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A B S T R A C T

The unified skew-𝑡 (SUT) is a flexible parametric multivariate distribution that accounts for
skewness and heavy tails in the data. A few of its properties can be found scattered in the
literature or in a parameterization that does not follow the original one for unified skew-
normal (SUN) distributions, yet a systematic study is lacking. In this work, explicit properties
of the multivariate SUT distribution are presented, such as its stochastic representations,
moments, SUN-scale mixture representation, linear transformation, additivity, marginal distri-
bution, canonical form, quadratic form, conditional distribution, change of latent dimensions,
Mardia measures of multivariate skewness and kurtosis, and non-identifiability issue. These
results are given in a parameterization that reduces to the original SUN distribution as a sub-
model, hence facilitating the use of the SUT for applications. Several models based on the SUT
distribution are provided for illustration.

. Introduction

Multivariate distributions beyond the classical Gaussian framework are needed to model modern datasets. For instance, Ogundimu
nd Hutton [32] studied skew-normal sample selection models to address non-Gaussian settings in econometrics data. Arellano-
alle et al. [8] investigated scale and shape mixtures of multivariate skew-normal distributions to more flexibly analyze a wind
ataset. Adcock and Azzalini [2] provided a comprehensive overview of the developments of skew-elliptical models and their
pplications. The need for non-Gaussian models, allowing to control skewness and kurtosis in the distribution of data, has grown
apidly over the past few years. Recently, Loperfido [29] explored the skewness of normal mixtures. Karlsson et al. [26] studied the
lassic time series vector autoregressive model under skewed and heavy-tailed settings. Kiss et al. [27] put non-Gaussian models
nto real-world forecasting applications.

Also to this end, Arellano-Valle et al. [6] proposed a selection approach to obtain multivariate distributions in a unified way
hile being very flexible in terms of controlling skewness and kurtosis features. Specifically, given two random vectors 𝐔0 ∈ R𝑚

nd 𝐔1 ∈ R𝑑 , and a subset 𝐶 ⊂ R𝑚, they coined the distribution of the random vector 𝐙 = (𝐔1|𝐔0 ∈ 𝐶) a selection distribution. In
his way, the cumulative distribution function (cdf) of 𝐙 can be easily computed as

𝐹𝐙(𝐳) = Pr(𝐔1 ≤ 𝐳|𝐔0 ∈ 𝐶) =
Pr(𝐔0 ∈ 𝐶,𝐔1 ≤ 𝐳)

Pr(𝐔0 ∈ 𝐶)
, 𝐳 ∈ R𝑑 . (1)

n the absolutely continuous case, the probability density function (pdf) of 𝐙 is then

𝑓𝐙(𝐳) = 𝑓𝐔1|𝐔0∈𝐶 (𝐳) = 𝑓𝐔1
(𝐳)

Pr(𝐔0 ∈ 𝐶|𝐔1 = 𝐳)
Pr(𝐔0 ∈ 𝐶)

, 𝐳 ∈ R𝑑 , (2)
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where 𝑓𝐔1
(𝐳) is the pdf of 𝐔1. Note that the selection pdf (2) may also be motivated by

Pr(𝐔0 ∈ 𝐶) = E{Pr(𝐔0 ∈ 𝐶|𝐔1)} = ∫𝐶
Pr(𝐔0 ∈ 𝐶|𝐔1 = 𝐳)𝑓𝐔1

(𝐳)d𝐳.

One of the best-known examples of a selection distribution is the multivariate unified skew-normal (SUN) distribution, studied
y Arellano-Valle and Azzalini [4], that can account for skewness in the data. For this, they first defined the selection random vector
= (𝐔1|𝐔0 + 𝝉 > 𝟎) with 𝝉 ∈ R𝑚 being a vector of truncation parameters and assuming that 𝐔0 and 𝐔1 have a multivariate normal

oint distribution with zero mean and positive-definite correlation matrix Ω̄∗ (Ω̄∗ > 0 hereinafter); that is,
(

𝐔0
𝐔1

)

∼ 𝑚+𝑑

((

𝟎
𝟎

)

, Ω̄∗ =
(

Γ̄ ∆⊤

∆ Ω̄

))

, (3)

here Γ̄ and Ω̄ are the correlation matrices of 𝐔0 and 𝐔1, respectively, and ∆ is the correlation matrix between 𝐔0 and 𝐔1. Then
hey defined the SUN distribution as the distribution of 𝐘 = 𝝃 + 𝝎𝐙, with 𝝎 > 0 being a diagonal 𝑑 × 𝑑 scale matrix, denoted by
𝐘 ∼  𝑑,𝑚(𝝃,Ω,∆, 𝝉 , Γ̄), with Ω = 𝝎Ω̄𝝎, and with pdf

𝑓𝐘(𝐲) = |𝝎−1
|𝑓𝐙{𝝎−1(𝐲 − 𝝃)} = 𝜙𝑑 (𝐲; 𝝃,Ω)

𝛷𝑚
{

𝝉 +∆⊤Ω̄−1𝝎−1(𝐲 − 𝝃); Γ̄ −∆⊤Ω̄−1∆
}

𝛷𝑚(𝝉; Γ̄)
, 𝐲 ∈ R𝑑 ,

where 𝜙𝑑 (𝐲; 𝝃,Ω) is the pdf of 𝑑 (𝝃,Ω) and 𝛷𝑚(⋅;Ψ) is the cdf of 𝑚(𝟎,Ψ); and with cdf

𝐹𝐘(𝐲) = Pr{𝐙 ≤ 𝝎−1(𝐲 − 𝝃)} =
𝛷𝑑+𝑚(𝐲∗ − 𝝃∗;Ω∗)

𝛷𝑚(𝝉; Γ̄)
, 𝐲 ∈ R𝑑 ,

where

𝐲∗ =
(

𝝉
𝐲

)

, 𝝃∗ =
(

𝟎
𝝃

)

, and Ω∗ =
(

Γ̄ −∆⊤𝝎
−𝝎∆ Ω

)

. (4)

Another important example of a selection distribution is the multivariate unified skew-𝑡 (SUT) distribution, a flexible parametric
family that can account for both skewness and heavy tails in the data. We start with a formal definition of the SUT distribution
from the aforementioned selection approach. For this, we denote by 𝑑 (𝝃,Ω, 𝜈) the 𝑑-dimensional multivariate 𝑡 distribution with
location vector 𝝃 ∈ R𝑑 , 𝑑 × 𝑑 dispersion matrix Ω and degrees-of-freedom parameter 𝜈 > 0; also its pdf and cdf are denoted by
𝑡𝑑 (⋅; 𝝃,Ω, 𝜈) and 𝑇𝑑 (⋅ − 𝝃;Ω, 𝜈), respectively.

Definition 1. A random vector 𝐘 = 𝝃 + 𝝎𝐙, where 𝐙 = (𝐔1|𝐔0 + 𝝉 > 𝟎), with 𝝉 ∈ R𝑚 and
(

𝐔0
𝐔1

)

∼ 𝑚+𝑑
((

𝟎
𝟎

)

, Ω̄∗ =
(

Γ̄ ∆⊤

∆ Ω̄

)

, 𝜈
)

, (5)

is said to have a multivariate unified skew-𝑡 (SUT) distribution with location vector 𝝃 ∈ R𝑑 , 𝑑 ×𝑑 dispersion matrix Ω = 𝝎Ω̄𝝎, 𝑑 ×𝑚
skewness matrix ∆, latent truncation vector 𝝉 ∈ R𝑚, 𝑚×𝑚 latent correlation matrix Γ̄, and degrees-of-freedom parameter 𝜈 > 0. In
brief, 𝐘 ∼  𝑑,𝑚(𝝃,Ω,∆, 𝝉 , Γ̄, 𝜈), where 𝑚 is the latent dimension.

As in the SUN case, if Ω̄∗ > 0 then the selection approach used to define the SUT distribution allows to easily obtain the pdf and
cdf of 𝐘 ∼  𝑑,𝑚(𝝃,Ω,∆, 𝝉 , Γ̄, 𝜈) by applying (5) in (2) and (1), respectively, as follows:

𝑓𝐘(𝐲) = 𝑡𝑑 (𝐲; 𝝃,Ω, 𝜈)
𝑇𝑚

[

𝛼−1∕2𝜈,𝑄𝐲

{

𝝉 +∆⊤Ω̄−1𝝎−1(𝐲 − 𝝃)
}

; Γ̄ −∆⊤Ω̄−1∆, 𝜈 + 𝑑
]

𝑇𝑚(𝝉; Γ̄, 𝜈)
, 𝐲 ∈ R𝑑 , (6)

where 𝛼𝜈,𝑄𝐲
= {𝜈 +𝑄𝐲}∕(𝜈 + 𝑑) with 𝑄𝐲 = (𝐲 − 𝝃)⊤Ω−1(𝐲 − 𝝃); and

𝐹𝐘(𝐲) =
𝑇𝑑+𝑚(𝐲∗ − 𝝃∗;Ω∗, 𝜈)

𝑇𝑚(𝝉; Γ̄, 𝜈)
, 𝐲 ∈ R𝑑 , (7)

with 𝐲∗, 𝝃∗ and Ω∗ defined as in (4). In the pdf (6) of the SUT, the factor 𝛼𝜈,𝑄𝐲
has to be included, whereas it does not arise in

the case of the SUN. This originates from the conditional pdf generator for the multivariate elliptical distributions, including the
multivariate 𝑡 distribution as a particular case, specified in Fang et al. [19].

If 𝜈 → ∞ in Definition 1, then (5) reduces to (3) and, therefore, the SUT becomes the SUN distribution. If instead 𝑚 = 1 in
Definition 1, then 𝐘 ∼  𝑑 (𝝃,Ω, 𝜹, 𝜏, 𝜈), the extended skew-𝑡 (EST) distribution introduced by Arellano-Valle and Genton [10],
and if in addition 𝜈 → ∞, then 𝐘 ∼  𝑑 (𝝃,Ω, 𝜹, 𝜏), the extended skew-normal (ESN) distribution. Finally, if 𝑚 = 1 and 𝝉 = 𝟎 in
Definition 1, then 𝐘 ∼  𝑑 (𝝃,Ω, 𝜹, 𝜈), the skew-𝑡 (ST) distribution in the form introduced by Azzalini and Capitanio [13], and if
in addition 𝜈 → ∞, then 𝐘 ∼  𝑑 (𝝃,Ω, 𝜹), the skew-normal (SN) distribution of Azzalini and Dalla Valle [15]. The multivariate 𝑡
distribution, 𝐘 ∼ 𝑑 (𝝃,Ω, 𝜈), is recovered by setting 𝝉 = 𝟎 and ∆ = 𝟎 in Definition 1, from which we obtain the multivariate normal
distribution, 𝐘 ∼ 𝑑 (𝝃,Ω), by taking the limit when 𝜈 → ∞.

Notice that one interesting property of the pdf and cdf of the SUT is that unlike the SUN distribution, for which ∆ = 𝟎 is sufficient
to recover its corresponding elliptically symmetric parent distribution, the SUT requires both ∆ = 𝟎 and 𝝉 = 𝟎. Indeed, when ∆ = 𝟎
and 𝝉 = 𝟎, the pdf of 𝐘 becomes:

𝑓𝐘(𝐲) = 𝑡𝑑 (𝐲; 𝝃,Ω, 𝜈)
𝑇𝑚(𝟎; Γ̄, 𝜈 + 𝑑)

= 𝑡𝑑 (𝐲; 𝝃,Ω, 𝜈), 𝐲 ∈ R𝑑 ,
2

𝑇𝑚(𝟎; Γ̄, 𝜈)
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Fig. 1. Contours of the pdfs of the bivariate (𝑑 = 2) SUN and SUT (at 𝜈 = 5) distributions with the same parameter specifications with (Ω,∆, Γ̄) specified to
make the distribution skewed in the direction (−1, 2)⊤ (𝑚 = 1), {(−1, 2)⊤ , (1, 2)⊤} (𝑚 = 2), and {(−1, 2)⊤ , (1, 2)⊤ , (1,−6)⊤} (𝑚 = 3), respectively.

since 𝑇𝑚(𝟎; Γ̄, 𝜈 + 𝑑) = 𝑇𝑚(𝟎; Γ̄, 𝜈) = 𝛷𝑚(𝟎; Γ̄) according to the properties proved in Fang et al. [19] and detailed later in Section 3.2.
Therefore, the cdf of 𝐘 is then 𝑇𝑑 (𝐲 − 𝝃;Ω, 𝜈).

We present in Fig. 1 the pdf contours of the bivariate SUN and SUT (at 𝜈 = 5) distributions with the same parameter specifications.
Fig. 1 indicates that the SUN and SUT distributions are flexible in terms of the direction of skewness. With desired specifications of
(Ω,∆, Γ̄), it is practical to enable the contours to be skewed simultaneously toward any possible directions as shown in Figs. 1(a)–
1(f). In particular, by the convolution representation of SUT (see Section 2.2) and of SUN [4], the column vectors of 𝝎∆Γ̄−1 dictate
the directions of skewness. In addition, compared with SUN, the SUT possesses more weights on the tails, which is the desirable
heavy-tail property. The central bulks of the SUN, on the other hand, contain more weight than the SUT.

The formal properties of the aforementioned sub-models of Definition 1 have been investigated in detail in the literature. For
example, the properties of the SUN distribution can be found in Arellano-Valle and Azzalini [4], Gupta et al. [24], Arellano-Valle
and Azzalini [5], and Wang et al. [34], whereas the properties of the EST distribution are described in Arellano-Valle and Genton
[10]. Moreover, book-length accounts of the properties of the SN and ST distributions can be found in Azzalini and Capitanio [14]
and Genton [21]; see also the recent review by Azzalini [12] and references therein.

A few of the properties of the multivariate SUT distribution can be found scattered in the literature. In principle, these properties
can be derived from those of the unified skew-elliptical (SUE) distributions studied by Arellano-Valle and Genton [11] by plugging
the Student’s 𝑡 generator in these results, but this is a cumbersome task. Moreover, the parameterization used by Arellano-Valle
and Genton [11] does not follow the original one for the SUN distributions introduced by Arellano-Valle and Azzalini [4]. Hence,
a systematic study of the SUT distribution and its properties in the original parameterization of the SUN distribution is lacking.

In this work, explicit properties of the multivariate SUT distribution are presented, such as its stochastic representations,
moments, SUN-scale mixture representation, linear transformation, additivity, marginal distribution, canonical form, quadratic form,
conditional distribution, change of latent dimensions, Mardia measures of multivariate skewness and kurtosis, and non-identifiability
issue. These results are given in the parameterization of Definition 1 that reduces to the original SUN distribution as a sub-model,
hence facilitating the use of the SUT for applications. Several models based on the SUT distribution are provided for illustration.

The remainder of this paper is structured as follows. Section 2 discusses stochastic representation methods for the construction
of the SUT with different possible parameterizations, the moments of the SUT, and relates the SUT to the SUN. Section 3 describes
some of the SUT’s main properties, including linear transformation, additivity, marginal distribution, canonical form, and quadratic
forms. Section 4 provides the SUT’s conditional distributions, as well as change of latent dimensions. Section 5 describes the Mardia
3
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measures of multivariate skewness and kurtosis of the SUT. Lastly, Section 6 discusses a non-identifiability problem of the SUT with
its remedies, and some identifiable sub-models. The paper ends with a discussion in Section 7.

2. Stochastic representations and moments

2.1. Several selection representations

As discussed in Arellano-Valle et al. [6], the same selection vector can be represented in several equivalent ways. Therefore,
arious equivalent representations exist for a random vector following a SUT distribution, 𝐘 ∼  𝑑,𝑚(𝝃,Ω,∆, 𝝉 , Γ̄, 𝜈). In this

section, we detail several possible choices.
From Definition 1, we notice that 𝐘 = 𝝃 + 𝐙∗, where 𝐙∗ = 𝝎𝐙 = (𝝎𝐔1|𝐔0 + 𝝉 > 𝟎) = (𝐔∗

1|𝐔0 + 𝝉 > 𝟎), with 𝐔∗
1 = 𝝎𝐔1. Hence, the

multivariate 𝑡 distribution specified in Eq. (5) above can be reformulated as
(

𝐔0
𝐔∗
1

)

∼ 𝑚+𝑑
((

𝟎
𝟎

)

,
(

Γ̄ ∆⊤𝝎
𝝎∆ Ω

)

, 𝜈
)

. (8)

In addition, the additive constants can be integrated into the multivariate distribution to arrive at a more concise form with
(

𝐔̃0
𝐔̃1

)

∼ 𝑚+𝑑
((

𝝉
𝝃

)

,
(

Γ̄ ∆⊤𝝎
𝝎∆ Ω

)

, 𝜈
)

, (9)

and 𝐘 = (𝐔̃1|𝐔̃0 > 𝟎). Some other formulations are also available from the SUE case in Arellano-Valle and Genton [11] with
various linear transformations of the multivariate 𝑡 distribution and the given conditions. In particular, the random vector 𝐙 can be
reformulated as (𝐔1|𝐔∗

0 < Λ𝐔1 + 𝝉) with Λ = ∆⊤Ω̄−1 and
(

𝐔∗
0

𝐔1

)

∼ 𝑚+𝑑
((

𝟎
𝟎

)

,
(

Γ̄ −∆⊤Ω̄−1∆ 𝟎
𝟎 Ω̄

)

, 𝜈
)

. (10)

The equivalence relationship originates in the given condition 𝐔∗
0 < Λ𝐔1+𝝉, which can also be expressed as 𝐔∗

0−Λ𝐔1 < 𝝉. Notice that

(5) can be retrieved by setting 𝐔0 = Λ𝐔1 −𝐔∗
0 and applying the idempotent transformation 𝐀 =

(

−𝐈𝑚 Λ

𝟎 𝐈𝑑

)

to
(

𝐔∗
0

𝐔1

)

. Reciprocally,

to reach (10) from (5), we can set 𝐔∗
0 = Λ𝐔1 − 𝐔0 and the joint distribution

(

𝐔∗
0

𝐔1

)

= 𝐀
(

𝐔0
𝐔1

)

,

which still follows a multivariate 𝑡 distribution with mean 𝟎, covariance

𝐀
(

Γ̄ ∆⊤

∆ Ω̄

)

𝐀⊤ =
(

Γ̄ −∆⊤Ω̄−1∆ 𝟎
𝟎 Ω̄

)

,

and degrees-of-freedom 𝜈 as specified in (10).
Another approach to arrive at the same result is by directly considering the representation 𝐘 = 𝝃 + 𝝎𝐙 where 𝐙 = (𝐔1|𝐔∗

0 <
Λ𝐔1 + 𝝉). Then 𝐘 = 𝝃 + (𝐔∗

1|𝐔
∗
0 < Λ𝝎−1𝐔∗

1 + 𝝉). Now if we set 𝐔0 = Λ𝝎−1𝐔∗
1 −𝐔∗

0, then the joint distribution of (𝐔⊤
0 ,𝐔

∗
1
⊤)⊤ is exactly

the same as specified in (8) after applying the corresponding linear transformation:
(

−𝐈𝑚 Λ𝝎−1

𝟎 𝐈𝑑

)

to
(

𝐔∗
0

𝐔∗
1

)

.

Although we have summarized numerous feasible settings of the conditioning mechanism for the generation of a SUT random
vector, we will only apply the setting characterized in (8) and (9) to derive the properties of the SUT in the rest of this work due to
consistency and simplicity, except for its quadratic form because we will have to impose the ‘‘uncorrelated’’ assumption of 𝐔∗

0 and
𝐔1 implied in (10). A summary of the constructions for selection distributions, of which the SUT is a special case, can be found in
Section 4 of Arellano-Valle et al. [6].

2.2. Convolution mechanism

In addition to the selection representation, there is an equivalent convolution representation. Analogous to the SUN distribution,
the SUT can be represented by the convolution of a multivariate 𝑡 random vector and a truncated multivariate 𝑡 random vector.

Proposition 1. Let 𝐘 ∼  𝑑,𝑚(𝝃,Ω,∆, 𝝉 , Γ̄, 𝜈). Then 𝐘 = 𝝃 + 𝝎𝐙, with 𝐙 = ∆Γ̄−1𝐔∗ +
√

(𝜈 +𝑄𝐔∗
)∕(𝜈 + 𝑚) ⋅ 𝐖∗, where

𝑄𝐔∗
= 𝐔⊤

∗ Γ̄
−1𝐔∗, 𝐔∗ = (𝐔0|𝐔0 + 𝝉 > 𝟎), 𝐔0 ∼ 𝑚(𝟎, Γ̄, 𝜈), 𝐖∗ ∼ 𝑑 (𝟎, Ω̄ − ∆Γ̄−1∆⊤, 𝜈 + 𝑚), and 𝐔0 and 𝐖∗ are independent random

ectors.
4

roof. The proof of this result is well known; see Eq. (9) of Arellano-Valle and Genton [10]. □
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2.3. Mean and variance

With the convolution mechanism of the SUT, it is feasible to construct semi-explicit forms of the moments. To start, we propose
he following lemma.

emma 1. Let 𝑄𝐔∗
= 𝐔⊤

∗ Γ̄
−1𝐔∗, 𝐔∗ = (𝐔0|𝐔0 + 𝝉 > 𝟎), and 𝐔0 ∼ 𝑚(𝟎, Γ̄, 𝜈). Then:

E

{

( 𝜈 +𝑄𝐔∗

𝜈 + 𝑚

)𝑘∕2

ℎ(𝐔∗)

}

=
𝑀𝑘(𝝉 , Γ̄, 𝜈)
𝑇𝑚(𝝉; 𝟎, Γ̄, 𝜈)

( 𝜈
𝜈 + 𝑚

)𝑘∕2 𝑐(𝜈, 𝑚)
𝑐(𝜈 − 𝑘, 𝑚)

,

here

𝑐(𝜐, 𝑟) =
𝛤 {(𝜐 + 𝑟)∕2}
𝛤 (𝜐∕2)(𝜋𝜐)𝑟∕2

, 𝜐, 𝑟 > 0,

𝑀𝑘(𝝉 , Γ̄, 𝜈) = ∫𝐮+𝝉>𝟎
ℎ (𝐮) 𝑡𝑚

(

√

𝜈 − 𝑘
𝜈

𝐮; 𝟎, Γ̄, 𝜈 − 𝑘

)

d𝐮 =
( 𝜈
𝜈 − 𝑘

)𝑚∕2
𝑇𝑚(𝝉𝑘; 𝟎, Γ̄, 𝜈 − 𝑘) E

{

ℎ
(√

𝜈
𝜈 − 𝑘

𝐔𝑘

)}

,

with 𝐔𝑘 = (𝐖𝑘|𝐖𝑘 + 𝝉𝑘 > 𝟎), 𝐖𝑘 ∼ 𝑚(𝟎, Γ̄, 𝜈 − 𝑘), and 𝝉𝑘 =
√

(𝜈 − 𝑘)∕𝜈 ⋅ 𝝉 for 0 < 𝑘 < 𝜈.

Proof. First of all, we use the result that
(

𝜈 +𝑄𝐮
𝜈 + 𝑚

)𝑘∕2
𝑡𝑚(𝐮; 𝟎, Γ̄, 𝜈) =

( 𝜈
𝜈 + 𝑚

)𝑘∕2 𝑐(𝜈, 𝑚)
𝑐(𝜈 − 𝑘, 𝑚)

𝑡𝑚

(

√

𝜈 − 𝑘
𝜈

𝐮; 𝟎, Γ̄, 𝜈 − 𝑘

)

,

here 𝜈 > 𝑘 > 0. Next, with the fact that 𝐔∗ has pdf 𝑔(𝐮) = 𝑡𝑚(𝐮; 𝟎, Γ̄, 𝜈)∕𝑇𝑚(𝝉; 𝟎, Γ̄, 𝜈) for 𝐮 + 𝝉 > 𝟎, we have:

E

{

( 𝜈 +𝑄𝐔∗

𝜈 + 𝑚

)𝑘∕2

ℎ(𝐔∗)

}

=∫𝐮+𝝉>𝟎

(

𝜈 +𝑄𝐮
𝜈 + 𝑚

)𝑘∕2
ℎ(𝐮) 𝑔(𝐮)d𝐮

= 1
𝑇𝑚(𝝉; 𝟎, Γ̄, 𝜈) ∫𝐮+𝝉>𝟎

(

𝜈 +𝑄𝐮
𝜈 + 𝑚

)𝑘∕2
ℎ(𝐮) 𝑡𝑚(𝐮; 𝟎, Γ̄, 𝜈)d𝐮

= 1
𝑇𝑚(𝝉; 𝟎, Γ̄, 𝜈)

( 𝜈
𝜈 + 𝑚

)𝑘∕2 𝑐(𝜈, 𝑚)
𝑐(𝜈 − 𝑘, 𝑚) ∫𝐮+𝝉>𝟎

ℎ(𝐮) 𝑡𝑚

(

√

𝜈 − 𝑘
𝜈

𝐮; 𝟎, Γ̄, 𝜈 − 𝑘

)

d𝐮.

Thus, the proof is done by the change of variable 𝐯 =
√

(𝜈 − 𝑘)∕𝜈 ⋅ 𝐮 and using the fact that the truncated vector 𝐔𝑘 has pdf given
by 𝑔(𝐮) = 𝑡𝑚(𝐮; 𝟎, Γ̄, 𝜈 − 𝑘)∕𝑇𝑚(𝝉𝑘; 𝟎, Γ̄; 𝜈 − 𝑘) for 𝐮 + 𝝉𝑘 > 𝟎, 𝝉𝑘 =

√

(𝜈 − 𝑘)∕𝜈 ⋅ 𝝉, and 𝜈 − 𝑘 > 0. □

Some specific results that emerge from Lemma 1 are the following:
. If ℎ(𝐮) = 1, then 𝑀𝑘(𝝉 , Γ̄, 𝜈) = {𝜈∕(𝜈 − 𝑘)}𝑚∕2 𝑇𝑚(𝝉𝑘; 𝟎, Γ̄, 𝜈 − 𝑘), and so

E

{

( 𝜈 +𝑄𝐔∗

𝜈 + 𝑚

)𝑘∕2}

=
𝑇𝑚(𝝉𝑘; 𝟎, Γ̄, 𝜈 − 𝑘)

𝑇𝑚(𝝉; 𝟎, Γ̄, 𝜈)

( 𝜈
𝜈 + 𝑚

)𝑘∕2 𝑐(𝜈, 𝑚)
𝑐(𝜈 − 𝑘, 𝑚)

( 𝜈
𝜈 − 𝑘

)𝑚∕2
.

In particular, for 𝑘 = 2:

𝜂(𝑄𝐔∗
) = E

( 𝜈 +𝑄𝐔∗

𝜈 + 𝑚

)

=
𝑇𝑚(𝝉𝑘; 𝟎, Γ̄, 𝜈 − 2)

𝑇𝑚(𝝉; 𝟎, Γ̄, 𝜈)

( 𝜈
𝜈 − 2

)( 𝜈 + 𝑚 − 2
𝜈 + 𝑚

)

(11)

⟹ E
(

𝑄𝐔∗

)

=
𝑇𝑚(𝝉𝑘; 𝟎, Γ̄, 𝜈 − 2)

𝑇𝑚(𝝉; 𝟎, Γ̄, 𝜈)
𝑚𝜈
𝜈 − 2

. (12)

he result in (12) gives the expectation of the quadratic form of the truncated multivariate 𝑡 random vector.
. If 𝑘 = 2 and ℎ(𝐮) = 𝐮, then

E
{( 𝜈 +𝑄𝐔∗

𝜈 + 𝑚

)

𝐔∗

}

=
𝑇𝑚(𝝉𝑘; 𝟎, Γ̄, 𝜈 − 2)

𝑇𝑚(𝝉; 𝟎, Γ̄, 𝜈)

( 𝜈
𝜈 − 2

)3∕2 ( 𝜈 + 𝑚 − 2
𝜈 + 𝑚

)

E
(

𝐔𝑘
)

.

3. Similarly, if 𝑘 = 2 and ℎ(𝐮) = 𝐮𝐮⊤, then

E
{( 𝜈 +𝑄𝐔∗

𝜈 + 𝑚

)

𝐔∗𝐔⊤
∗

}

=
𝑇𝑚(𝝉𝑘; 𝟎, Γ̄, 𝜈 − 2)

𝑇𝑚(𝝉; 𝟎, Γ̄, 𝜈)

( 𝜈
𝜈 − 2

)2 ( 𝜈 + 𝑚 − 2
𝜈 + 𝑚

)

E
(

𝐔𝑘𝐔⊤
𝑘
)

.

Now Lemma 1 and these specific cases enable the derivations of the semi-explicit forms of the mean and variance for the SUT,
as well as the expectations E(𝑉∗), E(𝑉∗𝐔∗) and E(𝑉∗𝐔∗𝐔⊤

∗ ), where 𝑉∗ = (𝜈 +𝑄𝐔∗
)∕(𝜈 + 𝑚), required in Section 2.4.

Proposition 2. Let 𝐘 ∼  𝑑,𝑚(𝝃,Ω,∆, 𝝉 , Γ̄, 𝜈). Then:

E(𝐘) = 𝝃 + 𝝎∆Γ̄−1E(𝐔 ), 𝜈 > 1,
5

∗
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Var(𝐘) = 𝝎{∆Γ̄−1Var(𝐔∗)Γ̄−1∆⊤ + 𝜂(𝑄𝐔∗
)(Ω̄ −∆Γ̄∆⊤)}𝝎, 𝜈 > 2,

where 𝑄𝐔∗
is the same as in Proposition 1 and 𝜂(𝑄𝐔∗

) is given in (11).

Proof. Following from Proposition 1, 𝐘 = 𝝃+𝝎𝐙, where 𝐙 = ∆Γ̄−1𝐔∗+
√

(𝜈 +𝑄𝐔∗
)∕(𝜈 + 𝑚) ⋅𝐖∗. Then, E(𝐘) = E

{

𝝃 + 𝝎
(

∆Γ̄−1𝐔∗+
√

(𝜈 +𝑄𝐔∗
)∕(𝜈 + 𝑚) ⋅𝐖∗

)}

= 𝝃 + 𝝎∆Γ̄−1E(𝐔∗) if 𝜈 > 1, indicating that E(𝐙) = 𝝎∆Γ̄−1E(𝐔∗). The variance is Var(𝐘) = Var(𝝎𝐙) =
𝝎Var(𝐙)𝝎, where

Var(𝐙) = ∆Γ̄−1Var(𝐔∗)Γ̄−1∆⊤ + Var
⎛

⎜

⎜

⎝

√

𝜈 +𝑄𝐔∗

𝜈 + 𝑚
𝐖∗

⎞

⎟

⎟

⎠

+∆Γ̄−1Cov
⎛

⎜

⎜

⎝

𝐔∗,

√

𝜈 +𝑄𝐔∗

𝜈 + 𝑚
𝐖∗

⎞

⎟

⎟

⎠

+ Cov
⎛

⎜

⎜

⎝

√

𝜈 +𝑄𝐔∗

𝜈 + 𝑚
𝐖∗,𝐔∗

⎞

⎟

⎟

⎠

Γ̄∆⊤.

Here,

Cov
⎛

⎜

⎜

⎝

𝐔∗,

√

𝜈 +𝑄𝐔∗

𝜈 + 𝑚
𝐖∗

⎞

⎟

⎟

⎠

= E
⎛

⎜

⎜

⎝

𝐔∗

√

𝜈 +𝑄𝐔∗

𝜈 + 𝑚
𝐖⊤

∗

⎞

⎟

⎟

⎠

− E
(

𝐔∗
)

E
⎛

⎜

⎜

⎝

√

𝜈 +𝑄𝐔∗

𝜈 + 𝑚
𝐖∗

⎞

⎟

⎟

⎠

⊤

= E
⎛

⎜

⎜

⎝

𝐔∗

√

𝜈 +𝑄𝐔∗

𝜈 + 𝑚

⎞

⎟

⎟

⎠

E(𝐖∗)⊤ − E(𝐔∗)E
⎛

⎜

⎜

⎝

√

𝜈 +𝑄𝐔∗

𝜈 + 𝑚

⎞

⎟

⎟

⎠

E(𝐖∗)⊤

= 𝟎.

Now, if 𝜈 > 2, we then have

Var
⎛

⎜

⎜

⎝

√

𝜈 +𝑄𝐔∗

𝜈 + 𝑚
𝐖∗

⎞

⎟

⎟

⎠

= E
( 𝜈 +𝑄𝐔∗

𝜈 + 𝑚
𝐖∗𝐖⊤

∗

)

− E
⎛

⎜

⎜

⎝

√

𝜈 +𝑄𝐔∗

𝜈 + 𝑚
𝐖∗

⎞

⎟

⎟

⎠

E
⎛

⎜

⎜

⎝

√

𝜈 +𝑄𝐔∗

𝜈 + 𝑚
𝐖∗

⎞

⎟

⎟

⎠

⊤

= E
( 𝜈 +𝑄𝐔∗

𝜈 + 𝑚

)

E(𝐖∗𝐖⊤
∗ ) = 𝜂(𝑄𝐔∗

)(Ω̄ −∆Γ̄−1∆⊤),

here 𝜂(𝑄𝐔∗
) = E

{

(𝜈 +𝑄𝐔∗
)∕(𝜈 + 𝑚)

}

is computed by letting 𝑘 = 2 in Lemma 1 as indicated in (11). □

The mean vector E(𝐔∗) and covariance matrix Var(𝐔∗) for the truncated multivariate 𝑡 distribution of 𝐔∗ = (𝐔0|𝐔0 + 𝝉 > 𝟎),
ith 𝐔0 ∼ 𝑚(𝟎, Γ̄, 𝜈), can be computed numerically using methods similar to Arellano-Valle et al. [7]. Two R packages allow for

omputations of the first and second moments of the SUT random vector, mnormt [16] and MomTrunc [20].

.4. Higher-order moments

Explicit higher-order moments of the non-shifted SUT random vector, 𝝎𝐙, can be computed in the same way that the moments
or the SUN are computed (see details in Proposition A.4 in the Appendix of Arellano-Valle and Azzalini [5]).

roposition 3. Let 𝐗 = 𝝎𝐙 ∼  𝑑,𝑚(𝟎,Ω,∆, 𝝉 , Γ̄, 𝜈) and hence, 𝐗 = 𝐀𝐔 + 𝐁𝐕 with

𝐀 = 𝝎∆Γ̄−1, 𝐔 = 𝐔∗, 𝐁 = 𝝎, 𝐕 = 𝑉 1∕2
∗ 𝐖∗, 𝑉∗ =

𝜈 +𝑄𝐔∗

𝜈 + 𝑚
,

here (𝐔∗, 𝑉∗) and 𝐖∗ are independent and defined in Proposition 1 along with 𝑄𝐔∗
. Then:

E(𝐗⊗ 𝐗𝐗⊤) =(𝐀⊗ 𝐀)𝜇3(𝐔)𝐀⊤ + (𝐈𝑑2 +𝐊𝑑 )(𝐀⊗ 𝐁)
{

E(𝑉∗𝐔)⊗ 𝜇2(𝐖∗)
}

𝐁⊤ + (𝐁⊗ 𝐁)vec{𝜇2(𝐖∗)}E(𝑉∗𝐔⊤)𝐀⊤,

E(𝐗𝐗⊤ ⊗ 𝐗𝐗⊤) =(𝐀⊗ 𝐀)𝜇4(𝐔)(𝐀⊗ 𝐀)⊤

+ (𝐀⊗ 𝐁){E(𝑉∗𝐔𝐔⊤)⊗ 𝜇2(𝐖∗)}(𝐀⊤ ⊗ 𝐁⊤) + (𝐀⊗ 𝐁){E(𝑉∗𝐔𝐔⊤)⊗ 𝜇2(𝐖∗)}(𝐀⊤ ⊗ 𝐁⊤)𝐊𝑑

+ 𝐊𝑑 (𝐀⊗ 𝐁){E(𝑉∗𝐔𝐔⊤)⊗ 𝜇2(𝐖∗)}(𝐀⊤ ⊗ 𝐁⊤) +𝐊𝑑 (𝐀⊗ 𝐁){E(𝑉∗𝐔𝐔⊤)⊗ 𝜇2(𝐖∗)}(𝐀⊤ ⊗ 𝐁⊤)𝐊𝑑

+ (𝐀⊗ 𝐀)vec{E(𝑉∗𝐔𝐔⊤)}vec{𝜇2(𝐖∗)}⊤(𝐁⊤ ⊗ 𝐁⊤) + (𝐁⊗ 𝐁)vec{𝜇2(𝐖∗)}vec{E(𝑉∗𝐔𝐔⊤)}⊤(𝐀⊤ ⊗ 𝐀⊤)

+ (𝐁⊗ 𝐁)𝜇2(𝑉∗)𝜇4(𝐖∗)(𝐁⊤ ⊗ 𝐁⊤),

here 𝜇𝑘(⋅) represents the 𝑘th multivariate moment of the indicated variable and 𝐊𝑑 is the commutation matrix of order 𝑑 × 𝑑.

roof. Since 𝐗 = 𝐀𝐔 + 𝐁𝐕, the results above can be obtained by directly applying the formula obtained in Proposition A.4
n Arellano-Valle and Azzalini [5]. In this way, although in our case the vectors 𝐔 = 𝐔∗ and 𝐕 = 𝑉 1∕2

∗ 𝐖∗ are not independent
ince 𝑉∗ depends on 𝐔∗ through 𝑄𝐔∗

, the moments up to the fourth order can be calculated directly from the proof of Proposition
.4 in Arellano-Valle and Azzalini [5].

In fact, for those expectations involving the function 𝑉∗ of the truncated vector 𝐔 = 𝐔∗, we must first use Lemma 1 and then the
rocedures proposed in the literature for the calculation of truncated moments under the multivariate 𝑡 distribution (see specific
ases 1, 2 and 3 after Lemma 1). The moments that involve the variable 𝐕 = 𝐖∗ are obtained in a similar way to what has been

−1∕2
6

ndicated in Section 2.5 with 𝐖∗ = 𝑉 𝐙0, where 𝑉 ∼ 𝑎𝑚𝑚𝑎(𝜈∕2, 𝜈∕2) and 𝐙0 ∼ 𝑑 (𝟎,Ω), and they are independent. □
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We calculate only the third and fourth moments because the first and second can be obtained directly through the mean and
ariance computed in Section 2.3. For the shifted SUT random vector, 𝐘, the detailed calculations of the moments are provided in
quations (A.5)-(A.8) in the Appendix of Arellano-Valle and Azzalini [5].

.5. SUN-scale mixtures

.5.1. SUN-scale mixture representation
Gupta [22] has shown that the skew-𝑡 (ST) distribution can be represented as a skew-normal (SN) scale mixture. Here, we show

hat the SUT distribution has a similar scale mixture representation concerning the SUN distribution under the condition that the
ector of truncation parameters 𝝉 = 𝟎.

roposition 4. Let 𝐘 ∼  𝑑,𝑚(𝝃,Ω,∆, 𝟎, Γ̄, 𝜈). Then,

𝐘 = 𝝃 + 𝑉 −1∕2𝐙0, (13)

where 𝑉 ∼ 𝑎𝑚𝑚𝑎(𝜈∕2, 𝜈∕2) and 𝐙0 ∼  𝑑,𝑚(𝟎,Ω,∆, 𝟎, Γ̄) are independent.

Proof. Similar to the SUT case, we refer to the stochastic representation for the SUN random vector, 𝐙0
𝑑
= (𝝎𝐔1|𝐔0 > 𝟎), where

ccording to the definition of SUN distribution from Arellano-Valle and Azzalini [4], we have that (𝐔⊤
0 ,𝐔

⊤
1 )

⊤ follows the distribution
n (3). Then:

𝝃 + 𝑉 −1∕2𝐙0 = 𝝃 + 𝑉 −1∕2 (𝝎𝐔1|𝐔0 > 𝟎
)

= 𝝃 + (𝑉 −1∕2𝝎𝐔1|𝐔0 > 𝟎)

= 𝝃 + (𝑉 −1∕2𝐔̃|𝑉 −1∕2𝐔0 > 𝟎), (14)

here in (14) we applied the independence assumption between 𝑉 and 𝐙0; the independence assumption is extended to (𝑉 , 𝐔̃) and
(𝑉 ,𝐔0) for the conditioning mechanism. Also, we used the fact that 𝑉 −1∕2 > 0 with probability 1. Lastly, we have

𝑉 −1∕2
(

𝐔0
𝐔̃

)

∼ 𝑚+𝑑
((

𝟎
𝟎

)

,
(

Γ̄ ∆⊤𝝎
𝝎∆ Ω

)

, 𝜈
)

.

Therefore, (14) yields a SUT random vector 𝐘 according to the stochastic representation (8) in Section 2. □

An immediate consequence of the SUN-scale mixture property is that it enables retrieval of the SUN random vector through
conditioning.

Corollary 1. Let 𝐘 ∼  𝑑,𝑚(𝝃,Ω,∆, 𝟎, Γ̄, 𝜈) and consider the SUN-scale representation presented in Proposition 4. Then, for any 𝑣 > 0,

(𝐘|𝑉 = 𝑣) ∼  𝑑,𝑚
(

𝝃, 𝑣−1Ω, 𝑣−1∕2∆, 𝟎, Γ̄
)

.

Proof. Using the representation in (13), we have

(𝐘|𝑉 = 𝑣) =
(

𝝃 + 𝑉 −1∕2𝐙0|𝑉 = 𝑣
)

= 𝝃 + 𝑣−1∕2𝐙0,

which follows a  𝑑,𝑚
(

𝝃, 𝑣−1Ω, 𝑣−1∕2∆, 𝟎, Γ̄
)

distribution. □

Finally, we would like to remark that, according to the selection approach used in the definition of the SUT, the restriction
𝝉 = 𝟎 is imperative in Proposition 4 and Corollary 1 because we need the random vector 𝑉 −1∕2𝐔0, as indicated in (14), in the
given condition of the selection representation to formulate a multivariate 𝑡 distribution. If 𝝉 ≠ 𝟎, we would have a multivariate 𝑡
random vector plus a scaled Gamma random vector, which is inconsistent with the setting of the selection representation of a SUT
distribution.

2.5.2. SUN-scale mixture-based methods for the moments
Semi-explicit moments can be derived through the SUN-scale mixture representation obtained in Section 2.5.1.

Proposition 5. Let 𝐘 = 𝑉 −1∕2𝐙0 ∼  𝑑,𝑚(𝟎,Ω,∆, 𝟎, Γ̄, 𝜈), where 𝑉 ∼ 𝑎𝑚𝑚𝑎(𝜈∕2, 𝜈∕2) and 𝐙0 ∼  𝑑,𝑚(𝟎,Ω,∆, 𝟎, Γ̄) are
independent. Then, 𝜇𝑖(𝐘) = 𝜇𝑖(𝑉 −1∕2)𝜇𝑖(𝐙0), 𝑖 ∈ {1,… , 4} exist in semi-explicit forms, provided that 𝜇𝑖(𝑉 −1∕2) is finite.

Proof. In the above setting:

𝜇1(𝐘) = E(𝐘) = E(𝑉 −1∕2𝐙0) = E(𝑉 −1∕2)E(𝐙0) = 𝑀1𝜇1(𝐙0).

Here 𝜇𝑖(𝐙0), 𝑖 = 1,… , 4, indicate the multivariate moments of the SUN random vector 𝐙0 with explicit forms up to the fourth order as
computed in Arellano-Valle and Azzalini [5]. The existence and computation of 𝑀1 = E(𝑉 −1∕2) and the corresponding higher-order
7

moments 𝑀2,𝑀3, and 𝑀4 are well known; see, e.g., Rohatgi and Ehsanes Saleh [33], p. 212. Indeed, let 𝑋 ∼ 𝑎𝑚𝑚𝑎(𝛼, 𝛽). Then,
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the moments for 𝑋 are E(𝑋𝑘) = 𝛽𝑘𝛤 (𝑘 + 𝛼)∕𝛤 (𝛼), 𝑘 + 𝛼 > 0. The variance of the SUT random vector 𝐘 can be constructed through
the second moments:

𝜇2(𝐘) = E(𝐘𝐘⊤) = E(𝑉 −1𝐙0𝐙⊤
0 ) = E(𝑉 −1)E(𝐙0𝐙⊤

0 ) = 𝑀2𝜇2(𝐙0).

Therefore, Var(𝐘) = 𝜇2(𝐘) − 𝜇1(𝐘)𝜇1(𝐘)⊤. Higher-order moments of 𝐘 can also be obtained using similar approaches. For instance,
the third moment is

𝜇3(𝐘) = E(𝐘⊗ 𝐘𝐘⊤) = E(𝑉 −3∕2𝐙0 ⊗ 𝐙0𝐙⊤
0 ) = E(𝑉 −3∕2)E(𝐙0 ⊗ 𝐙0𝐙⊤

0 ) = 𝑀3𝜇3(𝐙0),

and the fourth moment is

𝜇4(𝐘) = E(𝐘𝐘⊤ ⊗ 𝐘𝐘⊤) = E(𝑉 −2𝐙0𝐙⊤
0 ⊗ 𝐙0𝐙⊤

0 ) = E(𝑉 −2)E(𝐙0𝐙⊤
0 ⊗ 𝐙0𝐙⊤

0 ) = 𝑀4𝜇4(𝐙0). □

For all of the moments computed above, we set 𝝃 = 𝟎 to avoid the tedious polynomial expansions involved in the higher-
order moments so that we can lay down the foundations for the moments of the shifted random vector. Therefore, the condition
𝝃 = 𝟎 is not a restriction. The moments can be exactly computed by recognizing that the shifted random vector is 𝐘̃ = 𝝃 + 𝐘 ∼
 𝑑,𝑚(𝝃,Ω,∆, 𝟎, Γ̄, 𝜈) and by applying the expansions used in Equations (A.5)-(A.8) in Arellano-Valle and Azzalini [5] together
with the moments computed above.

3. Linear transformations and quadratic forms

3.1. Linear transformations

To start, we describe the properties of linear transformations of the SUT random vector.

Proposition 6. Let 𝐘 ∼  𝑑,𝑚(𝝃,Ω,∆, 𝝉 , Γ̄, 𝜈). The linear transformation 𝐘𝐀 = 𝐀𝐘+𝐛, where 𝐀 ∈ R𝑛×𝑑 with rank 𝑛 ≤ 𝑑 and 𝐛 ∈ R𝑛,
follows a  𝑛,𝑚(𝝃𝐀,Ω𝐀,∆𝐀, 𝝉 , Γ̄, 𝜈) with 𝝃𝐀 = 𝐀𝝃 + 𝐛, Ω𝐀 = 𝐀Ω𝐀⊤, and ∆𝐀 = 𝝎−1

𝐀 𝐀𝝎∆, where 𝝎𝐀 = diag(Ω𝐀)1∕2.

Proof. Following from the assumption in the proposition,

𝐘𝐀 = 𝐀𝐘 + 𝐛 = 𝐀(𝝃 + 𝝎𝐙0) + 𝐛 = 𝝃𝐀 + 𝐀𝝎𝐙0 = 𝝃𝐀 + (𝐔𝐀
1 |𝐔0 + 𝝉 > 𝟎), (15)

where 𝐔𝐀
1 = 𝐀𝝎𝐔1. From (15), the random vector

(

𝐔0
𝐔𝐀
1

)

∼ 𝑚+𝑛
((

𝟎
𝟎

)

,
(

Γ̄ ∆⊤𝝎𝐀⊤

𝐀𝝎∆ 𝐀Ω𝐀⊤

)

, 𝜈
)

= 𝑚+𝑛
((

𝟎
𝟎

)

,
(

Γ̄ ∆⊤
𝐀𝝎𝐀

𝝎𝐀∆𝐀 Ω𝐀

)

, 𝜈
)

.

gain, by the stochastic representation (8), 𝐘𝐀 follows a SUT distribution with transformed parameters as specified above. □

Similar to the SUN distribution, the latent parameters 𝝉 and Γ̄ of a SUT distribution remain unchanged under linear transfor-
ations. Moreover, the degrees-of-freedom parameter remains unchanged too. With the general linear transformation property, we

an formulate a series of propositions involving additivity, marginal distributions, and canonical form.

.1.1. Marginal distribution
In this section, we show that the marginals of a SUT distribution still follow a SUT distribution. For this purpose, we assume

hat the random vector 𝐘 ∼  𝑑,𝑚(𝝃,Ω,∆, 𝝉 , Γ̄, 𝜈) can be partitioned as

𝐘 =
(

𝐘1
𝐘2

)

∼  𝑑1+𝑑2 ,𝑚

((

𝝃1
𝝃2

)

,
(

Ω11 Ω12
Ω21 Ω22

)

,
(

∆1
∆2

)

, 𝝉 , Γ̄, 𝜈
)

, (16)

here 𝐘𝑖 ∈ R𝑑𝑖 , 𝝃𝑖 ∈ R𝑑𝑖 , Ω𝑖𝑗 ∈ R𝑑𝑖×𝑑𝑗 , 𝝎𝑖 = diag(Ω𝑖𝑖)1∕2, Ω̄𝑖𝑗 = 𝝎−1
𝑖 Ω𝑖𝑗𝝎−1

𝑗 and ∆𝑖 ∈ R𝑑𝑖×𝑚, for 𝑖, 𝑗 ∈ {1, 2}, such that 𝑑1 + 𝑑2 = 𝑑.

roposition 7. Let 𝐘 ∼  𝑑,𝑚(𝝃,Ω,∆, 𝝉 , Γ̄, 𝜈). Then, the marginal random vector 𝐘𝑖 ∼  𝑑𝑖 ,𝑚(𝝃𝑖,Ω𝑖𝑖,∆𝑖, 𝝉 , Γ̄, 𝜈), for 𝑖 ∈ {1, 2}.

roof. Consider the marginal random vector 𝐘1 = 𝐀1𝐘, where 𝐀1 = (𝐈𝑑1 , 𝟎) denotes the projection matrix on the first 𝑑1 coordinates.
fter applying the properties of linear transformations derived in Proposition 6, it follows that 𝐘1 ∼  𝑑1 ,𝑚(𝝃1,Ω11,∆1, 𝝉 , Γ̄, 𝜈)
ecause 𝐀1𝝃 = 𝝃1, 𝐀1Ω𝐀⊤

1 = Ω11, and 𝝎−1
𝐀1
𝐀1𝝎∆ = 𝝎−1

1 𝝎1∆1 = ∆1, where Ω̄11 = 𝝎−1
1 Ω1𝝎−1

1 . Analogously, one obtains the
istribution of 𝐘2 = 𝐀2𝐘 ∼  𝑑2 ,𝑚(𝝃2,Ω22,∆2, 𝝉 , Γ̄, 𝜈), with 𝐀2 = (𝟎, 𝐈𝑑2 ). □

Note from Proposition 1 that each marginal can be represented stochastically as

𝐘𝑖 = 𝝃𝑖 + 𝝎𝑖𝐙𝑖, 𝐙𝑖 = ∆𝑖Γ̄
−1𝐔∗ +

√

𝜈 +𝑄𝐔∗ 𝐖∗𝑖, 𝑖 ∈ {1, 2},
8

𝜈 + 𝑚



Journal of Multivariate Analysis 203 (2024) 105322K. Wang et al.

s

a

3

h

P

T
𝝎

P
𝐀

s
a
o
𝐘

o
(
d
𝐙
a

w

𝐘
∆

P

where 𝐖∗𝑖 = 𝐀𝑖𝐖∗ ∼ 𝑑𝑖 (𝟎, Ω̄𝑖𝑖 −∆𝑖Γ̄
−1∆𝑖

⊤, 𝜈) is independent of 𝐔∗. From this result it is clear that if ∆𝑖 = 𝟎, then 𝐘𝑖 will have a
ymmetric distribution, which becomes a multivariate 𝑡 when 𝝉 = 𝟎. Moreover, provided that the required moments exist, we have:

Cov(𝐘1,𝐘2) = 𝝎1Cov(𝐙1,𝐙2)𝝎2 = 𝝎1Cov
⎛

⎜

⎜

⎝

∆1Γ̄
−1𝐔∗ +

√

𝜈 +𝑄𝐔∗

𝜈 + 𝑚
𝐖∗1,∆2Γ̄

−1𝐔∗ +

√

𝜈 +𝑄𝐔∗

𝜈 + 𝑚
𝐖∗2

⎞

⎟

⎟

⎠

𝝎2

= 𝝎1∆1Γ̄
−1Var(𝐔∗)Γ̄−1∆⊤

2𝝎2 + 𝜂(𝑄𝐔∗
)𝝎1Cov(𝐖∗1,𝐖∗2)𝝎2,

where 𝜂(𝑄𝐔∗
) is defined in (11). We can then conclude that Cov(𝐘1,𝐘2) = 𝟎 if any of the following conditions are met: (i) ∆1 = 𝟎

and Cov(𝐖∗1,𝐖∗2) = 𝟎; or (ii) ∆2 = 𝟎 and Cov(𝐖∗1,𝐖∗2) = 𝟎. Since Cov(𝐖∗1,𝐖∗2) =
𝜈

𝜈−2

(

Ω̄12 −∆1Γ̄
−1∆2

⊤), it follows that 𝐘1
nd 𝐘2 are uncorrelated under the condition that Ω̄12 = 𝟎 and either ∆1 = 𝟎 or ∆2 = 𝟎.

.1.2. Additivity
A specific case of the linear transformation is the additivity of the marginals 𝐘 = (𝐘⊤

1 ,𝐘
⊤
2 )

⊤, where 𝐘1 ∈ R𝑑 and 𝐘2 ∈ R𝑑 . We
ave the following proposition.

roposition 8. Let 𝐘1 ∈ R𝑑 and 𝐘2 ∈ R𝑑 be two random vectors with joint distribution:
(

𝐘1
𝐘2

)

∼  𝑑+𝑑,𝑚

((

𝝃1
𝝃2

)

,
(

Ω11 Ω12
Ω21 Ω22

)

,
(

∆1
∆2

)

, 𝝉 , Γ̄, 𝜈
)

. (17)

hen 𝐘1 + 𝐘2 is  𝑑,𝑚(𝝃+,Ω+,∆+, 𝝉 , Γ̄, 𝜈) with 𝝃+ = 𝝃1 + 𝝃2, Ω+ = Ω11 + Ω22 + Ω12 + Ω21, 𝝎+ = diag(Ω+)1∕2, ∆+ =
−1
+

(

𝝎1∆1 + 𝝎2∆2
)

where Ω+ = 𝝎+Ω̄+𝝎+, Ω11 = 𝝎1Ω̄11𝝎1, and Ω22 = 𝝎2Ω̄22𝝎2.

roof. The derivation for the additivity is through the properties of linear transformations demonstrated in Proposition 6. If we let
= (𝐈𝑑 , 𝐈𝑑 ) and 𝐛 = 𝟎, then

𝝃+ = 𝐀
(

𝝃1
𝝃2

)

= 𝝃1 + 𝝃2, Ω+ = 𝐀
(

Ω11 Ω12
Ω21 Ω22

)

𝐀⊤ = Ω11 +Ω22 +Ω12 +Ω21,

∆+ = 𝝎−1
+ 𝐀

(

𝝎1 𝟎
𝟎 𝝎2

)(

∆1
∆2

)

= 𝝎−1
+

(

𝝎1∆1 + 𝝎2∆2
)

. □

Therefore, the sum of two SUT random vectors still follows a SUT distribution provided that their joint distribution has the
tructure indicated in (17). However, unlike the SUN distribution, in which the sum of any two independent SUN random vectors
re closed under the same distribution, the assumption that (𝐘⊤

1 ,𝐘
⊤
2 )

⊤ follows a SUT distribution is needed [11]. Thus, only the sum
f the marginals of a SUT random vector is closed under the same distribution. Some conditions to have a null correlation between
1 and 𝐘2 are given in the previous subsection. For instance, this fact holds if Ω12 = 𝟎 and ∆1 = 𝟎 or ∆2 = 𝟎.

However, uncorrelation of the marginals is not guaranteed for finite values of 𝜈 if ∆1 ≠ 𝟎 and ∆2 ≠ 𝟎, because the truncation
peration introduces correlation between the corresponding marginals through 𝐔∗. In fact, consider (𝐘⊤

1 ,𝐘
⊤
2 )

⊤ partitioned as in
17) and, additionally, assume that Ω12 = 𝟎, ∆1 = (∆11 𝟎), ∆2 = (𝟎 ∆22) and Γ̄ = diag(Γ̄11, Γ̄22), with respective latent
imensions 𝑚1 and 𝑚2 (𝑚 = 𝑚1 + 𝑚2), and 𝝉 = 𝟎. So, by Proposition 4, we have 𝐘𝑖 = 𝝃𝑖 + 𝑉 −1∕2𝐙𝑖, where 𝑉 ∼ 𝑎𝑚𝑚𝑎(𝜈∕2, 𝜈∕2) and
𝑖 ∼  𝑑,𝑚𝑖

(𝟎,Ω𝑖𝑖,∆𝑖𝑖, 𝟎, Γ̄𝑖𝑖), for 𝑖 ∈ {1, 2}. Here 𝑉 is independent with respect to each 𝐙𝑖 and, by Appendix B in Arellano-Valle
nd Azzalini [4], 𝐙1 and 𝐙2 are independent as well. Thus, we end up with

Cov(𝐘1,𝐘2) = (𝑀2 −𝑀2
1 ) E(𝐙1)E(𝐙2),

here 𝑀1 = E(𝑉 −1∕2) =
√

(𝜈∕2)𝛤 {(𝜈 − 1)∕2}∕𝛤 (𝜈∕2) and 𝑀2 = E(𝑉 −1) = 𝜈∕(𝜈 − 2). By equation (8) in Arellano-Valle and Azzalini
[5], E(𝐙𝑖) only vanishes if ∆𝑖𝑖 = 𝟎. Moreover, lim𝜈→∞(𝑀2 −𝑀2

1 ) = 0, so that 𝐘1 and 𝐘2 are uncorrelated only in the limiting case,
i.e., when 𝜈 → ∞, which brings us back to the SUN case.

3.1.3. Canonical form
An interesting result based on Proposition 1 is the formulation of the canonical form [17] of a SUT random vector. The canonical

form moves all of the skewness of a SUT random vector toward the first component, leaving the remaining components symmetric.

Proposition 9. Let 𝐘 ∼  𝑑,𝑚(𝝃,Ω,∆, 𝝉 , Γ̄, 𝜈) be partitioned as (Y1,𝐘⊤
2 )

⊤ with 𝑚 ≥ 2 and 𝑑 ≥ 𝑚 + 2, where Y1 ∈ R and
2 ∈ R𝑑−1. Then, the representation in Proposition 1 with ∆ = (∆⊤

1 ,∆
⊤
2 )

⊤ and ∆2 = 𝟎 results in the canonical form, where ∆1 ∈ R𝑚 and
2 ∈ R(𝑑−1)×𝑚.

roof. Using the results from Proposition 1, we have 𝐘 = 𝝃 + 𝝎
{

𝐁0𝐔∗ +
√

(𝜈 +𝑄𝐔∗
)∕(𝜈 + 𝑚) ⋅𝐖∗

}

and

(

Y1
𝐘2

)

= 𝝃 + 𝝎
⎧

⎪

⎨

⎪

(

∆1Γ̄
−1

𝟎

)

𝐔∗ +

√

𝜈 +𝑄𝐔∗

𝜈 + 𝑚
𝐖∗

⎫

⎪

⎬

⎪

. (18)
9

⎩ ⎭
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In (18), the truncated 𝑡 random vector is only distributed to the first component Y1 and the quantity is ∆Γ̄−1𝐔∗. The (𝑑 − 1) × 𝑚
zero matrix ∆2 annihilates the skewness in 𝐘2. Therefore, Y1 is a univariate SUT random variable and 𝐘2 ∈ R𝑑−1 is a symmetric
multivariate random vector of the form

√

(𝜈 +𝑄𝐔∗
)∕(𝜈 + 𝑚)⋅𝐖∗2, where 𝐖∗ = (W∗1,𝐖⊤

∗2)
⊤. As mentioned in the previous subsection,

we note that
√

(𝜈 +𝑄𝐔∗
)∕(𝜈 + 𝑚) ⋅𝐖∗2 will be a multivariate 𝑡 when 𝝉 = 𝟎. □

With Propositions 6 and 9, it is possible to construct the canonical (linear) transformation matrix 𝐀 = 𝐂 = (𝐂⊤
1 ,𝐂

⊤
2 )

⊤ for the
egular SUT random vector 𝐘, where 𝐂1 ∈ R𝑑 and 𝐂2 ∈ R(𝑑−1)×𝑑 such that 𝐂2∆ = 𝟎, so that 𝐂𝐘 has the canonical form. Note that the
anonical transformation matrix 𝐂 requires the column space of ∆ to be a subspace of the null space of 𝐂2. Hence, the canonical
ransformation does not always exist. This result is different from the SN and ST families, for which the canonical form always
xists [17], and which, setting 𝑚 = 1, is equivalent to  𝑑,1 or  𝑑,1. The assured existence of the canonical transformation
or the SN family is due to the fact that it is always possible to construct a transformation matrix with one-dimensional null space.
n the SUT case (𝑚 ≥ 2), the matrix ∆ ∈ R𝑑×𝑚. Hence, rank(∆) ≤ min(𝑑, 𝑚). The null space for 𝐂2 ∈ R(𝑑−1)×𝑑 is at most (𝑑 − 2)-
imensional. Hence, we need 𝑚 ≤ 𝑑 − 2 in order for the canonical transformation to exist. Thus, for example, there is no canonical
orm for 𝑑 = 3 and 𝑚 = 2. The canonical form and transformation for the SUN are obtained when 𝜈 → ∞.

.2. Quadratic forms

Arellano-Valle and Genton [9] have systematically explored the conditions for which the invariance property of the quadratic
orm holds for selection distributions. The main motivation was to find the condition that makes the two random vectors in
he selection representation uncorrelated and therefore, the conditional cumulative distribution on the latent selection variable
s identical to the unconditional cumulative distribution of the component given identical support. Following this approach, in this
ection we compute the quadratic form of the SUT random vector and explore the required conditions that establish the invariance
roperty for the SUT.

According to Arellano-Valle et al. [6], one of the main properties of selection distributions is: if 𝐙 = (𝐔1|𝐔0 ∈ 𝐶) then
(𝐙) = (𝑔(𝐔1)|𝐔0 ∈ 𝐶) for every measurable function 𝑔 ∶ R𝑑 → R𝑝. It follows that, for example, if the distribution of 𝐔1 is closed
nder linear transformations then the distribution of 𝐙 is also closed. Note that if 𝑔(𝐔1) and 𝐔0 are uncorrelated (which can happen
hen (𝐔0,𝐔1) is symmetric about the origin and 𝑔(⋅) is an even function), then we may have that Pr(𝐔0 ∈ 𝐶|𝑔(𝐔1) = 𝐱) = Pr(𝐔0 ∈ 𝐶).

With the aforementioned framework and property, we provide detailed steps to calculate the pdf of quadratic forms in SUT
andom vectors.

roposition 10. Let 𝐘 ∼  𝑑,𝑚(𝝃,Ω,∆, 𝝉 , Γ̄, 𝜈). The quadratic form 𝑄𝐘 = (𝐘 − 𝝃)⊤Ω−1(𝐘 − 𝝃) has pdf

𝑓𝑄𝐘
(𝑣) = 𝑓𝑄𝐔1

(𝑣)
Pr(𝐔∗

0 < Λ𝐔1 + 𝝉|𝑄𝐔1
= 𝑣)

Pr(𝐔∗
0 < Λ𝐔1 + 𝝉)

,

here 𝑄𝐔1
= 𝐔⊤

1 Ω̄
−1𝐔1 with pdf 𝑓𝑄𝐔1

(𝑣) and Λ = ∆⊤Ω̄−1.

roof. Consider the stochastic representation 𝐘 = 𝝃 + 𝝎𝐙0, where 𝐙0 = (𝐔1|𝐔0 + 𝝉 > 𝟎) and note that 𝑄𝐘 = 𝑄𝐙0
= 𝐙⊤

0 Ω̄
−1𝐙0. Then:

𝑄𝐙0
=
(

𝐔⊤
1 Ω̄

−1𝐔1|𝐔0 + 𝝉 > 𝟎
)

=
(

𝐔⊤
1 Ω̄

−1𝐔1|𝐔∗
0 < Λ𝐔1 + 𝝉

)

=
(

𝑄𝐔1
|𝐔∗

0 < Λ𝐔1 + 𝝉
)

,

here 𝐔∗
0 = Λ𝐔1 − 𝐔0, which is uncorrelated with 𝐔1 (see (10)). Hence, the pdf of the quadratic form has the form stated. □

To compute the conditional probability Pr(𝐔∗
0 < Λ𝐔1 + 𝝉|𝑄𝐔1

= 𝑣), we need two well-known results from Fang et al. [19]. First,
f 𝐗1 and 𝐗2 are jointly elliptical and uncorrelated, that is (𝐗⊤

1 ,𝐗
⊤
2 )

⊤ ∼ 𝑑1+𝑑2 (𝝁,Σ, ℎ) with location parameter 𝝁 = (𝝁⊤
1 ,𝝁

⊤
2 )

⊤,
ispersion matrix Σ = diag(Σ11,Σ22), and density generator function ℎ, then (𝐗1|𝐗2) = (𝐗1|𝑄𝐗2

) and (𝐗2|𝐗1) = (𝐗2|𝑄𝐗1
), where

𝐗1
= 𝐗⊤

1Σ
−1
11𝐗1 and 𝑄𝐗2

= 𝐗⊤
2Σ

−1
22𝐗2. Second, it is well known that 𝐖1 = 𝑄−1∕2

𝐗1
Σ

−1∕2
11 𝐗1 is a uniform random vector on the unit

phere of R𝑑1 (denoted usually by 𝐔(𝑑1)) and that it is independent of 𝑄𝐗1
and of 𝑄−1∕2

𝐗1
𝐗2. Applying these two results, we have:

Pr(𝐔∗
0 < Λ𝐔1 + 𝝉|𝑄𝐔1

= 𝑣) = E𝐖1
{Pr(𝐓∗ < Λ̄𝐖1 + 𝝉𝑣|𝐖1, 𝑄𝐔1

= 𝑣)},

where 𝐓∗ = 𝑄−1∕2
𝐔1

𝐔∗
0, Λ̄ = ΛΩ̄1∕2, 𝝉𝑣 = 𝑣−1∕2𝝉, Υ = Γ̄ − ∆⊤Ω̄−1∆, and 𝐖1 = 𝑄−1∕2

𝐔1
Ω̄−1∕2𝐔1. Note that, by the first result,

𝐔∗
0|𝑄𝐔1

= 𝑣) ∼ 𝑚(𝟎, 𝛼𝜈,𝑣Υ, 𝜈 + 𝑑). Therefore, (𝐓∗|𝑄𝐔1
= 𝑣) ∼ 𝑚(𝟎, 𝑣−1𝛼𝜈,𝑣Υ, 𝜈 + 𝑑) and so Pr(𝐔∗

0 < Λ𝐔1 + 𝝉|𝑄𝐔1
= 𝑣) =

𝐖1
{𝑇𝑚(Λ̄𝐖1 + 𝝉𝑣; 𝑣−1𝛼𝜈,𝑣Υ, 𝜈 + 𝑑)}. Consequently,

𝑓𝑄𝐘
(𝑣) = 𝑓𝑄𝐔1

(𝑣)
E𝐖1

{𝑇𝑚(Λ̄𝐖1 + 𝝉𝑣; 𝑣−1𝛼𝜈,𝑣Υ, 𝜈 + 𝑑)}

𝑇𝑚(𝝉; Γ̄, 𝜈)
.

In the pdf above, 𝑄𝐔1
does not have a closed form because, even though the square of a 𝑡 random variable follows an 𝐹 -

distribution, the sum of 𝐹 random variables does not yield a random variable with an explicit pdf. Moreover, because E𝐖1
{𝑇𝑚(Λ̄𝐖1+

𝝉𝑣; 𝑣−1𝛼𝜈,𝑣Υ, 𝜈 + 𝑑)} and 𝑇𝑚(𝝉; Γ̄, 𝜈) must be computed numerically, the computation of 𝑓𝑄𝐘
(𝑣) has to rely on numerical methods.

Another interesting point is that if Λ̄ = 𝟎 and 𝝉𝑣 = 𝟎, hence ∆ = 𝟎 and 𝝉 = 𝟎, then E𝐖1
{𝑇𝑚(Λ̄𝐖1 + 𝝉𝑣; 𝑣−1𝛼𝜈,𝑣Υ, 𝜈 + 𝑑)} =

−1 ̄ ̄ ∗
10

𝑇𝑚(𝟎; 𝑣 𝛼𝜈,𝑣Γ, 𝜈 + 𝑑) = 𝑇𝑚(𝟎; 𝛼𝜈,𝑣Γ, 𝜈 + 𝑑) = Pr(𝐔0 < 𝟎|𝐔1). Furthermore, according to Fang et al. [19], if the marginals of the joint
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Λ

u

elliptical distribution are uncorrelated then Pr(𝐔∗
0 < 𝟎|𝐔1) = Pr(𝐔∗

0 < 𝟎) = 𝛷𝑚(𝟎; 𝟎, Γ̄). Therefore, 𝑓𝑄𝐘
(𝑣) = 𝑓𝑄𝐔1

(𝑣). However, when
= 𝟎 and 𝝉 = 𝟎, the random vector 𝐘 has a multivariate 𝑡 distribution and, therefore, is no longer skewed.
This result can also be directly obtained from the 𝑓𝑄𝐘

(𝑣) in Proposition 10. In particular, Pr(𝐔∗
0 < Λ𝐔1 + 𝝉|𝑄𝐔1

= 𝑣) = Pr(𝐔∗
0 <

𝐔1 + 𝝉) if Cov(𝐔1,𝐔∗
0 −Λ𝐔1) = 𝟎 and 𝝉 = 𝟎. We can observe that Cov(𝐔1,𝐔∗

0 −Λ𝐔1) = Cov(𝐔1,𝐔∗
0) − Cov(𝐔1,Λ𝐔1) = −∆ = 𝟎.

In addition, when 𝝉 = 𝟎 and 𝑚 ≥ 2, another way to study the distribution of 𝑄𝐙 = 𝐙⊤Ω̄−1𝐙, where 𝐙 = (𝐔1|𝐔0 > 𝟎), is to
se the representation 𝑄𝐙 = 𝑉 −1𝑄𝐙0

, where 𝑉 is independent of 𝑄𝐙0
= 𝐙⊤

0 Ω̄
−1𝐙0, with 𝐙0 = (𝐖1|𝐖0 > 𝟎) and (𝐖0,𝐖1) being

the respective (centered) normal variables. Thus, since 𝐖̄1 = 𝐖1 − Λ𝐖0, where Λ = ∆Γ̄−1, is independent of 𝐖0, we have
𝑄𝐙0

= (𝐖̄1 + Λ|𝐖0|)⊤Ω̄−1(𝐖̄1 + Λ|𝐖0|), which has 𝜒2
𝑑 distribution (and so 𝑄𝐙 has a Fisher type of distribution for 𝑚 ≥ 2) iff

Λ = ∆Γ̄−1 = 𝟎. When 𝑚 = 1, we know that 𝑄𝑍0
∼ 𝜒2

1 [14].

4. Conditional distributions

In this section, we show that the conditionals of a SUT distribution still follow a SUT distribution, and that a form of conditioning
allows to change the latent dimension.

4.1. Conditional distribution

Proposition 11. Let 𝐘 = (𝐘⊤
1 ,𝐘

⊤
2 )

⊤ ∼  𝑑,𝑚(𝝃,Ω,∆, 𝝉 , Γ̄, 𝜈) be partitioned as in (16). Then:

(𝐘2|𝐘1 = 𝐲1) ∼  𝑑2 ,𝑚(𝝃2⋅1, 𝛼𝜈,𝑄𝐲1
Ω2⋅1,∆2⋅1, 𝛼

−1∕2
𝜈,𝑄𝐲1

𝝉2⋅1, Γ̄2⋅1, 𝜈 + 𝑑1), 𝐲1 ∈ R𝑑1 ,

where 𝝃2⋅1 = 𝝃2 + Ω21Ω
−1
11 (𝐲1 − 𝝃1), 𝛼𝜈,𝑄𝐲1

= {𝜈 + 𝑄𝐲1}∕{𝜈 + 𝑑1}, 𝑄𝐲1 = (𝐲1 − 𝝃1)⊤Ω−1
11 (𝐲1 − 𝝃1), Ω2⋅1 = Ω22 − Ω21Ω

−1
11Ω12, ∆2⋅1 =

𝝎−1
2⋅1(𝝎2∆2 −Ω21Ω

−1
11𝝎1∆1)𝜸−12⋅1, 𝝎2⋅1 = diag(Ω2⋅1)1∕2, 𝝉2⋅1 = 𝜸−12⋅1{𝝉 +∆⊤

1 Ω̄
−1
11𝝎

−1
1 (𝐲1 − 𝝃1)}, Γ̄2⋅1 = 𝜸−12⋅1Γ2⋅1𝜸−12⋅1, Γ2⋅1 = Γ̄ −∆⊤

1 Ω̄
−1
11∆1

and 𝜸2⋅1 = diag(Γ2⋅1)1∕2.

Proof. The proof follows the same reasoning as the one given for Proposition 3.2 in Arellano-Valle and Genton [11] in the particular
case where the Student’s 𝑡 density generator function is considered and the parameterization in Definition 1 is used. □

It is worth noting that the degrees-of-freedom is increased after conditioning by the dimension of the conditioning vector, hence
making the resulting SUT distribution closer to the SUN.

4.2. Changing latent dimensions

We investigate ways to change the dimension of the latent variables.

Proposition 12. Let 𝐘 = (𝐘⊤
1 ,𝐘

⊤
2 )

⊤ ∼  𝑑,𝑚(𝝃,Ω,∆, 𝝉 , Γ̄, 𝜈) with parameters partitioned as in (16). Then,

(𝐘2|𝐘1 > 𝟎) ∼  𝑑2 ,𝑑1+𝑚(𝝃2,Ω22,∆2¬1, 𝝉2¬1, Γ̄2¬1, 𝜈),

where

∆2¬1 =
(

∆2 Ω̄21
)

, Γ̄2¬1 =
(

Γ̄ ∆⊤
1

∆1 Ω̄11

)

, 𝝉2¬1 =
(

𝝉
𝝎−1
1 𝝃1

)

.

Proof. Firstly, note that, from Proposition 7 it follows that 𝐘2 ∼  𝑑2 ,𝑚(𝝃2,Ω22,∆2, 𝝉 , Γ̄, 𝜈) and −𝐘1 ∼  𝑑1 ,𝑚(−𝝃1,Ω11,
−∆1, 𝝉 , Γ̄, 𝜈). Secondly, from Proposition 11 (exchanging the subscripts 1 and 2) we obtain that:

(−𝐘1|𝐘2 = 𝐲2) ∼  𝑑1 ,𝑚(−𝝃1⋅2, 𝛼𝜈,𝑄𝐲2
Ω1⋅2,−∆1⋅2, 𝛼

−1∕2
𝜈,𝑄𝐲2

𝝉1⋅2, Γ̄1⋅2, 𝜈 + 𝑑2).

Hence:

𝑓𝐘2
(𝐲2) = 𝑡𝑑2 (𝐲2; 𝝃2,Ω22, 𝜈)

𝑇𝑚[𝛼
−1∕2
𝜈,𝑄𝐲2

{𝝉 +∆⊤
2 Ω̄

−1
22𝝎

−1
2 (𝐲2 − 𝝃2)}; Γ̄ −∆⊤

2 Ω̄
−1
22∆2, 𝜈 + 𝑑2]

𝑇𝑚(𝝉; Γ̄, 𝜈)
,

Pr(−𝐘1 ≤ 𝟎|𝐘2 = 𝐲2) =

𝑇𝑑1+𝑚

⎧

⎪

⎨

⎪

⎩

(

𝛼−1∕2𝜈,𝑄𝐲2
𝝉1⋅2

𝝃1⋅2

)

;
⎛

⎜

⎜

⎝

Γ̄1⋅2 ∆⊤
1⋅2𝛼

1∕2
𝜈,𝑄𝐲2

𝝎1⋅2

𝝎1⋅2𝛼
1∕2
𝜈,𝑄𝐲2

∆1⋅2 𝛼𝜈,𝑄𝐲2
Ω1⋅2

⎞

⎟

⎟

⎠

, 𝜈 + 𝑑2

⎫

⎪

⎬

⎪

⎭

𝑇𝑚(𝛼
−1∕2
𝜈,𝑄𝐲2

𝝉1⋅2; Γ̄1⋅2, 𝜈 + 𝑑2)
,

Pr(−𝐘1 ≤ 𝟎) =
𝑇𝑑1+𝑚

{(

𝝉
𝝃1

)

;
(

Γ̄ ∆⊤
1𝝎1

𝝎1∆1 Ω11

)

, 𝜈
}

𝑇𝑚(𝝉; Γ̄, 𝜈)
.

11
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Then, after some simplifications and a few algebraic manipulations, the pdf of (𝐘2|𝐘1 > 𝟎) can be computed at 𝐲2 ∈ R𝑑2 as follows:

𝑓𝐘2|𝐘1>𝟎(𝐲2) = 𝑓𝐘2
(𝐲2)

Pr(−𝐘1 ≤ 𝟎|𝐘2 = 𝐲2)
Pr(−𝐘1 ≤ 𝟎)

= 𝑡𝑑2 (𝐲2; 𝝃2,Ω22, 𝜈)

𝑇𝑑1+𝑚

⎧

⎪

⎨

⎪

⎩

(

𝛼−1∕2𝜈,𝑄𝐲2
𝝉1⋅2

𝝃1⋅2

)

;
⎛

⎜

⎜

⎝

Γ̄1⋅2 ∆⊤
1⋅2𝛼

1∕2
𝜈,𝑄𝐲2

𝝎1⋅2

𝝎1⋅2𝛼
1∕2
𝜈,𝑄𝐲2

∆1⋅2 𝛼𝜈,𝑄𝐲2
Ω1⋅2

⎞

⎟

⎟

⎠

, 𝜈 + 𝑑2

⎫

⎪

⎬

⎪

⎭

𝑇𝑑1+𝑚

{(

𝝉
𝝃1

)

;
(

Γ̄ ∆⊤
1𝝎1

𝝎1∆1 Ω11

)

, 𝜈
}

= 𝑡𝑑2 (𝐲2; 𝝃2,Ω22, 𝜈)
𝑇𝑑1+𝑚

[

𝛼−1∕2𝜈,𝑄𝐲2
{𝝉2¬1 +∆⊤

2¬1Ω̄
−1
22𝝎

−1
2 (𝐲2 − 𝝃2)}; Γ̄2¬1 −∆⊤

2¬1Ω̄
−1
22∆2¬1, 𝜈 + 𝑑2

]

𝑇𝑑1+𝑚
(

𝝉2¬1; Γ̄2¬1, 𝜈
) ,

which, according to (6), is the pdf of a  𝑑2 ,𝑑1+𝑚(𝝃2,Ω22,∆2¬1, 𝝉2¬1, Γ̄2¬1, 𝜈) distribution. □

Next, we explore the possibility of having redundant latent dimensions.

Lemma 2. We have

𝑇𝑑+𝑚(𝐲∗ − 𝝃∗;Ω∗, 𝜈) = 𝑇𝑑 (𝐲 − 𝝃;Ω, 𝜈)𝑇𝑚(𝟎; Γ̄, 𝜈), (19)

where 𝐲∗ = (𝟎⊤, 𝐲⊤)⊤, 𝝃∗ = (𝟎⊤, 𝝃⊤)⊤, and Ω∗ = diag(Γ̄,Ω).

Proof. On the one hand, if 𝐘 ∼  𝑑,𝑚(𝝃,Ω, 𝟎, 𝟎, Γ̄, 𝜈), then 𝐘 is elliptically distributed. So, it holds that Pr(𝐘 ≤ 𝐲) = 𝑇𝑑 (𝐲−𝝃;Ω, 𝜈).
On the other hand, from (7), we have Pr(𝐘 ≤ 𝐲) = 𝑇𝑑+𝑚(𝐲∗ − 𝝃∗;Ω∗, 𝜈)∕𝑇𝑚(𝟎; Γ̄, 𝜈). Thus, (19) follows by equating the two previous
identities. □

Remark 1. Eq. (19) holds more generally. Indeed, let (𝐗0,𝐗1) = 𝑅𝐔(𝑚+𝑑) = (𝑅0𝐔(𝑚), 𝑅1𝐔(𝑑)) be an (𝑚 + 𝑑)-dimensional spherical
random vector, where 𝑅 =

√

𝑅2
0 + 𝑅2

1 (the radial variable) and 𝐔(𝑚+𝑑) (the uniform vector on the unit sphere) are independent; also
𝑅0, 𝑅1), 𝐔(𝑚) and 𝐔(𝑑) are independent. Hence:

Pr(𝐗0 ≤ 𝟎,𝐗1 ≤ 𝐲) = Pr(𝑅0𝐔(𝑚) ≤ 𝟎, 𝑅1𝐔(𝑑) ≤ 𝐲) = Pr(𝐔(𝑚) ≤ 𝟎, 𝑅1𝐔(𝑑) ≤ 𝐲) = Pr(𝐔(𝑚) ≤ 𝟎) Pr(𝑅1𝐔(𝑑) ≤ 𝐲)
= Pr(𝑅0𝐔(𝑚) ≤ 𝟎) Pr(𝑅1𝐔(𝑑) ≤ 𝐲) = Pr(𝐗0 ≤ 𝟎) Pr(𝐗1 ≤ 𝐲).

t then follows for the uncorrelated elliptically contoured case defined by 𝐘0 = Ω
1∕2
0 𝐗0 and 𝐘1 = Ω

1∕2
1 𝐗1, i.e., (𝐘⊤

0 ,𝐘
⊤
1 )

⊤ ∼
𝑚+𝑑 (𝟎, diag(Ω0,Ω1), ℎ(𝑚+𝑑)) where ℎ(𝑚+𝑑) is the density generator, that also Pr(𝐘0 ≤ 𝟎,𝐘1 ≤ 𝐲) = Pr(𝐘0 ≤ 𝟎) Pr(𝐘1 ≤ 𝐲).

The result in (19) can be used to show the following.

roposition 13. If 𝐘 ∼  𝑑,𝑚1+𝑚2
(𝝃,Ω,∆, 𝝉 , Γ̄, 𝜈) with ∆ = (𝟎,∆2), 𝝉 = (𝟎⊤, 𝝉⊤2 )

⊤, and Γ̄ = diag(Γ̄11, Γ̄22), then 𝐘 ∼
 𝑑,𝑚2

(𝝃,Ω,∆2, 𝝉2, Γ̄22, 𝜈).

roof. We have for the cdf of 𝐘:

𝐹𝐘(𝐲) =
𝑇𝑑+𝑚1+𝑚2

(𝐲∗ − 𝝃∗;Ω∗, 𝜈)

𝑇𝑚1+𝑚2
{(𝟎⊤, 𝝉⊤2 )

⊤; Γ̄, 𝜈}
, 𝐲∗ = (𝟎⊤, 𝝉⊤2 , 𝐲

⊤)⊤, 𝝃∗ = (𝟎⊤, 𝟎⊤, 𝝃⊤)⊤, Ω∗ =
⎛

⎜

⎜

⎝

Γ̄11 𝟎 𝟎
𝟎 Γ̄22 −∆⊤

2𝝎
𝟎 −𝝎∆2 Ω

⎞

⎟

⎟

⎠

,

=
𝑇𝑚1

(𝟎; Γ̄11, 𝜈) 𝑇𝑑+𝑚2
(𝐲− − 𝝃−;Ω−, 𝜈)

𝑇𝑚1
(𝟎; Γ̄11, 𝜈) 𝑇𝑚2

(𝝉2; Γ̄22, 𝜈)
, 𝐲− = (𝝉⊤2 , 𝐲

⊤)⊤, 𝝃− = (𝟎⊤, 𝝃⊤)⊤, Ω− =
(

Γ̄22 −∆⊤
2𝝎

−𝝎∆2 Ω

)

,

=
𝑇𝑑+𝑚2

(𝐲− − 𝝃−;Ω−, 𝜈)

𝑇𝑚2
(𝝉2; Γ̄22, 𝜈)

,

which is the cdf of a  𝑑,𝑚2
(𝝃,Ω,∆2, 𝝉2, Γ̄22, 𝜈) distribution. □

Consequently, following from this property, if the random vector 𝐘 ∼  𝑑,𝑚1+⋯+𝑚𝑛
(𝝃,Ω,∆, 𝝉 , Γ̄, 𝜈), where 𝑚 = 𝑚1+⋯+𝑚𝑛, ∆ =

∆1,… ,∆𝑛), 𝝉 = (𝝉⊤1 ,… , 𝝉⊤𝑛 )
⊤, and Γ̄ = diag(Γ̄1,… , Γ̄𝑛), we can construct a latent dimension reduction matrix 𝐑𝑖, 𝑖 = 2,… , 𝑛, for the

imension 𝑚𝑖 by solving the equation 𝐑𝑖∆𝑖 = 𝟎, provided that 𝝉 𝑖 = 𝟎. As a result, 𝐑𝑖𝐘 ∼  𝑑,𝑚−𝑚𝑖
(𝐑𝑖𝝃,𝐑𝑖Ω𝐑⊤

𝑖 ,𝐑𝑖∆−𝑖, 𝝉−𝑖, Γ̄−𝑖, 𝜈)
ith the negative index indicating the removal of the 𝑖th element. Note that 𝑖 can be any number between 1 and 𝑛 because the SUT
istribution is non-identifiable with respect to the order of its latent variables [34].
12
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Fig. 2. Mardia’s measures of multivariate skewness 𝛾1,𝑑 and kurtosis 𝛾2,𝑑 against latent dimension 𝑚 with (Ω,∆, Γ̄) specified to skew the distribution in the
irection (1, 1)⊤. Here 𝝃 and 𝝉 are set as 𝟎, and 𝜈 = 5.

. Mardia’s measures of multivariate skewness and kurtosis

.1. Computation

Mardia’s measures of multivariate skewness and kurtosis [30] can also be computed exactly. Following from the previous setting,
e consider 𝐘 ∼  𝑑,𝑚(𝝃,Ω,∆, 𝝉 , Γ̄, 𝜈) and denote Var(𝐘) = Σ = 𝐋𝐋⊤ and E(𝐘) = 𝝁 = 𝝃 + E(𝐔∗

1|𝐔0 + 𝝉 > 𝟎) = 𝝃 + 𝝁0, where
∗
1 = 𝝎𝐔1. We first need to standardize the random vector 𝐘 to compute the skewness and kurtosis measure. In particular, we let
= 𝐋−1(𝐘 − 𝝁) ∼  𝑑,𝑚(−𝐋−1𝝁̃0,Ω𝐋,∆𝐋, 𝝉 , Γ̄, 𝜈), where Ω𝐋 = 𝐋−1Ω(𝐋−1)⊤, ∆𝐋 = 𝝎−1

𝐋 𝐋−1𝝎∆ and 𝝎𝐋 = diag(Ω𝐋)1∕2. As a result,
e have that E(𝐙) = 𝟎 and Var(𝐙) = 𝐈𝑑 .

According to Kollo and Srivastava [28], the Mardia measures of multivariate skewness and kurtosis of the standardized random
ector 𝐙 can then be computed using trace operation on the third and fourth moments:

𝛽1,𝑑 = tr{𝜇3(𝐙)⊤𝜇3(𝐙)} = vec{𝜇3(𝐙)}⊤vec{𝜇3(𝐙)},
𝛽2,𝑑 = tr{𝜇4(𝐙)}.

Here 𝜇3(𝐙) and 𝜇4(𝐙) can be computed using the convolution-based method described in Section 2.4. One point to notice is the
isplacement in the kurtosis measure when dealing with high dimensions. The non-shifted measure 𝛾2,𝑑 can be adjusted by equation

(2.9) in Mardia [31]. Overall, 𝛾1,𝑑 and 𝛾2,𝑑 are invariant with respect to location and scale. Consequently, it is sufficient to assume
that 𝐘 ∼  𝑑,𝑚(𝟎, Ω̄,∆, 𝝉 , Γ̄, 𝜈) as indicated in Arellano-Valle and Azzalini [5] for the computations.

5.2. Visualization

To demonstrate the effectiveness of the two measures, we visualize 𝛽1,𝑑 = 𝛾1,𝑑 and 𝛾2,𝑑 with increasing latent dimensions 𝑚
in Fig. 2. We impose skewness to the distribution along the direction (1, 1)⊤ to see the variations. Fig. 2 indicates that the two
measures increase first and then decrease. The reason behind such a behavior is the asymptotic linear dependence in increasing
latent dimensions. We articulate the rationales in the following proposition.

Proposition 14. Let 𝐘 = (𝑌1,… , 𝑌𝑑 )⊤ ∼  𝑑,𝑚(𝟎, Ω̄,∆, 𝝉 , Γ̄, 𝜈), where 𝜈 > 2 and ∆ = (𝜹1,… , 𝜹𝑚). Then, if 𝑚 → ∞ with an infinite
number of 𝜹𝑘 ≠ 𝟎 ∈ R𝑑 , 𝑘 ∈ {1,… , 𝑚}, the correlation between 𝑌𝑖 and 𝑌𝑗 , 𝜌𝑖,𝑗 → ±1 or 0 for 𝑖 ≠ 𝑗 and 𝑖, 𝑗 ∈ {1,… , 𝑑}, indicating that 𝑌𝑖
and 𝑌𝑗 exhibit asymptotic linearity or uncorrelation as 𝑚 increases.

Proof. To ease the proof, we need to introduce a change of parameterization. In particular, Ω = Ψ+𝐇Γ̄𝐇⊤ and 𝝎∆ = 𝐇Γ̄, where
Ψ is also a covariance matrix. By Proposition 2, Var(𝐘) = 𝝎{∆Γ̄−1Var(𝐔∗)Γ̄−1∆⊤ + 𝜂(𝑄𝐔∗

)(Ω̄ − ∆Γ̄∆⊤)}𝝎. By re-arranging the
terms and plugging in the restrictions, we can have the following quantity:

Var(𝐘) = 𝐇Var(𝐔∗)𝐇⊤ + 𝜂(𝑄𝐔∗
)Ψ = 𝐇𝐋𝐋⊤𝐇⊤ + 𝜂(𝑄𝐔∗

)Ψ, Var(𝐔∗) = 𝐋𝐋⊤

= 𝐇𝐋𝐇⊤
𝐋 + 𝜂(𝑄𝐔∗

)Ψ =
𝑚
∑

𝑘=1
𝐡𝐋𝑘𝐡𝐋

⊤
𝑘 + Ψ̃, 𝐇𝐋 = 𝐇𝐋, Ψ̃ = 𝜂(𝑄𝐔∗

)Ψ.
13
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Now we have that:

𝜌𝑖,𝑗 =
Ψ̃𝑖,𝑗 +

∑𝑚
𝑘=1 ℎ𝑘,𝑖ℎ𝑘,𝑗

√

Ψ̃𝑖,𝑖 +
∑𝑚

𝑘=1 ℎ𝑘,𝑖
2
√

Ψ̃𝑗,𝑗 +
∑𝑚

𝑘=1 ℎ𝑘,𝑗
2
=

Ψ̃𝑖,𝑗 +
∑𝑚

𝑘=1 ℎ𝑘,𝑖ℎ𝑘,𝑗
√

Ψ̃𝑖,𝑖Ψ̃𝑗,𝑗 +
∑𝑚

𝑘=1 ℎ𝑘,𝑖
2Ψ̃𝑗,𝑗 +

∑𝑚
𝑘=1 ℎ𝑘,𝑗

2Ψ̃𝑖,𝑖 +
∑𝑚

𝑘=1
∑𝑚

𝑤=1 ℎ𝑘,𝑖
2ℎ𝑤,𝑗

2
,

here ℎ𝑘,𝑖 and ℎ𝑘,𝑗 denote the respective 𝑖th and 𝑗th component of 𝐡𝐋𝑘. In the denominator, we claim that ∑𝑚
𝑘=1

∑𝑚
𝑤=1 ℎ𝑘,𝑖

2ℎ𝑤,𝑗
2 is

he dominating term as 𝑚 → ∞. Here are the details:

lim
𝑚→∞

∑𝑚
𝑘=1 ℎ𝑘,𝑖

2

∑𝑚
𝑘=1

∑𝑚
𝑤=1 ℎ𝑘,𝑖

2ℎ𝑤,𝑗
2
≤ lim

𝑚→∞

𝑚 ⋅max({ℎ𝑘,𝑖}𝑖=1,…,𝑚)

𝑚2 ⋅min({ℎ𝑘,𝑖2ℎ𝑤,𝑗
2}𝑘,𝑤=1,…,𝑚)

= 0,

lim
𝑚→∞

∑𝑚
𝑘=1 ℎ𝑘,𝑖

2

∑𝑚
𝑘=1

∑𝑚
𝑤=1 ℎ𝑘,𝑖

2ℎ𝑤,𝑗
2
= 0,

𝑚
∑

𝑘=1
ℎ𝑘,𝑖

2 ≥ 0,
𝑚
∑

𝑘=1

𝑚
∑

𝑤=1
ℎ𝑘,𝑖

2ℎ𝑤,𝑗
2 ≥ 0.

he same result for comparing with ∑𝑚
𝑘=1 ℎ

2
𝑘,𝑗 can be replicated by replacing 𝑖 with 𝑗 in the above derivation. Therefore, we only need

to focus on the increments (decrements) ∑𝑚
𝑘=1 ℎ𝑘,𝑖ℎ𝑘,𝑗 and

√

∑𝑚
𝑘=1

∑𝑚
𝑤=1 ℎ

2
𝑘,𝑖ℎ

2
𝑤,𝑗 . By the well-known Cauchy–Schwarz inequality, we

have −1 ≤
∑𝑚

𝑘=1 ℎ𝑘,𝑖ℎ𝑘,𝑗∕
√

∑𝑚
𝑘=1

∑𝑚
𝑤=1 ℎ

2
𝑘,𝑖ℎ

2
𝑤,𝑗 ≤ 1 and the ratio is equal to ±1 only if ℎ𝑘,𝑖 = 𝛽𝑖,𝑗ℎ𝑘,𝑗 with 𝛽𝑖,𝑗 ∈ R, indicating that

the 𝐡𝐋𝑘s are pointing to either the same direction or infinitely many times along and against the same unit vector. Note that this
situation excludes the directions of the vectors in the planar or hyperplanar subspaces formulated by the main axes, which are
special cases that we will explore later. Now, if the rate of the increments (decrements) are equal, then lim𝑚→∞ 𝜌𝑖,𝑗 = ±1. Otherwise,
lim𝑚→∞ 𝜌𝑖,𝑗 = 0 because the increment (decrement) rate in the denominator is higher. This is the case when 𝐡𝐋𝑘s point to infinitely
many directions.

Now we assume without loss of generality that ℎ𝑘,𝑖 ≠ 0,∀𝑖 ∈ 𝑧 ⊂ {1,… , 𝑑}, and ℎ𝑘,𝑗 = 0,∀𝑗 ∈ {1,… , 𝑑} − 𝑧,∀𝑘 = 1,… , 𝑚. Then,
all 𝐡𝐋𝑘 ∈ R|𝑗| ⊂ R𝑑 , and:

lim
𝑚→∞

𝜌𝑖,𝑗 = lim
𝑚→∞

Ψ̃𝑖,𝑗 +
∑𝑚

𝑘=1 ℎ𝑘,𝑖ℎ𝑘,𝑗
√

Ψ̃𝑖,𝑖 +
∑𝑚

𝑘=1 ℎ𝑘,𝑖
2
√

Ψ̃𝑗,𝑗 +
∑𝑚

𝑘=1 ℎ𝑘,𝑗
2
= lim

𝑚→∞

Ψ̃𝑖,𝑗
√

Ψ̃𝑖,𝑖 +
∑𝑚

𝑘=1 ℎ𝑘,𝑖
2
√

Ψ̃𝑗,𝑗

= 0.

This result has a rather straightforward interpretation: we inflate the variability of 𝑌𝑖s to ∞ and leave it unchanged for the remaining
𝑌𝑗s. The 𝑌𝑖s can still exhibit asymptotic linearity or uncorrelation given the above-mentioned choices of 𝐡𝐋𝑘−0 ∈ R|𝑗|, where −0
denotes the removal of the 0 terms. □

By Proposition 14, the SUT will show either asymptotic linearity or uncorrelation (symmetry) in the bivariate case as 𝑚 increases,
explaining the humped shapes of Mardia’s measures in Fig. 2. Per the results, we advise against using excessively large latent
dimensions for the SUT. The asymptotic linearity and uncorrelation in the latent dimensions also hold for the SUN distribution
because it is a particular case of the SUT distribution.

Another noteworthy proposition we would like to make is the following.

Proposition 15. Let 𝐘 ∼  𝑑,𝑚(𝝃,Ω,∆, 𝟎, Γ̄, 𝜈). If Γ̄ is an equi-correlation matrix with Γ̄𝑖,𝑗 = 𝜌 ≈ 1,∀𝑖 ≠ 𝑗, then the corresponding
lim𝜌→1 𝐘 ≡ 𝐘𝑆𝑇 ∼  𝑑 .

Proof. By the convolution representation in Proposition 1, 𝐘 = 𝝃+𝝎
{

∆Γ̄−1𝐔∗ +
√

(𝜈 +𝑄𝐔∗
)∕(𝜈 + 𝑚) ⋅𝐖∗

}

with 𝐔∗ = (𝐔0|𝐔0+𝝉 >
), where 𝐔0 ∼ 𝑚(𝟎, Γ̄, 𝜈). Now, if 𝜌 ≈ 1, then 𝐔∗𝑖 ≈ 𝐔∗𝑗 ,∀𝑖 ≠ 𝑗, where 𝑖, 𝑗 ∈ {1,… , 𝑚}, ∆Γ̄−1𝐔∗ ≈ (

∑𝑚
𝑖=1 𝐇𝑖)𝐔∗1, where

= (𝐇1,… ,𝐇𝑚) = ∆Γ̄−1. This is exactly the ST distribution, for which the direction of skewness is ∑𝑚
𝑖=1 𝐇𝑖. □

The same argument can be applied to the SUN and SN distributions. Hence, we recommend to use the SN or ST distributions
irectly in case of strong latent correlations.

. Non-identifiability

Wang et al. [34] have demonstrated that the SUN distribution is non-identifiable subject to permutations, (𝑚) = {𝐏 ∈
R𝑚×𝑚

|𝐏𝐏⊤ = 𝐏⊤𝐏 = 𝐈𝑚 and 𝐏𝟏𝑚 = 𝟏𝑚}, of its latent variables if 𝑚 > 1. In particular, the random vector 𝐗 ∼  𝑑,𝑚(𝝃,Ω,∆, 𝝉 , Γ̄) is
equal in distribution to the random vector 𝐗𝑝 ∼  𝑑,𝑚(𝝃,Ω,∆𝑝, 𝝉𝑝, Γ̄𝑝), where ∆𝑝 = ∆𝐏⊤, 𝝉𝑝 = 𝐏𝝉, and Γ̄𝑝 = 𝐏Γ̄𝐏⊤, 𝐏 ∈ (𝑚).
Therefore, two sets of parameters yield identical probability densities for the same realization. Furthermore, Wang et al. [34]
have shown that the non-identifiability also holds for the unified skew-elliptical (SUE) class and even more generally for selection
distributions [6]. Consequently, the SUT is no exception.

Non-identifiability is problematic, especially for parameter inference, because the resulting optimization curve could possess
multiple peaks and mislead the optimization algorithms to erroneous stopping values, rendering the SUT family non-applicable.
One possible approach to address this issue includes ranking the components 𝜏𝑖, 𝑖 = 1,… , 𝑚, with a strictly increasing (decreasing)
order. However, this approach does not cover the case 𝝉 = 𝟎.

Some sub-models discussed in Wang et al. [34] can also be applied in the SUT case. For instance, it is possible to eradicate the
ordering flexibility of ∆ by imposing ∆ = 𝛿Ω1∕2 or other similar relationships between ∆ and Ω. Another path involves making
̄

14

an equi-correlation matrix and ∆ having identical entries. Therefore, here is a list of some identifiable SUT distributions:
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(1)  𝑑,𝑚(𝝃,Ω, 𝜹𝟏⊤𝑚, 𝜏𝟏𝑚, (1 − 𝜌)𝐈𝑚 + 𝜌𝟏𝑚𝟏⊤𝑚, 𝜈), where 𝝉 = 𝜏𝟏𝑚 (𝜏 ∈ R), ∆ = 𝜹𝟏⊤𝑚 (𝜹 ∈ R𝑑 ) and Γ̄ = (1 − 𝜌)𝐈𝑚 + 𝜌𝟏𝑚𝟏⊤𝑚, with
𝜌 ∈ (− 1

𝑚−1 , 1). Moreover, by Proposition 15, when 𝜌 ≈ 1, it is preferable to opt for the ST distribution;
(2)  𝑑,𝑚(𝝃,Ω,∆, 𝛼𝟏𝑚 + 𝛽𝐣𝑚, Γ̄, 𝜈), where 𝝉 = 𝛼𝟏𝑚 + 𝛽𝐣𝑚 (𝛼, 𝛽 ∈ R, 𝛽 ≠ 0) and 𝐣𝑚 = (1, 2,… , 𝑚)⊤;
(3)  𝑑,𝑑 (𝝃, 𝜔2Ω̄, 𝜔𝛿(1 + 𝛿2)−1∕2Ω̄, 𝟎, Ω̄, 𝜈), where 𝜔 ∈ R and 𝛿 ∈ R;
(4)  𝑑,𝑑 (𝝃,Ω, 𝛿Ω1∕2, 𝟎, 𝐈𝑑 , 𝜈), where 𝛿 ∈ R.

In addition, these sub-models can be combined to formulate various new identifiable cases.

7. Discussion

In this work, we comprehensively explored the properties of the SUT distribution. The SUT generalizes the ST distribution
proposed in Azzalini and Capitanio [13] so that the latent variables can have specified mean 𝝉 and correlation Γ̄. We derived
stochastic representations and a SUN-scale mixture method to construct the SUT random variable. Moreover, we described numerous
formal probabilistic properties, such as linear transformations, marginals, and conditionals, among many others. In addition, the
SUT can also be viewed as a generalization of the SUN, which is retrieved by letting 𝜈 → ∞. We have provided possible solutions
to the non-identifiability issue associated with the SUT, rendering the distribution applicable in practice.

Although the EM algorithm can provide inference for SN parameters (see, e.g., Abe et al. [1] and references therein), well-
developed inference mechanisms for the SUN and the SUT distributions are challenging and currently lacking. Gupta and Aziz
[23] applied the method of weighted moments on a particular case of the SUN with 𝝉 = 𝟎, ∆ = 𝛿Ω1∕2, and Γ̄ = 𝐈𝑚 because
such detailed specification can significantly simplify the computation of the moments. Nonetheless, the resulting estimates exhibit
numerical instability, although unbiased. In addition, the method has only been tested up to bivariate data. Therefore, a more
general inference scheme is needed. Only after the successful development of a proper inference algorithm for the SUT distribution
can it be applied to real datasets.

Recently, the SUN distribution has been heralded as a significant breakthrough in the field of Bayesian inference. Durante [18]
and Anceschi et al. [3] proved that the multivariate linear regression, probit, and tobit models, among others, admit conjugate
SUN priors with the posterior distribution remaining in the very same class. This phenomenon allows for a significant reduction
in computational cost to perform Bayesian posterior inference via closed-form solutions, thus providing a competitive alternative
to well-established sampling methods. Subsequently, Karling et al. [25] have shown that the SUT family is also conjugate to the
likelihood induced by general multivariate regression models arising from fully observed, censored, or dichotomized ST distributions.
The truncation of the data on those two latter frameworks leads to hidden layers that the SUT distribution can model, winding up
as a natural candidate due to the inherent conjugacy properties. Namely, the closeness under linear transformations, conditioning,
and marginalization, such as introduced in Propositions 6, 7, 11, and 12 above, play a major role in the work by Karling et al. [25],
showcasing the fundamental properties of the SUT distribution. Other important modeling schemes comprehending the SUN and SUT
distributions might benefit from the properties shown in the present work and may be of fundamental help in the future. Anceschi
et al. [3] have demonstrated several computational approaches to perform Bayesian inference based on SUN conjugacy, such as
analytical methods (based on computing high-dimensional Gaussian probabilities), sampling-based methods (e.g., data augmentation
Gibbs samplers), and deterministic approximation-based methods (e.g., variational Bayes and expectation-propagation). Their
extension to the SUT framework is the topic of ongoing research to be reported elsewhere.
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