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ABSTRACT
Earth system models (ESMs) are fundamental for understanding Earth’s complex climate system. However,
the computational demands and storage requirements of ESM simulations limit their utility. For the newly
published CESM2-LENS2 data, which su!er from this issue, we propose a novel stochastic generator (SG) as
a practical complement to the CESM2, capable of rapidly producing emulations closely mirroring training
simulations. Our SG leverages the spherical harmonic transformation (SHT) to shift from spatial to spectral
domains, enabling e"cient low-rank approximations that signi#cantly reduce computational and storage
costs. By accounting for axial symmetry and retaining distinct ranks for land and ocean regions, our
SG captures intricate nonstationary spatial dependencies. Additionally, a modi#ed Tukey g-and-h (TGH)
transformation accommodates non-Gaussianity in high-temporal-resolution data. We apply the proposed
SG to generate emulations for surface temperature simulations from the CESM2-LENS2 data across various
scales, marking the #rst attempt of reproducing daily data. These emulations are then meticulously validated
against training simulations. This work o!ers a promising complementary pathway for e"cient climate
modeling and analysis while overcoming computational and storage limitations. Supplementary materials
for this article are available online, including a standardized description of the materials available for
reproducing the work.
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1. Introduction

Earth system models (ESMs) are complex mathematical equa-
tions that describe and simulate the transformation and interac-
tion of energy and materials within the Earth’s climate system.
Their development is grounded in the fundamental laws of
physics, !uid dynamics, and chemistry, necessitating the iden-
ti"cation and quanti"cation of physical processes represented
through mathematical equations (National Oceanic and Atmo-
spheric Administration (NOAA) 2022). ESMs are indispensable
tools in both scienti"c research and government policymaking,
enabling a deeper understanding and more accurate predictions
of Earth’s systems. For example, the Intergovernmental Panel on
Climate Change (IPCC) used datasets from the Coupled Model
Intercomparison Project’s "#h (CMIP5) and sixth (CMIP6)
phases (Taylor, Stou$er, and Meehl 2012; Eyring et al. 2016)
to compile their "#h and sixth synthesis assessment reports on
climate change.

Despite their signi"cance, ESMs have limitations as approx-
imations of the Earth’s complex system. They are sensitive to
changes in model inputs, such as physics parameters and emis-
sion scenarios, which need being assessed. Additionally, dis-
tinguishing between model errors and the e$ects of internal
variability, which arises from atmospheric, oceanic, land, and
cryospheric processes and their interactions, is challenging with
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a limited number of simulations (Kay et al. 2015). This under-
scores the need for multiple climate simulations to comprehen-
sively characterize Earth’s system. The Community Earth System
Model (CESM, Kay et al. 2015) is one such model designed
to study climate change while accounting for internal climate
variability.

Running ESMs is a time-consuming process, even with the
support of powerful supercomputers. Scientists partition the
planet into thousands of three-dimensional grids. Within each
grid cell, they specify variables and conditions, employ comput-
ers to solve equations, propagate results to neighboring cells, and
then iterate the above procedure with the updated variables and
conditions. The whole process is repeated through time steps
of di$erent scales, which is the temporal resolution. The spatial
resolution of the model is determined by the size of the grid cell,
with smaller sizes yielding higher resolution but requiring more
time. Generating multiple climate simulations demands weeks
and even months of computational resources, exclusively avail-
able to several research institutes globally (Huang et al. 2023).
Furthermore, while modern computational power allows for the
generation of climate simulations, storing them is constrained
by technological limitations, resource availability, and cost con-
siderations. For instance, the storage requirement for CMIP5
data exceeds 2.5 Petabytes, incurring signi"cant expenses for
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institutions like the National Center for Atmospheric Research
(NCAR), a prominent U.S. research center for Earth Systems
science. Consequently, budget constraints may necessitate the
abandonment of partial data or higher resolutions (Guinness
and Hammerling 2018).

Emulators play a crucial role in providing rapid approxima-
tions for computationally demanding model outputs and serve
as e$ective surrogates for the original model. Speci"cally, emu-
lators are statistical models that undergo proper training using
a set of existing simulations and are then employed to approx-
imate simulations for unexplored inputs. Over the past few
decades, emulators have found widespread application, includ-
ing assessing the sensitivity of various physical parameters (Oak-
ley and O’Hagan 2002, 2004) and performing model calibration
(Kennedy and O’Hagan 2001; Chang et al. 2014). Within the
climate research community, emulators have been extensively
developed to evaluate the in!uence of physics parameters (Sacks,
Schiller, and Welch 1989), emission scenarios (Castruccio and
Stein 2013; Castruccio et al. 2014), and the internal variability
(Jeong et al. 2019; Hu and Castruccio 2021) on climate model
outputs. These emulators enable e%cient exploration of model
behavior and facilitate a deeper understanding of complex cli-
mate systems.

Stochastic generators (SGs, Jeong et al. 2018), as a type of
emulator for quantifying internal variability uncertainty, align
closely with our requirements. SGs are spatio-temporal models
adeptly tailored with a limited number of climate simulations,
capable of generating numerous annual and monthly simu-
lations across extensive and high-resolution domains at any
moment (Jeong et al. 2018, 2019; Castruccio et al. 2019; Tagle
et al. 2020), yet daily scale remains elusive to this date. Their
implementation is a$ordable and even e%cient, albeit at the
expense of detailed physical mechanisms. SGs require the stor-
age of only model parameters, enabling them to generate simu-
lations that capture the general behavior of the original climate
simulations. It is essential to distinguish SGs from compression
methods (Baker et al. 2017; Underwood et al. 2022), which
e$ectively reduce data volume using compression algorithms.
While compression methods store and recover compressed data,
they are designed for reconstructing individual data rather
than generating new simulations. Moreover, the storage require-
ments for compression methods tend to increase with additional
simulations.

SGs typically use Gaussian processes (GPs) and auto-
regressive models to capture the intricate spatio-temporal
dependencies among climate simulations driven by underlying
physical mechanisms. While SGs o$er several advantages, they
face notable challenges when emulating ESMs. First, global
climate simulations, which need the technique of SGs, involve
extensive high-resolution data. Inference with GPs on such data
can be computationally prohibitive, o#en requiring time on the
order of data size cubed. Addressing this computational chal-
lenge can draw inspiration from existing techniques such as low-
rank approximations (Cressie and Johannesson 2008; Banerjee
et al. 2008), composite likelihoods (Vecchia 1988; Guinness
2021), stochastic partial di$erential equations (Rue, Martino,
and Chopin 2009; Bolin, Simas, and Xiong 2023), covariance
tapering (Kaufman, Schervish, and Nychka 2008) and their

combinations (Datta et al. 2016). Second, global climate simula-
tions frequently exhibit nonstationary spatial dependence. The
covariance structure can vary signi"cantly with latitude while
may remain relatively stationary along the longitude, which is
called axial symmetry (Jones 1963) and has been noticed and
discussed by Stein (2007), Stein (2008) and Jun and Stein (2008).
Additionally, the smoothness and variance of data can change
between land and ocean at the same latitude (Castruccio and
Guinness 2017; Jeong et al. 2018). A well-de"ned covariance
function based on geodesic distance rather than chordal distance
is needed to model the nonstationary spatial dependence struc-
ture. The use of chordal distance may cause physically unrealistic
distortions (Jeong, Jun, and Genton 2017). Lastly, global climate
simulations with high temporal resolutions, such as monthly
and daily scales, may deviate from Gaussian assumptions when
studying temporal evolution. To address this, the Tukey g-and-
h (TGH) transformation has been employed to Gaussianize the
data, striking a balance between model !exibility and simplicity
(Yan and Genton 2019; Jeong et al. 2019).

For global surface temperature simulations from the CESM2-
LENS2 data, which are newly published in the climate com-
munity and face the above-mentioned challenges, we propose
a novel SG. Our SG serves as a pragmatic complement to
CESM2, o$ering the capability to rapidly generate an unlimited
number of emulations closely resembling simulations. Central
to our method is the utilization of the spherical harmonic
transformation (SHT)—the well-known spherical counterpart
of the Fourier transformation, allowing us to e%ciently transi-
tion global simulations from the spatial to the spectral domain.
Moreover, it unlocks a practical low-rank approximation strat-
egy, using spherical harmonics as available multi-resolution
basis functions that are naturally suitable for global data. The
modeling in the spectral domain ushers in signi"cant reduc-
tions in both computational and storage costs. By judiciously
retaining distinct ranks for land and ocean regions and apply-
ing a general assumption of axial symmetry, our SG captures
the intricate nonstationary spatial dependence among di$erent
latitudes and between land and ocean regions. Furthermore,
the employment of a modi"ed TGH transformation equips our
SG to e$ectively model the temporal dependence of simula-
tions, accommodating the non-Gaussianity inherent in high-
temporal-resolution data. In our case study, we apply these
principles to construct SGs and generate emulations for the
surface temperature simulations, spanning annual, monthly,
and even daily scales. We meticulously illustrate and com-
pare the generated emulations against the training simula-
tions, both through visual inspection and quantitative metrics.
Notably, our work marks a signi"cant advancement by being
the "rst to generate, display, and evaluate emulations at a daily
scale.

The remainder of the article is structured as follows. In Sec-
tion 2, we provide an overview of temperature simulations across
annual, monthly, and daily scales. Section 3 delves into the intri-
cate procedures involved in constructing an SG using the SHT
and generating emulations. The generated emulations, along
with comparisons to the training simulations, are showcased in
Section 4. Finally, Section 5 encapsulates our conclusions and
outlines avenues for future research.
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2. CESM2-LENS2 Data

The Community Earth System Model version 2 Large Ensem-
bles (CESM2-LENS2), as detailed in Rodgers et al. (2021), is
a recently released extensive ensemble of climate change pro-
jections. It originates from the CESM2 and serves as a valu-
able resource for studying the sensitivity of internal climate
!uctuations to greenhouse warming. This ensemble comprises
100 individual members, operating at a spatial resolution of
0.9375! × 1.25! (latitude×longitude), spanning the temporal
domain from 1850 to 2100, and generated through a combina-
tion of diverse oceanic and atmospheric initial states. CESM2-
LENS2 draws upon CMIP6 historical forcing, spanning the
period from 1850 to 2014, and integrates the Shared Socioe-
conomic Pathways 370 (SSP370) future radiative forcing (RF,
an in!uential factor in climate system describing the di$erence
between incoming and outgoing sun radiation) from 2015 to
2100. The SSP scenarios, introduced in response to the sixth
IPCC report, encompass a range of socioeconomic develop-
ments and atmospheric greenhouse gas concentration pathways
(O’Neill et al. 2014; Riahi et al. 2017). Notably, SSP370 represents
a medium-to-high emission scenario, projecting an additional
RF of 7 Wm−2 by the year 2100 under the social development
pathway of regional rivalry.

The choice of CESM2-LENS2 in our study is motivated by
several factors. First, it provides comprehensive and credible
global climate simulations at high resolutions, which o#en pose
storage challenges. Second, its ample ensemble size allows for
e$ective training and evaluation of our SG. Third, despite gen-
erating considerable interest within the climate community (Kay
et al. 2022; Muñoz et al. 2023; Dong, Peings, and Magnusdottir
2023), CESM2-LENS2 has yet to gain widespread attention in
the "eld of statistics. This article marks the "rst introduction of
an SG, extending to daily scales, to complement CESM2-LENS2.
Both CESM2-LENS2 and SSP370 RF are readily accessible from
the NCAR and Zenodo websites, respectively. Our analysis
focuses on global surface temperatures for the period 2015–
2100, encompassing all 192×288 = 55,296 grid points in space.
Existing literature (Jeong et al. 2018, 2019; Huang et al. 2023)
has demonstrated that fewer than ten ensembles are su%cient
to construct an e%cient SG for a climate variable. Therefore,
we select training simulations from a subset of 20 members
micro-initialized from the year 1251, with each member created
through random perturbations of the atmospheric potential
temperature "eld. These members are assumed to be indepen-
dent from each other. We aggregate the ensembles at annual,
monthly, and daily scales, despite their original availability at
a three-hourly resolution. Consequently, each annual, monthly,
and daily aggregated temperature simulation comprises approx-
imately 4.75 million (192 × 288 × 86), 57.07 million, and 1.73
billion data points, respectively.

Let y(r)
t (Li, lj) denote the temperature in Celsius at latitude

Li, longitude lj, time point t a#er year 2014, and ensemble r,
where i = 1, . . . , I (I = 192), j = 1, . . . , J (J = 288), t =
1, . . . , T, and r = 1, . . . , R. The value of T varies depending
on the temporal resolution chosen, with possible values of 86,
1032, or 31,390. Similarly, let xt represent the RF at time t for all
ensembles, as they are generated with the same external forcing.
We use members 11 to 17 (out of 20) to illustrate certain data

characteristics. The justi"cation for the number of ensembles
will be further discussed in Figure 3(a), using an index for
goodness-of-"t. Let y(r)

A,t(Li, lj) be the annually aggregated tem-
perature at grid point (Li, lj), year t+2014 and ensemble r. Con-
sequently, the ensemble mean and standard deviation at (Li, lj)
and t+2014 are denoted as ȳA,t(Li, lj) = R−1 ∑R

r=1 y(r)
A,t(Li, lj)

and ysd
A,t(Li, lj) = {R−1 ∑R

r=1(y(r)
A,t(Li, lj) − ȳA,t(Li, lj))2}1/2,

respectively. Figure 1(a) and (b) depict maps of ȳA,9(Li, lj) and
ysd

A,9(Li, lj). The maps align with the intuitive understanding that
temperature generally decreases with increasing latitude. The
surface temperatures in the Himalayas and Andes ranges are
lower than in surrounding regions. Numerical instabilities occur
near the two pole regions. Additionally, the surface temperature
at the tropical Paci"c Ocean exhibits larger variation across
ensembles due to the climate phenomenon called El Niño–
Southern Oscillation.

Let {y(r)
A,t(Li, lj)}T

t=1 represent the annual temperature tra-
jectory of ensemble r at (Li, lj). Figure 1(c) illustrates these
time series for both GL (land) and GO (ocean) locations, that
is, {y(r)

A,t(GL)}T
t=1 and {y(r)

A,t(GO)}T
t=1, alongside their respec-

tive ensemble means {ȳA,t(GL)}T
t=1 and {ȳA,t(GO)}T

t=1. Take
{y(r)

A,t(GL)}T
t=1 as an example. All ensembles exhibit a shared

increasing trend, in!uenced by the RF also depicted in
Figure 1(c). Moreover, each ensemble exhibits its unique shape,
signifying the presence of uncertainty among ensembles. These
motivate us to develop an SG incorporating both deterministic
and stochastic factors. Similarly, Figure 1(d) provides monthly
temperature time series of years 2021–2025 at GL and GO,
along with their respective ensemble means. They experience
alternating peaks and valleys because they are situated in the
northern and southern hemispheres, respectively. In compari-
son to annual data, Figure 1(d) exhibits a clear seasonality, which
is a common feature in monthly and daily data. The seasonality
of surface temperature varies across grid points and remains
consistent among all ensembles at a "xed grid point. Notably,
from Figure 1(c) and (d), both the uncertainty and the variation
are more pronounced at GL.

Figure 1(e)–(g) demonstrate histograms, skewness and kur-
tosis of the detrended annual, monthly and daily temper-
ature simulations at GL and GO, respectively. For exam-
ple, the top panel of Figure 1(e) displays the histogram of
{y(r)

A,t(GL) − R−1 ∑R
r=1 y(r)

A,t(GL)}r=1,...,R;t=1,...,T and its skew-
ness and kurtosis. The close-to-zero skewness and the close-to-
three kurtosis enable a Gaussian assumption when we model
R time series {y(r)

A,t(GL) − R−1 ∑R
r=1 y(r)

A,t(GL)}T
t=1, with an

auto-regression. In contrast, the histograms in Figure 1(f) and
(g) tend to be skewed and heavy-tailed. Figure S1 presents
the skewness and kurtosis for time series across all global
grid points. The degree of skewness and the presence of
heavy tails become more pronounced with increasing temporal
resolution. The non-Gaussianity is particularly severe in the
band region below latitude −60!, termed as Band, and the
North Pole region, where the surface temperature simulations
exhibit numerical instabilities. The reason will be discussed
in Section 4.2. These observations underscore the necessity
for additional transformations and parameters to Gaussianize
the monthly and daily simulations, as the "rst two moments
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Figure 1. Illustration of simulations with di!erent scales. (a) and (b) are maps of the ensemble mean and standard deviation of the annually aggregated temperature in the
year 2023. Two black “×”marks indicate grid points located at coordinates (40.05, 43.75) and (−30.63, 170.00), designating points on land (GL) and ocean (GO), respectively.
(c) shows annual temperature time series at GL and GO, where each ensemble is represented by a distinct color. (d) shows the monthly temperature time series at GL and
GO, where the black curves are ensemble means. (e)–(g) are histograms of annual, monthly and daily temperature simulations at GL and GO, which have been detrended
by ensemble means. Only data of years 2020, 2040, 2060, 2080, and 2100 are used in daily data.

alone are insu%cient to characterize data with greater temporal
complexity.

3. Stochastic Generator Methodology

In this section, we detail the procedures of constructing an
SG and generating emulations for the temperature simulations
described in Section 2. Leveraging the SHT, our proposed SG
o$ers e%cient and adaptable capabilities for dealing with global
climate simulations that exhibit: (a) a substantial size in terms of
the number of observations in space and time; (b) nonstationary
spatial dependencies among latitudes and land/ocean regions;
and (c) non-Gaussian temporal trajectories.

The data characteristics outlined in Section 2 underscore the
deterministic chaotic nature inherent in climate models (Lorenz
1963; Branstator and Teng 2010; Castruccio and Genton 2018),

which motivates us to decouple the data into deterministic and
stochastic components as follows:

y(r)
t (Li, lj) = mt(Li, lj) + σ (Li, lj)Z(r)

t (Li, lj). (1)

Here, mt and σ are deterministic functions responsible for the
mean trend and standard error, respectively, and are shared
across all ensembles. Z(r)

t (Li, lj) is the stochastic component at
grid point (Li, lj), time point t, and ensemble r. Given the expan-
sive parameter space, simultaneously inferring both the deter-
ministic and stochastic components would be computationally
infeasible. Therefore, we adopt a two-stage approach, commonly
employed in existing work (Castruccio and Genton 2018; Jeong
et al. 2019; Huang et al. 2023). First, we evaluate mt(Li, lj)
and σ (Li, lj) at each grid point, making the independence
assumption regarding {Z(r)

t (Li, lj)}i=1,...,I;j=1,...,J;t=1,...,T;r=1,...,R.
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Subsequently, we analyze the dependence structure of Z(r)
t (Li, lj)

by detrending and rescaling y(r)
t (Li, lj) with the estimate of

mt(Li, lj) and σ (Li, lj), respectively.

3.1. Deterministic Component of SG

In the "rst stage of constructing the SG, we focus on deter-
mining the mean trend mt . It is crucial that the mean trend
is both simple enough to minimize the storage requirements
for parameters and informative enough to capture the physical
relationships between simulations and essential covariates. Let
y(r)

t (Li, lj) represent the annually aggregated temperature data.
Previous research (Castruccio et al. 2014; Huang et al. 2023)
has shown its dependence on the RF trajectory and adopted an
in"nite distributed lag model:

mt(Li, lj) = β0(Li, lj) + β1(Li, lj)xt

+ β2(Li, lj){1 − ρ(Li, lj)}
∞∑

s=1
ρ(Li, lj)s−1xt−s,

where β0(Li, lj) is the intercept, β1(Li, lj) and β2(Li, lj) are
slopes for the current and past RFs, respectively. Lag weights
β2(Li, lj){1 − ρ(Li, lj)}ρ(Li, lj)s−1 decrease the impact of past
RFs exponentially by ρ(Li, lj) ∈ [0, 1]. Moreover, if y(r)

t (Li, lj)
represents the monthly aggregated temperature data, additional
harmonic terms {cos(2π tk/12), sin(2π tk/12)}KM

k=1 should be
included to "t the interannual cycle as shown in Figure 1(d).
That is,

mt(Li, lj) = β0(Li, lj) + β1(Li, lj)x&t/12'

+ β2(Li, lj){1 − ρ(Li, lj)}
∞∑

s=1
ρ(Li, lj)s−1x&t/12'−s

+
KM∑

k=1

{
ak(Li, lj) cos

(2π tk
12

)

+bk(Li, lj) sin
(2π tk

12

)}
,

which would also be applied to the daily aggregated temper-
ature by replacing KM and t/12 with KD and t/365, respec-
tively. The larger the value of KM (or KD), the higher the fre-
quency the harmonic terms can present. For the determinis-
tic component, {β0(Li, lj), β1(Li, lj), β2(Li, lj), ρ(Li, lj), σ (Li, lj),
a1(Li, lj), . . . , aK(Li, lj), b1(Li, lj), . . . , bK(Li, lj)}i=1,...,I;j=1,...,J are
all (5 + 2K)IJ parameters to be evaluated and stored, where
K can take values of 0, KM , and KD to represent the annual,
monthly and daily temperature, respectively. With the indepen-
dence assumption, we can e%ciently estimate the parameters
of the deterministic component in parallel for each grid point.
The detailed inferential process is given in Section S3.1 of the
supplementary materials.

3.2. Stochastic Component of SG

Now, we sequentially model the spatial and temporal depen-
dence of the stochastic component Z(r)

t (Li, lj), which is a general
principle for analyzing space-time data (Stein 2007; Castruccio
and Genton 2018) to bypass the prohibitive computation.

3.2.1. Modeling the Spatial Dependence
The inference of the spatial dependence should consider several
crucial factors: (a) The simulations are extensive; (b) The simula-
tions encompass the entire globe, making the use of chordal dis-
tance inappropriate (Jeong, Jun, and Genton 2017); and (c) The
simulations exhibit nonstationarity among di$erent latitudes
and between land and ocean regions. Given these considera-
tions, we propose using the SHT (Jones 1963; Stein 2007, 2008),
which involves expanding the stochastic component Z(r)

t (Li, lj)
with spherical harmonics:

Z(r)
t (Li, lj) =

Q−1∑

q=0

q∑

m=−q
(s(r)

t )m
q Hm

q (Li, lj) + ε
(r)
t (Li, lj). (2)

In (2), {Hm
q }q=0,1,2,...;m=−q,...,q is a complete set of orthonormal

basis functions de"ned in L2(S2) and indexed by integer degree
q and order m, where L2(S2) is the Hilbert space consisting
of squared-integrable functions on the sphere S2. The spherical
harmonic Hm

q is a complex-valued function with a closed form

Hm
q (Li, lj) =

√
2q+1

4π
(q−m)!
(q+m)!P

m
q (cos θi) exp(ιm(j), where ι2 =

−1, (θi, (j) = (−πLi/180 + π/2, π lj/180) is a reparameteri-
zation of (Li, lj) and Pm

q is the associated Legendre polynomial
of degree q and order m, such that H−m

q = (−1)mHm
q . Corre-

sponding to the Hm
q , (s(r)

t )m
q is the complex-valued spherical har-

monic coe%cient satisfying (s(r)
t )−m

q = (−1)m(s(r)
t )m

q . The norm

of (s(r)
t )m

q , that is, ‖(s(r)
t )m

q ‖2 =
√

)2{(s(r)
t )m

q } + *2{(s(r)
t )m

q },
indicates the energy gathered at degree q and order m. More
details about spherical harmonics and their application on spec-
trum and di$erentiability analysis are given in Section S3.2.1
of the supplementary materials. Q is an integer ranging from
0 to Qmax, with Qmax = min{I − 1, (J + 1)/2} derived
in Section S3.2.2 and determined by the spatial resolution of
the data. The denser the grid points are, the higher the fre-
quency they capture, and the larger the value of Qmax could
be. For CESM2-LENS2, Qmax = 144. The term ε

(r)
t (Li, lj)

accounts for the remaining information and is assumed to be
independent and follow N (0, v2(Li, lj)). In a physical sense, (2)
translates {Z(r)

t (Li, lj)}i=1,...,I;j=1,...,J from the spatial domain to
{(s(r)

t )m
q }q=0,...,Q−1;l=−q,...,q in the spectral domain. In a statistical

sense, with Q + √
IJ, (2) provides a low-rank approximation

for the stochastic process Zt , where (st)m
q serves as a random

coe%cient and Q trades o$ the quality of approximation against
the computational complexity.

We provide Figure 2 to facilitate the understanding of
SHT. Figure 2(a) shows a set of stochastic components in
the spatial domain, that is, {Z(1)

9 (Li, lj)}i=1,...,I;j=1,...,J , which is
obtained by detrending and rescaling the annually aggregated
temperature at year 2023 and ensemble one with ensemble
mean and standard error in Figure 1(a) and (b), respec-
tively. A#er applying the SHT, Figure 2(b) presents the pattern
of {log10 ‖(s(1)

9 )m
q ‖2}q=0,1,...,Qmax;m=−q,...,q, which indicates the

energy allocation in the spectral domain. The energy is more
concentrated at lower degrees of lower frequencies, gradually
decreasing as the degree increases. The decay rate re!ects the dif-
ferentiability property of the data, as detailed in Section S3.2.1 of
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Figure 2. Demonstration of SHT. (a) shows a set of stochastic component {Z(1)
9 (Li , lj)}i=1,...,I;j=1,...,J in the spatial domain. (b) indicates energy allocation of (a) in

spectral domain. (c)–(e) depict the absolute values of {ε(1)
9 (Li , lj)}i=1,...,I;j=1,...,J in (2) with Q = 36, 72, and 116, respectively. (f ) depicts the absolute values of

{ε(1)
9 (Li , lj)}i=1,...,I;j=1,...,J obtained by using LatticeKrig with 13,658 bases of 6 levels, where 13,658 > 1162 = 13,456.

the supplementary materials. Figure 2(c)–(e) show the in!uence
of Q on the loss of using SHT for a single set of stochastic com-
ponents. Section S3.2.3 provides a more comprehensive illus-
tration of the general approximation performance. In essence,
a larger value of Q retains more information and provides a bet-
ter approximation. Additionally, the spatial structure of surface
temperature varies signi"cantly between land and ocean.

We compare SHT with two popular bases used in low-rank
approximations, empirical orthogonal functions (EOFs) and
those in LatticeKrig (Nychka et al. 2016), as detailed in Sec-
tion S3.2.4. EOFs, as data-driven basis functions, lack a closed
form and must be stored. Their evaluation involves computing
and eigen-decomposing an IJ × IJ matrix, leading to constraints
on computational time and resources. Figure 2(e) and (f) illus-
trate comparable approximation performance of SHT and Lat-
ticeKrig on Z(1)

9 (Li, lj) with similar numbers of bases. However,
LatticeKrig entails more time for parameter tuning selection and
coe%cient calculation, along with greater storage requirements.
For a more detailed and comprehensive comparison, readers
are referred to Section S3.2.4. We emphasize the advantages
of employing the spherical harmonics to represent substantial
global climate simulations: (a) Natural basis functions. Spherical
harmonics are eigenfunctions of the Laplace-Beltrami operator,
making them well-suited for analyzing spherical data of various
variables, as well as their spectrum; (b) Easily available multi-
resolution basis functions. Spherical harmonics have a closed
form, which saves the procedures for getting bases, conserves
the memory for storing them, and facilitates the derivation of
special forms of covariance under certain assumptions. Their
resolutions are automatically multiple, eliminating the need for
researchers to manually allocate knots or tuning parameters.
Instead, one can simply select a degree Q to control the level
of detail; (c) E%cient coe%cient calculation. As shown in Sec-
tion S3.2.2, both the SHT and its inverse can be e%ciently
calculated with a computational time O(Q3). Moreover, this
computational time can be further reduced to O(Q2) by parallel

computing. On a MacBook with a 3.2 GHz Apple M1 Pro
processor with ten cores, performing the SHT with Q = Qmax
in Figure 2 takes about 3 sec, and the inverse SHT with Q = 36,
72, and 144 take no more than 0.06, 0.3, and 2 sec, respectively.

Next, we model the spatial dependence structure, which
is assumed to remain consistent over time. The covariance
between Z(r)

t (Li, lj) and Z(r)
t (Li′ , lj′) is

c{(Li, lj), (Li′ , lj′)} = H(Li, lj).KH(Li, lj) + )i=i′)j=j′v2(Li, lj),
(3)

where K = K(r)
t = E{s(r)

t (s(r)
t )H} is a Q2 × Q2 covariance

matrix of {(s(r)
t )m

q }q=0,1,...,Q;m=−q,...,q, H is the operator of con-
jugate transpose, H(Li, lj) and s(r)

t are vectors consisting of basis
functions and spherical harmonic coe%cients, indexed by (q2 +
q + m + 1). Speci"cally, the (q2 + q + m + 1)th elements of
H(Li, lj) and s(r)

t are Hm
q (Li, lj) and (s(r)

t )m
q , respectively.

Further examining the structure of K, it is evident that the
stochastic component in Figure 2(a) exhibits strong heterogene-
ity across di$erent latitudes, as observed in previous studies of
global climate data (Stein 2007; Jeong et al. 2018; Huang et al.
2023). Consequently, the commonly used isotropic assumption
for Euclidean data is no longer appropriate. Instead, we adopt
the assumption of axial symmetry, which posits that only data
on the same latitude are stationary (Jones 1963). This leads to
the covariance c{(Li, lj), (Li′ , lj′)} becoming a function of Li (θi),
Li′ (θi′), and |lj − lj′ | (|(j −(j′ |, the central angle between points
(Li, lj) and (Li′ , lj′) expressed in chordal distance). Using a simple
derivation outlined in Jones (1963), we have

c(Li, Li′ , |lj − lj′ |)

=
Q−1∑

q=0

Q−1∑

q′=0

q∑

m=−q
kqq′mHm

q (θi, 0)Hm
q′ (θi′ , 0) exp(ιm|(j − (j′ |)

(4)
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with E{(s(r)
t )m

q (s(r)
t )m′

q′ } = )m=m′kqq′m. It means that axial sym-
metry assumes dependence only on coe%cients of the same
order. Thus, K becomes a sparse matrix, consisting of Q2 + (Q−
1)2 + · · · + 12 = Q3/3 + Q2/2 + Q/6 nonzero elements.

However, from Figures 1 and 2, we still observe heterogeneity
between land and ocean data on the same latitude. The stochastic
components on land and ocean exhibit di$erent spatial struc-
tures, requiring di$erent numbers of basis functions to capture
them adequately. Therefore, we propose replacing (2) by

Z(r)
t (Li, lj) = )(Li ,lj)∈Sl

Ql−1∑

q=0

q∑

m=−q
(s(r)

t )m
q Hm

q (Li, lj)

+ )(Li ,lj)∈So

Qo−1∑

q=0

q∑

m=−q
(s(r)

t )m
q Hm

q (Li, lj) + ε
(r)
t (Li, lj),

(5)

where So (Sl) represents the set of grid points over the ocean
(land) and Qo (Ql) denotes the value of Q for ocean (land). We
ignore the continuity of temperature changes between land and
ocean, since (5) is formulated on grid points and our target is not
to predict at new points. Accordingly, the covariance c(Li, Li, |lj−
lj′ |) is given by plugging the Q values of (Li, lj) and (Li′ , lj′) into
(4). We present the process of choosing appropriate values for
Qo and Ql in Section 4.

3.2.2. Modeling the Temporal Dependence
Next, we investigate the temporal dependence within the vector
time series {s(r)

t }T
t=1 in the spectral domain. We will employ

an auto-regressive model, but with two additional operations:
converting the coe%cients to real-valued ones and Gaussian-
izing them using the TGH transformation. Speci"cally, for
the complex-valued vector s(r)

t with the special structure of
(s(r)

t )−m
q = (−1)m(s(r)

t )m
q , we "rst linearly transform it into a

real-valued vector:

s̃(r)
t = A−1s(r)

t = [(s(r)
t )0

0, *{(s(r)
t )1

1}, (s(r)
t )0

1, ){(s(r)
t )1

1}, . . . ,

*{(s(r)
t )

Q−1
Q−1}, . . . , ){(s(r)

t )
Q−1
Q−1}].,

where both A and its inverse are Q2 × Q2 sparse matrices with
known structures. For example, in the case of Q = 2, A and A−1

can be represented as




1 0 0 0
0 ι 0 −1
0 0 1 0
0 ι 0 1



 and





1 0 0 0
0 −ι/2 0 −ι/2
0 0 1 0
0 −1/2 0 1/2



 ,

respectively. For simplicity, we denote the (q2 + q + m + 1)th
element of s̃(r)

t as (s̃(r)
t )m

q . Consequently, we have Z(r)
t (Li, lj) =

H(Li, lj).As̃(r)
t + ε

(r)
t (Li, lj), where A.H(Li, lj) and s̃(r)

t are vec-
tors of bases and coe%cients, respectively. Under the assump-
tion of axial symmetry, the covariance of s̃(r)

t , denoted as
K̃0 = E(s̃(r)

t s̃(r).
t ), is also a sparse matrix. Speci"cally,

E{(s̃(r)
t )m

q (s̃(r)
t )m′

q′ } = E{(s̃(r)
t )−m

q (s̃(r)
t )−m′

q′ } = k̃qq′m)m=m′)m≥0.
The derivation is given in Section S3.3 of supplementary mate-
rials. The matrix K̃0 consists of 2Q3/3 + Q/3 nonzero elements
and only Q3/3+Q2/2+Q/3 ones need to be stored. If Z(r)

t (Li, lj)

represents the stochastic component of annually aggregated
temperature, it is reasonable to assume the Gaussianity of
{Z(r)

t (Li, lj)}T
t=1, and therefore, the Gaussianity of {s̃(r)

t }T
t=1. This

allows us to model it with a vector auto-regressive model of order
P (VAR(P)): s̃(r)

t = ∑P
p=1 !ps̃(r)

t−p+ξ
(r)
t , where ξ

(r)
t

iid∼ NQ2(0, U)

and U = K̃0 − ∑P
p=1 !pK̃0!.

p − ∑P
p=1

∑P
p′ 1=p !pK̃|p′−p|!.

p′

with K̃|p′−p| = E(s̃(r)
t−ps̃(r).

t−p′ ).
However, as in Sections 2 and S2, when Z(r)

t (Li, lj) is
the stochastic component of the monthly or daily aggre-
gated temperature, the Gaussianity assumption for time series
{Z(r)

t (Li, lj)}T
t=1 at most grid points (Li, lj) may not hold. It

implies that {(s̃(r)
t )m

q }T
t=1 at some (q, m) pairs are not Gaussian

and motivates us to employ a modi"ed TGH transformation.
Denote by Sgh the set of (q, m) such that {(s̃(r)

t )m
q }T

t=1 rejects
the Gaussianity. We model the coe%cients with a TGH auto-
regressive model: š(r)

t = ∑P
p=1 !pš(r)

t−p + ξ
(r)
t , where the (q2 +

q + m + 1)th element of š(r)
t is

(š(r)
t )m

q =
{

λm
q τ−1

gmq ,hmq
{(s̃(r)

t )m
q /ωm

q }, if (q, m) ∈ Sgh,
(s̃(r)

t )m
q , if (q, m) /∈ Sgh,

(6)

with τgmq ,hmq (s) = (gm
q )−1{exp(gm

q s)−1} exp(hm
q s2/2). Compared

to the regular TGH, the one in (6) removes a location parameter
and introduces a scale parameter λm

q . The former is due to the
zero-mean {(s̃(r)

t )m
q }t=1,...,T;r=1,...,R. The later ensures the stan-

dard deviation of {(š(r)
t )m

q }t=1,...,T;r=1,...,R to be equal to that of
{(s̃(r)

t )m
q }t=1,...,T;r=1,...,R. Four additional parameters describing

characteristics beyond the "rst two moments are to be stored.
Based on (6), the covariance matrix of ξ

(r)
t is U = Ǩ0 −∑P

p=1 !pǨ0!.
p −∑P

p=1
∑P

p′ 1=p !pǨ|p−p′|!.
p′ , where both Ǩ0 =

E(š(r)
t š(r).

t ) with E{(š(r)
t )m

q (š(r)
t )m′

q′ } = E{(š(r)
t )−m

q (š(r)
t )−m′

q′ } =
ǩqq′m)m=m′)m≥0 and Ǩ|p−p′| = E(š(r)

t−pš(r).
t−p′ ) have sparse struc-

tures under the assumption of axial symmetry.
Furthermore, we assume that !p is a diagonal matrix

with the (q2 + q + m + 1)th diagonal element denoted
as (φp)m

q , which neglects the cross dependence between
{(s̃(r)

t )m
q }q=0,...,Q−1;m=−q,...,q. This assumption enables the inde-

pendent and parallel evaluation of {(φp)m
q }P

p=1 across q and m
and ensures U to inherit the same sparse structure from Ǩ0 and
Ǩ|p−p′|. We brie!y validated it in Section S3.4 by testing the
signi"cance of the "rst temporal lag of the cross-correlation. The
proportion of p-values less than 0.05 is nearly zero, indicating
negligible cross-dependence. The details about the parameter
estimation are given in Section S3.5.

3.3. Emulation with SG

The procedures of constructing an SG for the monthly and
daily simulations from CESM2-LENS2 is summarized in Algo-
rithm S1 of Section S3.6. We assume that the tuning parameters
K, Ql, Qo, and P are known. More details about their selection
will be provided in Section 4. In Stage 1, we calculate and store a
total of (5 + 2K)IJ parameters in the deterministic component.
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In Step 1) of Stage 2, although we use di$erent Q values for land
and ocean data to evaluate v(Li, lj), we still need coe%cients up
to Q′ = max(Ql, Qo). The number of stored parameters in Stage
2 is IJ + (4 + P)Q′2 + (Q′3/3 + Q′2/2 + Q′/3). Therefore, the
total number of parameters is of the order O(IJ + Q′3). For the
annually aggregated temperature, there is no need to perform
a TGH transformation in Step 3) of Stage 2. Consequently, Sgh
is an empty set, and only IJ + PQ′2 + (Q′3/3 + Q′2/2 + Q′/3)

parameters are needed for the stochastic component. In sum-
mary, we develop an SG by training on simulations of size IJRT
and store it for generating unlimited emulations using at most
(6 + 2K)IJ + (4 + P)Q′2 + (Q′3/3 + Q′2/2 + Q′/3) memorized
parameters.

Here, we contrast the storage requirements of our SG with
that of another e%cient SG proposed by Huang et al. (2023)
(referred to as HCBG-SG) for surface temperature simulations
from LENS1 (Kay et al. 2015). HCBG-SG was primarily devel-
oped within the spatial domain and required memorization of
(2K+PH +8)IJ+6I+2 parameters. This consisted of (5+2K)IJ
parameters for the deterministic component, PHIJ parameters
for evaluating the temporal dependence with PH representing
the selected order for the auto-regressive model, 3IJ parameters
for TGH transformation, and 6I + 2 parameters for assessing
the nonstationary spatial dependence. The storage advantage of
our SG stems from its modeling in the spectral domain rather
than the spatial domain, with Q′2 + IJ. Taking the case of P =
PH = 1 and Q′ = 70 as an example, which maximizes storage
requirements of our SG for all temporal resolutions, the daily
HCBG-SG necessitates additional 25,747 parameters. However,
for annual simulations, which do not need a TGH, HCBG-SG
needs 120,541 fewer parameters. A further comparison of their
performance is presented in Section 4.

In Algorithm 1, we outline the procedures for generating
monthly and daily temperature emulations for CESM2-LENS2.
Note that a Cholesky decomposition should be performed on
U when generating š(r′)

t , which may be time-consuming if Q′

is not small. However, the sparse structure of U avoids the
possible computational limitation. For the annually aggregated
temperature, we can simply remove Step (b) in Stage 2 and
replace s̃(r′)

SG,t in Step (c) with š(r′)
SG,t .

4. Case Study: CESM2-LENS2

In this section, we develop emulators and generate emulations
for surface temperature simulations from CESM2-LENS2 using
the proposed algorithms. We delve into the implementation of
our SG (referred to as SHT-SG in this section), covering the
choice of tuning parameters and the modeling of the depen-
dence structure, and the assessment of their performance. Addi-
tionally, we include the results of HCBG-SG for comparison.
Discussion about the monthly SG is presented in Section S4.2
of the supplementary materials to save space.

The assessment of an SG relies on the speci"c purpose for
which the emulator is intended (Castruccio et al. 2014). Our
main goal is to generate emulations that closely resemble the
given simulations. To achieve this, our SG should e%ciently
decouple and capture the deterministic and stochastic compo-
nents of the data. First, the estimated mean trend m̂t should

Algorithm 1 Emulation with SG
Input: ρ(Li, lj), β0(Li, lj), β1(Li, lj), β2(Li, lj), a1(Li, lj),…,

aK(Li, lj), b1(Li, lj),…, bK(Li, lj), σ (Li, lj), v(Li, lj), λm
q ,

ωm
q , gm

q , hm
q , (φ1)m

q , . . . , (φP)m
q , i = 1, . . . , I, j = 1, . . . , J,

q = 0, . . . , Qo − 1, m = −q, . . . , q, U, Ql, Qo, K, P,
A ∈ RQ2

o×Q2
o , R′.

Stage 1: Preliminary
1) For each grid point (Li, lj), calculate {mt(Li, lj)}T

t=1 with
given parameters of the deterministic component, i =
1, . . . , I and j = 1, . . . , J.

Stage 2: Emulation
For r′ = 1, . . . , R′:
1) generate š(r′)

SG,−(p−1) ∼ NQ2o
(0, U), p = 1, . . . , P,

2) for t = 1, . . . , T:
(a) generate ξ

(r′)
SG,t ∼ NQ2o

(0, U), and calculate š(r′)
SG,t =

∑P
p=1 .pš(r′)

SG,t−p + ξ
(r′)
SG,t ,

(b) calculate s̃(r′)
SG,t , where (s̃(r′)

SG,t)
m
q =

ωm
q τgmq ,hmq {(š(r′)

SG,t)
m
q /λm

q },
(c) calculate s(r′)

SG,t = As̃(r′)
SG,t , and perform the inverse SHT on

s(r′)
SG,t with (5) to obtain {invSHT(s(r′)

SG,t)(Li, lj)}i=1,...,I;j=1,...,J ,
(d) generate ε

(r′)
SG,t(Li, lj) ∼ N (0, v̂(Li, lj)2), i = 1, . . . , I; j =

1, . . . , J;
(e) generate emulations

y(r′)
SG,t(Li, lj) = mt(Li, lj) + σ (Li, lj){invSHT(s(r′)

SG,t)(Li, lj)

+ ε
(r′)
SG,t(Li, lj)}.

Output: {y(r′)
SG,t(Li, lj)}i=1,...,I;j=1,...,J;r′=1,...,R′ .

mimic and extract the variation of the ensemble mean in the
simulations. A#er adding the stochastic component, the vari-
ability of emulations should be similar to the internal variability
observed in simulations. Therefore, we will discuss two key
factors: goodness-of-"t and variability, quanti"ed with

I"t(Li, lj) =
∑R

r=1
∑T

t=1{y(r)
t (Li, lj) − m̂t(Li, lj)}2

R/(R − 1)
∑R

r=1
∑T

t=1{y(r)
t (Li, lj) − ȳt(Li, lj)}2

and

Iuq(Li, lj) =
CRA{y(1)

SG,t(Li, lj), . . . , y(R)
SG,t(Li, lj)}

CRA{y(1)
t (Li, lj), . . . , y(R)

t (Li, lj)}
,

respectively. Given a grid point (Li, lj), the index I"t(Li, lj) com-
pares m̂t(Li, lj) with 2K + 4 parameters with the ensemble mean
ȳt(Li, lj) = R−1 ∑R

r=1 y(r)
t (Li, lj) with T parameters among all

ensembles and time points. The closer the I"t value to 1, the
better the ability of the SG to capture the variability of the
ensemble mean. Index Iuq, a measure proposed in Huang et al.
(2023), leverages the concept of functional data depths (López-
Pintado and Romo 2009). In particular, we treat {y(r′)

SG,t(Li, lj)}R
r′=1

as R functions of t at (Li, lj) and measure the interquartile range
(Sun and Genton 2011) of these functions using the central
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Figure 3. Inference process for the annual SG. (a) shows boxplots of {I"t(Li , lj)}i=1,...,I;j=1,...,J for di!erent values of R. (b) is the map of the estimated standard deviation

{σ̂ (Li , lj)}i=1,...,I;j=1,...,J . (c) shows boxplots of {BIC(r)
∗,t(Q)}r=1,...,R;t=1,...,T for di!erent values of Q, where ∗ takes “l” and “o”. Points × show medians of BIC values. The red

points indicate the minimum values. (d) is the map of {v̂(Li , lj)}i=1,...,I;j=1,...,J .

region area (CRA). Then, Iuq(Li, lj) is the uncertainty quali"ca-
tion of {y(r′)

SG,t(Li, lj)}R
r′=1 against that of {y(r)

t (Li, lj)}R
r=1. A value

of Iuq close to 1 suggests that the variability of the generated
emulations closely re!ects the internal variability of the training
simulations.

Moreover, we will visually and numerically compare var-
ious statistical characteristics of the emulations to those of
simulations. This ensures that our emulations faithfully cap-
ture the essential features of the temperature data from
CESM2-LENS2. For example, at each grid point, we com-
pare the empirical distribution of {y(r′)

SG,t(Li, lj)}t=1,...,T;r′=1,...,R

to that of {y(r)
t (Li, lj)}t=1,...,T;r=1,...,R by the Wasserstein dis-

tance (Santambrogio 2015), which is denoted as WDS(Li, lj).
Similarly, we calculate the Wasserstein distance between the
empirical distribution of {y(r′)

SG,t(Li, lj)}i=1,...,I;j=1,...,J;r′=1,...,R and
{y(r)

t (Li, lj)}i=1,...,I;j=1,...,J;r=1,...,R at each time point t, which is
denoted as WDT(t).

4.1. Annually Aggregated Temperature

First, we evaluate the deterministic component mt and
σ of the annually aggregated temperature simulations
{y(r)

t (Li, lj)}i=1,...,I;j=1,...,J;t=1,...,T;r=1,...,R, with a total of
T = 86 time points. Figure 3(a) presents boxplots of
{I"t(Li, lj)}i=1,...,I;j=1,...,J for di$erent values of R. These values
tend to get closer to 1 as R increases, and they stabilize a#er
R ≥ 7, which means that using seven training simulations
is su%cient to stabilize the inference. Therefore, we select
R = 7 for the subsequent analysis. The corresponding

{I"t(Li, lj)}i=1,...,I;j=1,...,J values are shown in Figure S5(a),
with a median value of 1.001. Temperature can be "tted well at
most grid points. Furthermore, Figure 3(b) displays the map of
σ̂ (Li, lj), illustrating the nonstationarity of the data. It is evident
that larger variations of surface temperatures are observed over
land.

Then, we perform the SHT on the stochastic component,
necessitating the selection of appropriate values for Ql
and Qo. Based on the Gaussian assumption of ε

(r)
t (Li, lj),

we propose a Bayesian information criterion (BIC) for
{Z(r)

t (Li, lj)}i=1,...,I;j=1,...,J at time t of ensemble r:

BIC(r)
∗,t(Q) = log(n∗)Q2 + n∗ log(2π)

+ )(Li,lj)∈S∗

I∑

i=1

J∑

j=1
log{v̂2(Li, lj)}

+ )(Li,lj)∈S∗

I∑

i=1

J∑

j=1

{
ε
(r)
t (Li, lj)
v̂(Li, lj)

}2

,

where v̂2(Li, lj) = (RT)−1 ∑R
r=1

∑T
t=1{ε(r)

t (Li, lj)}2. When ∗
takes “o”, the above BIC with no = ∑I

i=1
∑J

j=1 )(Li,lj) ∈ So helps
select an appropriate Qo for Z(r)

t (Li, lj) over the ocean. Similarly,
when ∗ is “l”, it leads to the determination of Ql. Figure 3(c)
illustrates boxplots of {BIC(r)

∗,t }r=1,...,R;t=1,...,T against di$erent
values of Q, revealing a substantial discrepancy in preferred Q
values between land and ocean. The stochastic components on
land exhibit a preference for a smaller Q value compared to
those on the ocean. This might seem counterintuitive, given that
Figure 2(c) and (d) suggest that the stochastic component on
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Figure 4. Temporal and spatial dependence structure. (a) is the map of the estimated {(φ1)m
q }q=0,...,Qo−1;m=−q,...,q for the annual simulations. (b) is the "rst 69 rows and

columns of K̃0 empirically evaluated by (RT)−1 ∑R
r=1

∑T
t=1 s̃(r)

t s̃(r).
t and denoted as K̃emp. (c) is the "rst 69 rows and columns of K̃0 evaluated under the axial symmetric

assumption and denoted as K̃axl. (d) and (e) show empirical and "tted auto-covariance at latitudes −11.8! and 36.3!, respectively.

land requires more harmonic terms for a better approximation.
However, it is essential to note that the introduction of Q aims
not only for accurate approximation but also to strike a balance
between accuracy and the number of parameters, leading to
improved model selection. Examining the boxplots for land,
the improvement gained by including additional terms does not
fully compensate for the associated drawbacks, such as increased
storage requirements and accumulated errors from evaluation.
The subsequent Figure 4(d) and (e) further validate this model
selection result. Finally, the × points in Figure 3(c) suggest
selecting Ql = 35 and Qo = 69 to minimize the medians of
BIC for land and ocean, respectively.

In Figure 3(d), we further analyze the values of v̂(Li, lj),
which serves as an assessment of the low-rank approximation
on (Li, lj). There are several regions on land that exhibit sig-
ni"cantly larger v̂(Li, lj): (a) High-altitude regions such as the
Himalayas and the Andes ranges with altitudes exceeding 3500
meters above sea level; and (b) Regions characterized by diverse
topography, such as the Indonesian archipelago, encompassing
islands, mountains, and coastal areas. These geographic factors
contribute to a more complex spatial and temporal structure in
surface temperature in these regions. To capture more details,
one may consider including additional covariates in the deter-
ministic component and choosing speci"c values of Q for these
regions in the stochastic component. These considerations are
avenues for future exploration.

Next, we assess the temporal dependence by "tting
{(s̃(r)

t )m
q }t=1,...,T;r=1,...,R with the VAR(P) model. For each

(q, m), we suggest to choose P by minimizing BICm
q (P) =

P log{(T −P)R}+R(T −P){log(2π)+1}+R(T −P) log((ûm
q )2),

where (ûm
q )2 = R−1(T − P)−1 ∑R

r=1
∑T

t=P+1{(s̃(r)
t )m

q −
∑P

p=1(φ̂p)m
q (s̃(r)

t−p)
m
q }2. For briefness, we use the conditional

log-likelihood (given (s̃(r)
1 )m

q , . . . , (s̃(r)
P )m

q ) rather than an exact

log-likelihood in the above BIC. The proportions of P = 1, . . . , 5
are 99.3%, 0.2%, 0.2%, 0.1%, and 0.2%, respectively. Therefore,
we opt for P = 1 for the annual case. Figure 4(a) further
demonstrates the estimates of {(φ1)m

q }q=0,...,Qo−1;m=−q,...,q.
Finally, we evaluate the spatial dependence by examining the

matrix K̃0. Figure 4(b) and (c) show top-le# corners of two
evaluations of K̃0. K̃emp is the sample covariance matrix of s̃(r)

t ,
forming a dense Q2

o × Q2
o matrix. In contrast, K̃axl is a sparse

matrix. The sparsity of K̃axl would be inherited by U, facilitating
storage and enabling fast Cholesky decomposition using e%cient
algorithms (Furrer and Sain 2010). Figure 4(d) and (e) display
empirical and "tted covariances for Z(Li, lj) and Z(Li, lj+1),
speci"cally the auto-covariance {cov{Z(Li, lj), Z(Li, lj+1)}}J−1

j=1 at
Li = −11.8! and 36.3!. These plots highlight the distinc-
tion between the proposed separate SHT for land and ocean
(5) (Axial-land/ocean) and the original SHT (2) (Axial). The
empirical auto-covariance over the ocean appears almost !at,
supporting the assumption of axial symmetry over the ocean.
In contrast, the auto-covariance over land signi"cantly di$ers
from that over the ocean. This di$erence is not captured by
the "tted covariance of Axial, which selects Q = 77 via BIC.
Axial-land/ocean "ts the covariance separately for land and
ocean, resulting in segmented lines in Figure 4(d) and (e). How-
ever, land temperature exhibits a complex and nonstationary
dependence structure, with covariance weakening as one moves
farther inland. This intricacy warrants further investigation in
future research.

Inputting the above-estimated parameters, we generate R′ =
R = 7 emulations with Algorithm 1. Each emulation takes
approximately 30 sec to produce without parallel computation.
Additionally, we include emulations generated by HCBG-SG for
comparison, with detailed implementation procedures shown in
the supplementary materials. Figure 5(a) and (b) compare Iuq
values for the proposed SHT-SG and HCBG-SG, with median
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Figure 5. (a) and (b) are maps of {Iuq(Li , lj)}i=1,...,I;j=1,...,J for the annual temperature emulations. (c) and (d) are maps of {WDS(Li , lj)}i=1,...,I;j=1,...,J for the annual
temperature emulations.

values of 1.013 and 1.085, respectively. Our emulations can
successfully capture the variability of simulations at most grid
locations, including polar regions. A high-Iuq region near the
location (50.00, 300.00) is caused by the poor evaluation of
the mean trend, which is discussed in Section S4.1.1 of the
supplementary materials. Figure 5(b) shows a poor spatial con-
tinuity for HCBG-SG, which may be caused by the independent
evaluation of parameters at each latitude and a relatively weak
model of dependence across latitudes. A similar pattern can be
seen in Figure 5(d), which depicts the map of WDS for HCBG-
SG, with a median value of 0.076. The WDS values for SHT-
SG in Figure 5(c), which are closer to zero with a median value
of 0.062, provide further evidence of the similarity between
our emulations and the simulations. From Figure 5, geographic
factors have no obvious impact on both two SGs regarding Iuq
and WDS values. The WDT values for SHT-SG and HCBG-
SG are comparable, with medians 0.126 and 0.108, respec-
tively. In the supplementary materials, we further compare
other basic statistical characteristics of our emulations to those
of the simulations by replicating the procedures outlined in
Figure 1.

4.2. Daily Aggregated Temperature

Now, we develop an SG for the daily aggregated temperature
simulations with T = 31,390. Analyzing such a vast amount
of data presents a computational challenge. Therefore, we adopt
a strategy similar to Huang et al. (2023) to perform inference
only on data for the years 2020, 2040, 2060, 2080, and 2100. The
procedure of inference closely follows that of the monthly case.
Therefore, we put the details of development to Section S4.3
of the supplementary materials and focus on assessing the

performance of the emulations and a further exploration of data
characteristics.

For the daily data, we choose KD = 4, Ql = 36, Qo = 68,
and P = 1. The choice of KD > KM = 3 reveals the presence
of more complex !uctuations in daily time series, requiring
harmonic terms with higher frequencies in the model. The more
structured and higher (φ̂1)m

q in Figure S14(f) indicates a stronger
dependence among time points. The performance of our SG,
both with and without the use of TGH (referred to as SHT-
SG(with TGH) and SHT-SG(without TGH), respectively), along
with HCBG-SG, is illustrated in Figure 6. For better demonstra-
tion, indices larger than maximum values in Figure 6(a) and (c)
are excluded from Figure 6(b) and (d), respectively. Comparing
emulations generated by HCBG-SG with those of SHT-SG(with
TGH), the latter illustrates a closer resemblance to simulations,
greater robustness in numerically unstable regions, and better
spatial continuity. From Figure 6(f), the incorporation of TGH
in our SG results in an improvement in WDS. The empirical
distribution of emulations from SHT-SG(with TGH) is closer to
that of simulations, aligning with the correct assumption. This
advantage may not be apparent in Figure 6(e), as Iuq is used
mainly for assessing the variabilities of emulations.

As in the monthly case, the daily emulations exhibit chal-
lenges in accurately representing certain regions, notably the
North Pole and the Band regions. These regions display larger
Iuq values, indicating higher uncertainty. Additionally, they
may deviate from the behavior observed in the simulations, as
re!ected by the larger WDS values. Moreover, WDS values are
generally higher over land compared to ocean areas, which may
be attributed to the complex spatial and temporal structures and
larger variation of the temperature on land.

We further explore these by intuitively displaying and com-
paring simulations and emulations at four testing grid points
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Figure 6. Performance assessment of R′ = 7 daily emulations generated by various methods. (a) and (b) are maps of {Iuq(Li , lj)}i=1,...,I;j=1,...,J for the SHT-SG(with
TGH) and HCBG-SG, respectively. (c) and (d) are maps of {WDS(Li , lj)}i=1,...,I;j=1,...,J for SHT-SG(with TGH) and HCBG-SG, respectively. Points × represent four test-
ing grid points TGL=(−2.36, 10.00), TGO=(−30.63, 10.00), TGN=(−56.07, 10.00), and TGB=(−64.55, 10.00). (e) and (f ) are boxplots of {Iuq(Li , lj)}i=1,...,I;j=1,...,J and
{WDS(Li , lj)}i=1,...,I;j=1,...,J for comparing the SHT-SG(with TGH) and SHT-SG(without TGH).

selected from the southern hemisphere with the same longitude
in Figure 7. TGL is a land point near the equator. In Figure 7(a),
temperature simulations on TGL exhibit larger variability but
can be well replicated by the emulations. TGO is an ocean point
in the middle latitudes. From Figure 7(b), temperature simu-
lations on TGO have smaller variability overall, with relatively
larger variability at peaks and valleys of each year. These patterns
can also be observed at emulations on TGO. TGN is also an
ocean point in the middle latitudes, but very close to the Band
region. In Figure 7(c) (and Figure S14(a)), some temperature
simulations exhibit sudden drops at a few days in year 2020,
which leads to an overestimate of σ̂ (TGN), and hence a rel-
atively higher variability in the emulations. Despite this, with
Iuq(TGN) = 1.200 and WDS(TGN) = 0.078, the abnormal
drops do not signi"cantly a$ect these indices. Both Iuq and WDS
exhibit a certain tolerance to isolated “outliers”. TGB is an ocean
point within the Band region. Compared with the scenarios in
Figure 7(c), temperature simulations at TGB display much more
rapid and signi"cant !uctuations at lots of time slots in years
2020, 2040, and 2060. In contrast, in years 2080 and 2100, the

temperature simulations behave as other grid points on ocean
with small variability. As shown in Figure S14(b), simulations
at the North Pole region exhibit similar patterns, that is, surface
temperature experiences sharp !uctuations on numerous days.
According to the explanation kindly provided by NCAR, these
temperature !uctuations are caused by the way of data genera-
tion. Speci"cally, the surface temperature in simulations is the
spatial average of the surface temperature of whatever medium
is in the grid box, whether it is water, land, or sea ice. Grid points
at Band and North Pole regions undergo a dynamic transition,
shi#ing back and forth between being partial sea ice and being
open ocean. Consequently, sometimes we get the temperature
of sea ice, and sometimes we get the temperature of the top
layer of the ocean (or a mixture of the two). Combining this
with Figure S14, the numerical instabilities exhibit four features:
they do (a) not occur in each ensemble; (b) not happen during
a "xed period; (c) not vary within a similar extent; and 4) not
exhibit a consistent pattern across di$erent grid points. There-
fore, although the high Iuq and WDS values at the North Pole
and Band regions directly stem from the inadequate assumption
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Figure 7. Comparison of daily emulations and simulations at four testing grid points. The black solid curves are ensemble means for simulations and emulations. The red
dashed curves are m̂ts.

of a "xed σ̂ over time, developing an SG that can accurately
model the temperature !uctuations in these two regions is a
challenge.

5. Conclusion and Future Work

In this article, we presented an e%cient SG for global temper-
ature simulations from the newly published CESM2-LENS2.
With at most O(IJ + Q3

o) parameters to be stored, an unlimited
number of emulations of size O(IJT), even at a daily scale, can be
generated to help with the investigation of climate internal vari-
ability. Such a saving of computational time and resources comes
from the use of SHT, which expands data with Q2

o + IJ spherical
harmonics and represents a practical low-rank approximation
on the sphere. By customizing Q values for grid points on land
and ocean and leveraging the axial symmetry, the proposed SG
can properly capture the complex nonstationary dependencies
among di$erent latitudes and land/ocean regions. To account for
the non-Gaussian nature of the high-resolution time series, we
introduced a modi"ed TGH transformation into the SG. In our
case study, we developed SGs based on R = 7 annually, monthly
and daily aggregated simulations, respectively. We evaluated the
e%ciency and accuracy of the proposed SG by comparing the
generated emulations to the original simulations and emulations
generated by Huang et al. (2023) using various indexes and
visual inspections.

While the proposed SGs have demonstrated commendable
performance, there remains room for further enhancements: (a)
Including altitude factors in both the deterministic and stochas-
tic components. The in!uence of altitude has been evident in the
inference process and the performance of emulations. Surface
temperatures are sensitive to altitude (Castruccio and Genton

2016); (b) Improving the e%ciency of SG on land, particu-
larly for monthly and daily simulations. The larger variability
observed in these cases suggests the need for more suitable mod-
els and additional factors to account for the complicated spatial
and temporal structures on land; (c) Replacing the constant
standard error with a temporal-varying one, denoted as σt . For
simulations with higher temporal resolution, the assumption of
a constant σ leads to an overestimate of standard error, further
amplifying the variability of emulations, especially on land; and
(d) Extending the current work to include hourly simulations.
Hourly data may exhibit more intriguing characteristics, and
exploring their emulation presents an opportunity for further
investigation and understanding.

Beyond surface temperature, the idea of constructing an SG
with SHT can be extended to various climate variables such
as wind speed and atmospheric gas concentrations. A#er the
removal of the deterministic component, the stochastic compo-
nent can be e%ciently expanded using spherical harmonics. The
model in the spectral domain is contingent on the speci"c nature
of the variable, which may ask for including other in!uential fac-
tors. Moreover, for variables that may exhibit interdependence,
such as temperature and precipitation, exploring methods for
their joint modeling in the spectral domain is also of inter-
est. Investigating regional climate change, especially on land, is
crucial for several reasons. On the one hand, climate change
does not a$ect all regions equally. On the other hand, di$erent
regions have varying levels of vulnerability to climate change,
for example, extreme weather events, sea-level rise, or precipita-
tion patterns. Local communities, governments, and businesses
may be interested in how speci"c areas are being impacted so
that they can adapt and plan for the future. Therefore, another
possible extension is to build an SG for high-resolution climate
simulations on a speci"c region.
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Supplementary Materials

Additional information about the CESM2-LENS2 data, inference process,
derivation, validation, and results for the case studies are contained in the
online supplementary materials. (.pdf "le)

The R code and instructions for downloading, processing the data, and
reproducing the results in the article are available at the GitHub repository:
https://github.com/SpatialTemporalStats/LENS2_Emulator_
Reproducibility_Materials
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