vol. 15, no. 3, pp. 502–523, 2006.

Fig. 9: Evaluation of computational performance on various NVIDIA GPUs, i.e., GV100, A100, and H100: the first row
indicates the execution time required for a single likelihood estimation, where the small subfigures represent the performance
of ExaGeoStat. The second row shows the Gflops/sec achieved by our implementation for a single likelihood estimation.

[2] C. G. Kaufman, M. J. Schervish, and D. W. Nychka, “Covariance
tapering for likelihood-based estimation in large spatial data sets,”
Journal of the American Statistical Association, vol. 103, no. 484, pp.
1545–1555, 2008.

[3] M. Bevilacqua, A. Fassò, C. Gaetan, E. Porcu, and D. Velandia, “Co-
variance tapering for multivariate Gaussian random fields estimation,”
Statistical Methods & Applications, vol. 25, pp. 21–37, 2016.

[4] D. Nychka, S. Bandyopadhyay, D. Hammerling, F. Lindgren, and
S. Sain, “A multiresolution Gaussian process model for the analysis
of large spatial datasets,” Journal of Computational and Graphical
Statistics, vol. 24, no. 2, pp. 579–599, 2015.

[5] S. Abdulah, H. Ltaief, Y. Sun, M. G. Genton, and D. E. Keyes,
“ExaGeoStat: A high performance unified software for geostatistics
on manycore systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 29, no. 12, pp. 2771–2784, 2018.

[6] Abdulah, Sameh and Ltaief, Hatem and Sun, Ying and Genton, Marc
G and Keyes, David E, “Geostatistical modeling and prediction using
mixed precision tile cholesky factorization,” in 2019 IEEE 26th interna-
tional conference on high performance computing, data, and analytics
(HiPC). IEEE, 2019, pp. 152–162.

[7] S. Abdulah, Q. Cao, Y. Pei, G. Bosilca, J. Dongarra, M. G. Genton,
D. E. Keyes, H. Ltaief, and Y. Sun, “Accelerating geostatistical modeling
and prediction with mixed-precision computations: A high-productivity
approach with parsec,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 4, pp. 964–976, 2021.

[8] Q. Cao, S. Abdulah, R. Alomairy, Y. Pei, P. Nag, G. Bosilca, J. Dongarra,
M. G. Genton, D. E. Keyes, H. Ltaief et al., “Reshaping geostatistical
modeling and prediction for extreme-scale environmental applications,”
in 2022 SC22: International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC). IEEE Computer Society,
2022, pp. 13–24.

[9] M. Katzfuss and N. Cressie, “Spatio-temporal smoothing and em esti-
mation for massive remote-sensing data sets,” Journal of Time Series
Analysis, vol. 32, no. 4, pp. 430–446, 2011.

[10] H. Huang and Y. Sun, “Hierarchical low rank approximation of likeli-
hoods for large spatial datasets,” Journal of Computational and Graph-
ical Statistics, vol. 27, no. 1, pp. 110–118, 2018.

[11] S. Abdulah, H. Ltaief, Y. Sun, M. G. Genton, and D. E. Keyes, “Parallel
approximation of the maximum likelihood estimation for the prediction
of large-scale geostatistics simulations,” in 2018 IEEE international
conference on cluster computing (CLUSTER). IEEE, 2018, pp. 98–
108.

[12] S. Mondal, S. Abdulah, H. Ltaief, Y. Sun, M. G. Genton, and D. E.
Keyes, “Parallel approximations of the tukey g-and-h likelihoods and
predictions for non-Gaussian geostatistics,” in 2022 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2022,
pp. 379–389.

[13] A. V. Vecchia, “Estimation and model identification for continuous
spatial processes,” Journal of the Royal Statistical Society Series B:
Statistical Methodology, vol. 50, no. 2, pp. 297–312, 1988.

[14] M. Katzfuss and J. Guinness, “A general framework for Vecchia approx-
imations of Gaussian processes,” 2021.

[15] M. Katzfuss, J. Guinness, and E. Lawrence, “Scaled Vecchia approx-
imation for fast computer-model emulation,” SIAM/ASA Journal on
Uncertainty Quantification, vol. 10, no. 2, pp. 537–554, 2022.

[16] J. Zhang and M. Katzfuss, “Multi-scale Vecchia approximations of Gaus-
sian processes,” Journal of Agricultural, Biological and Environmental
Statistics, vol. 27, no. 3, pp. 440–460, 2022.

[17] F. Jimenez and M. Katzfuss, “Scalable Bayesian optimization using vec-
chia approximations of Gaussian processes,” in International Conference
on Artificial Intelligence and Statistics. PMLR, 2023, pp. 1492–1512.

[18] “The Top 500 List,” https://top500.org/, [Online; accessed 28-November-
2023].

[19] A. Haidar, T. Dong, P. Luszczek, S. Tomov, and J. Dongarra, “Batched
matrix computations on hardware accelerators based on GPUs,” The
International Journal of High Performance Computing Applications,
vol. 29, no. 2, pp. 193–208, 2015.

[20] A. Abdelfattah, S. Tomov, and J. Dongarra, “Fast batched matrix mul-

tiplication for small sizes using half-precision arithmetic on GPUs,” in
2019 IEEE international parallel and distributed processing symposium
(IPDPS). IEEE, 2019, pp. 111–122.

[21] J. Guinness, “Permutation and grouping methods for sharpening Gaus-
sian process approximations,” Technometrics, vol. 60, no. 4, pp. 415–
429, 2018.

[22] Guinness, Joseph, “Gaussian process learning via Fisher scoring of
Vecchia’s approximation,” Statistics and Computing, vol. 31, no. 3, p. 25,
2021.

[23] H. Huang, S. Abdulah, Y. Sun, H. Ltaief, D. E. Keyes, and M. G.
Genton, “Competition on spatial statistics for large datasets,” Journal
of Agricultural, Biological and Environmental Statistics, vol. 26, pp.
580–595, 2021.

[24] S. Abdulah, F. Alamri, P. Nag, Y. Sun, H. Ltaief, D. E. Keyes, and
M. G. Genton, “The second competition on spatial statistics for large
datasets,” arXiv preprint arXiv:2211.03119, 2022.

[25] Y. Hong, Y. Song, S. Abdulah, Y. Sun, H. Ltaief, D. E. Keyes, and M. G.
Genton, “The third competition on spatial statistics for large datasets,”
Journal of Agricultural, Biological and Environmental Statistics, pp. 1–
18, 2023.

[26] R. Huser, M. L. Stein, and P. Zhong, “Vecchia likelihood approximation
for accurate and fast inference in intractable spatial extremes models,”
arXiv preprint arXiv:2203.05626, 2022.

[27] Q. Vu, A. Zammit-Mangion, and S. J. Chuter, “Constructing large non-
stationary spatio-temporal covariance models via compositional warp-
ings,” Spatial Statistics, vol. 54, p. 100742, 2023.

[28] J. Zhang, S. You, and L. Gruenwald, “Large-scale spatial data processing
on GPUs and GPU-accelerated clusters,” Sigspatial Special, vol. 6, no. 3,
pp. 27–34, 2015.

[29] X. Li, T. Huang, D.-T. Lu, and C. Niu, “Accelerating experimental
high-order spatial statistics calculations using GPUs,” Computers &
Geosciences, vol. 70, pp. 128–137, 2014.

[30] J. Zhang, S. You, and L. Gruenwald, “Efficient parallel zonal statistics
on large-scale global biodiversity data on GPUs,” in Proceedings of
the 4th International ACM SIGSPATIAL Workshop on Analytics for Big
Geospatial Data, 2015, pp. 35–44.

[31] G. Zhang, A.-X. Zhu, and Q. Huang, “A GPU-accelerated adaptive
kernel density estimation approach for efficient point pattern analysis
on spatial big data,” International Journal of Geographical Information
Science, vol. 31, no. 10, pp. 2068–2097, 2017.

[32] S. K. Prasad, M. McDermott, S. Puri, D. Shah, D. Aghajarian,
S. Shekhar, and X. Zhou, “A vision for GPU-accelerated parallel
computation on geo-spatial datasets,” SIGSPATIAL Special, vol. 6, no. 3,
pp. 19–26, 2015.

[33] K. Wang, S. Abdulah, Y. Sun, and M. G. Genton, “Which parameteri-
zation of the Matérn covariance function?” Spatial Statistics, vol. 58, p.
100787, 2023.

[34] J. Duchi, “Derivations for linear algebra and optimization,” Berkeley,
California, vol. 3, no. 1, pp. 2325–5870, 2007.

[35] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney et al.,
LAPACK users’ guide. SIAM, 1999.

[36] M. Gates, J. Kurzak, A. Charara, A. YarKhan, and J. Dongarra, “SLATE:
Design of a modern distributed and accelerated linear algebra library,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019, pp. 1–18.

[37] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, P. Wu, I. Ya-
mazaki, A. YarKhan, M. Abalenkovs, N. Bagherpour et al., “PLASMA:
Parallel linear algebra software for multicore using openmp,” ACM
Transactions on Mathematical Software (TOMS), vol. 45, no. 2, pp.
1–35, 2019.

[38] S. Abdulah, K. Akbudak, W. Boukaram, A. Charara, D. Keyes, H. Ltaief,
A. Mikhalev, D. Sukkari, and G. Turkiyyah, “Hierarchical computations
on manycore architectures (hicma),” See http://github. com/ecrc/hicma,
2019.

[39] S. Zampini, W. Boukaram, G. Turkiyyah, O. Knio, and D. Keyes,
“H2opus: a distributed-memory multi-GPU software package for non-
local operators,” Advances in Computational Mathematics, vol. 48, no. 3,
p. 31, 2022.

[40] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov, “Numerical linear algebra
on emerging architectures: The PLASMA and MAGMA projects,” in
Journal of Physics: Conference Series, vol. 180, no. 1. IOP Publishing,
2009, p. 012037.

[41] A. Abdelfattah, D. Keyes, and H. Ltaief, “KBLAS: An optimized
library for dense matrix-vector multiplication on GPU accelerators,”
ACM Transactions on Mathematical Software (TOMS), vol. 42, no. 3,
pp. 1–31, 2016.

[42] F. G. Van Zee and R. A. Van De Geijn, “BLIS: A framework for rapidly
instantiating BLAS functionality,” ACM Transactions on Mathematical
Software (TOMS), vol. 41, no. 3, pp. 1–33, 2015.

[43] T. Dong, A. Haidar, P. Luszczek, S. Tomov, A. Abdelfattah, and
J. Dongarra, “MAGMA batched: A batched BLAS approach for small
matrix factorizations and applications on GPUs,” Technical Report.
Technical report, Tech. Rep., 2016.

[44] J. Dongarra, S. Hammarling, N. J. Higham, S. D. Relton, P. Valero-
Lara, and M. Zounon, “The design and performance of batched BLAS
on modern high-performance computing systems,” Procedia Computer
Science, vol. 108, pp. 495–504, 2017.

[45] K. Akbudak, H. Ltaief, A. Mikhalev, and D. Keyes, “Tile low rank
cholesky factorization for climate/weather modeling applications on
manycore architectures,” in International Conference on High Perfor-
mance Computing. Springer, 2017, pp. 22–40.

[46] Z. Geng, S. Abdulah, H. Ltaief, Y. Sun, M. G. Genton, and D. E.
Keyes, “GPU-accelerated dense covariance matrix generation for spatial
statistics applications,” 2023.

[47] N. W. Chaney, P. Metcalfe, and E. F. Wood, “HydroBlocks: A field-scale
resolving land surface model for application over continental extents,”
Hydrological Processes, vol. 30, no. 20, pp. 3543–3559, 2016.

[48] J. Powers, X.-Y. Huang, B. Klemp, C. Skamarock, J. Dudhia, and
O. Gill, “A description of the advanced research WRF version 2,” NCAR
tech, vol. 15, 2008.

