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Abstract—Addressing the statistical challenge of computing
the multivariate normal (MVN) probability in high dimensions
holds significant potential for enhancing various applications.
For example, the critical task of detecting confidence regions
where a process probability surpasses a specific threshold is
essential in diverse applications, such as pinpointing tumor
locations in magnetic resonance imaging (MRI) scan images,
determining hydraulic parameters in groundwater flow issues,
and forecasting regional wind power to optimize wind turbine
placement, among numerous others. One common way to com-
pute high-dimensional MVN probabilities is the Separation-of-
Variables (SOV) algorithm. This algorithm is known for its high
computational complexity of O(n3) and space complexity of
O(n2), mainly due to a Cholesky factorization operation for an
n× n covariance matrix, where n represents the dimensionality
of the MVN problem. This work proposes a high-performance
computing framework that allows scaling the SOV algorithm
and, subsequently, the confidence region detection algorithm.
The framework leverages parallel linear algebra algorithms
with a task-based programming model to achieve performance
scalability in computing process probabilities, especially on large-
scale systems. In addition, we enhance our implementation by
incorporating Tile Low-Rank (TLR) approximation techniques
to reduce algorithmic complexity without compromising the
necessary accuracy. To evaluate the performance and accuracy
of our framework, we conduct assessments using simulated
data and a wind speed dataset. Our proposed implementation
effectively handles high-dimensional multivariate normal (MVN)
probability computations on shared and distributed-memory
systems using finite precision arithmetics and TLR approx-
imation computation. Performance results show a significant
speedup of up to 20X in solving the MVN problem using TLR
approximation compared to the reference dense solution without
sacrificing the application’s accuracy. The qualitative results on
synthetic and real datasets demonstrate how we maintain high
accuracy in detecting confidence regions even when relying on
TLR approximation to perform the underlying linear algebra
operations.

Index Terms—Cholesky factorization, Confidence region detec-
tion, Excursion Set, Multivariate normal probability, Separation-
of-Variables algorithm, Tile low-rank.

I. INTRODUCTION

The multivariate normal distribution extends the concept

of the univariate normal distribution to encompass higher

dimensions. In the context of probability, it characterizes the

distribution of a random vector featuring multiple components,

each potentially correlated with the others. The applications

of multivariate normal probability span diverse fields, such

as its use in spatial statistics for climate modeling [1] and

confidence region detection [2], its application in machine

learning through Gaussian Mixture Models (GMMs) [3] and

Principal Component Analysis (PCA) [4], and its role in eco-

nomic studies, particularly in macroeconomic modeling [5].

Confidence region detection is a well-established problem

primarily focused on identifying spatial areas where a given

process exceeds a certain threshold with a given probability.

For example, in applications related to air pollution, identify-

ing areas where pollution levels exceed a specific value, posing

a potential risk to human health, and ensuring accurate assess-

ment and management of environmental risks [6]. Another

example involves brain imaging applications that pinpoint

specific brain regions exhibiting particular characteristics or

responses [7]. The usage of confidence region detection can be

extended to applications in spatial statistics, astrophysics [8],

machine learning [9], environmental science [10], and many

others. Mathematically, given a latent stochastic field X(s) at

spatial location s and a set of observations denoted as y, the

goal is to identify a region, denoted as D, where the condition

X(s) > u holds true for s within D with a probability of at

least 1 − α. Here, u is the threshold value, and 1 − α is the

confidence level.

A common strategy for addressing this statistical challenge

involves computing the multivariate normal (MVN) probabil-

ity, which involves solving an integration problem in high

dimensions. A Monte Carlo (MC) method can be used to

solve this integration problem by simulating a large number

of random samples and averaging the integral function over
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these samples [11]. Nevertheless, using this MC method in

high dimensions is practically prohibitive when accuracy is

essential [2]. In the literature, the Separation-of-Variables

(SOV) algorithm has been used to transform the integration

problem into a solvable format by transforming the integration

region to a unit hypercube. Then, a quasi-MC method can be

used to evaluate the new integration problem [2], [12]. The

SOV algorithm is known for its computational complexity of

O(n3) and space complexity of O(n2), with n representing

the dimensionality of the MVN problem. The high complexity

arises due to the need for solving a Cholesky factorization

problem for a given covariance matrix Σ. With the substantial

increase in the volume of spatial data originating from various

sources, it becomes imperative to explore other approaches for

solving the SOV problem in large dimensions.

The availability of efficient algorithms for performing linear

algebra operations on parallel architectures has enabled signifi-

cant improvements in existing algorithms, making the handling

of substantial scientific data across diverse domains feasible.

Parallel tile-based linear solvers, finely tuned for modern

hardware architectures, play a pivotal role in optimizing the ex-

ecution of many applications, addressing previously unsolved

problems. Notable parallel linear algebra library examples

include Chameleon [13], DPLASMA [14], and HiCMA [15],

[16]. The two formers support dense linear algebra matrix

operations on shared and distributed-memory systems. The

latter integrates support for Tile Low-Rank (TLR) matrix

approximations to deal with large-scale scientific problems.

Furthermore, leveraging dynamic runtime systems within these

libraries contributes to the meticulous tuning of their execution

on modern architectures, enabling higher rates of floating-point

operations per second (flops) and efficient time-to-solution.

This study proposes a parallelized version of the SOV

algorithm, effectively calculating the MVN probability in

high-dimensional spaces. Our approach leverages Chameleon,

which relies on the StarPU dynamic runtime system for

efficiently managing large datasets using fine-grained compu-

tations on manycore systems. Additionally, we enhance our

implementation to accommodate the TLR approximation for

the underlying matrix operations via the HiCMA library. We

show that our TLR implementation can reduce the complexity

of the SOV algorithm and address challenges posed by high-

dimensional MVN problems.

To assess the efficacy of our implementation, we focus on

the confidence region detection applications that mainly rely

on the MVN probability algorithm. Our results demonstrate

that TLR efficiently replaces dense by TLR computations with

acceptable accuracy loss. Through a comprehensive evalua-

tion, we analyze the accuracy trade-offs associated with this

approximation and compare them with dense computations

using synthetic and real wind speed datasets.

II. CONTRIBUTIONS

We position our paper against existing works [2], [12], [17]

and summarize our contributions as follows:

• We leverage the sequential design for solving the Mul-

tivariate Normal (MVN) probability problem in high

dimensions from [2]. We develop an MVN parallel im-

plementation targeting the SOV algorithm relying on the

state-of-the-art parallel task-based linear algebra library

Chameleon [13] powered by the StarPU dynamic runtime

system [18].

• We enhance the SOV algorithm in two respects. Ini-

tially, we incorporate an optimized tile-based Cholesky

factorization implementation into the algorithm, allowing

faster execution on parallel architectures. Subsequently,

we parallelize the computation of probabilities for dif-

ferent QMC samples by dividing the problem into in-

dependent tasks and implementing this process through

the StarPU dynamic runtime system. Our proposed high-

performance implementation contrasts with the R imple-

mentation in [12], [17] that has shown limitation in paral-

lel efficiency due to the bulk synchronous programming

model.

• We extend our implementation to support parallel TLR

approximation of the SOV algorithm, accommodating

various compression accuracy levels to reduce the com-

plexity of the SOV algorithm through the use of the

HiCMA library [15], [16] and StarPU. Compared to [12],

[17], using the StarPU dynamic scheduler to orchestrate

task parallelism enables us to mitigate the overhead of

load imbalance.

• We evaluate the performance and scalability of our pro-

posed dense and TLR implementations on both shared-

and distributed-memory systems. In this study, we process

a problem size of approximately 500K and 760K in dense

and TLR formats, respectively, which is a significant

advancement compared to the roughly 16K by [12].

• We improve the confidence region detection algorithm

in [2] by incorporating the high-performance MVN prob-

ability implementation. We further deploy it across di-

verse synthetic and real datasets.

• We evaluate the reduction in accuracy when depending

on TLR approximation in contrast to the dense solution,

using synthetic datasets that depict varying levels of

spatial correlation.

• We use our new high-performance confidence region

detection implementation on a spatial wind speed dataset

in the Middle East to identify optimal locations for

establishing wind farms for energy production. The TLR-

based algorithm demonstrates comparable accuracy in

region detection compared to the dense execution.

III. BACKGROUND

This section provides an overview of key terms used in

this paper, including Multivariate Normal (MVN) probability,

Separation-Of-Variables (SOV) algorithm, confidence region

detection applications, task-based parallelism, parallel linear

algebra libraries powered by dynamic runtime systems, and

Tile Low-Rank (TLR) approximation.
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A. Multivariate Normal (MVN) Probability

A Multivariate Normal (MVN) probability is a statistical

concept related to multivariate analysis, specifically dealing

with the distribution of multiple variables. It is widely used in

statistical applications, including Bayesian probit models [19],

confidence region detection problems [2], and maximum like-

lihood estimation [12]. It can be defined as a numerical inte-

gration problem with high computation complexity in higher

dimensions. The MVN probability is defined as follows:

Φn(a, b;μ,Σ) =∫ b

a

1√
(2π)n|Σ| exp

{
−1

2
(x− μ)�Σ−1(x− μ)

}
dx (1)

where a and b are two n-dimensional vectors representing

the lower and upper integration limits, μ representing the

mean, and Σ the covariance matrix of a multivariate Gaussian

distribution. Here Σ is constructed through a predetermined

covariance function Σij = C(‖hij‖;θ) where ‖hij‖ rep-

resents the distance between spatial locations i and j, and

θ represents the statistical parameters of the underlying sta-

tistical field. Without loss of generality, we set μ = 0 in

this paper for simplicity. A direct approach to address the

integration problem in equation 1 involves employing an MC

method, which depends on random sampling to approximate

and simulate the integration. This is achieved by generating

a large number of random samples and then averaging the

integration function values. However, if accuracy is a concern,

this approach becomes impractical when dealing with high-

dimensional problems, such as the one addressed in this study.

In the literature, computing the MVN probability is a chal-

lenging task where quadrature-based algorithms are impracti-

cal in higher dimensions. Thus, Genz has proposed a Monte

Carlo simulation solution to provide a numerical solution to

the high-dimensional MVN probability [20]. The provided

solution aims to transform the MVN problem into classic

numerical integration problems that can be solved directly

using standard integration algorithms. This transformation

has been used in the literature under the name “Separation-

of-Variables (SOV)” algorithm. Several methods have been

proposed in the literature based on the SOV algorithm for

efficient calculation of the MVN probability; see [21] for a

review. One important research direction is to scale the Monte

Carlo solution to higher dimensions by using, for instance,

the hierarchical decomposition of the covariance matrix to

improve the computation time [12], [22].

B. Separation-Of-Variable (SOV) Algorithm

In [20], Genz has provided in detail the required transforma-

tion to equation 1 to be able to compute the MVN probability:

Φn(a, b;0,Σ) =

∫ Φ(b′1)

Φ(a′1)

∫ Φ(b′2)

Φ(a′2)
. . .

∫ Φ(b′n)

Φ(a′n)
dz, (2)

where a′i =
ai−Σi−1

j=1Lijyj

Lii
and b′i =

bi−Σi−1
j=1Lijyj

Lii
. If we

define wi
i.i.d∼ U(0, 1) as random numbers from unit uniform

distribution, then the transformation includes x = Ly and

yi = Φ−1[Φ(a′i)+{Φ(b′i)−Φ(a′i)}wi]. Herein, L is the lower

Cholesky factor of Σ, i.e., Σ = LL� and Lij represents

the (i, j) element of L. Computing the Cholesky factor L
from Σ requires O(n3) operations and O(n2) memory, where

n represents the MVN dimension. The computation of the

MVN integration with w is called Monte Carlo sampling [17].

Detailed Monte Carlo algorithms description can be found in

[12], [20], [21]. We assume the field has a zero-mean function

(i.e., μ = 0).

To apply the SOV results to Monte Carlo algorithms, we

have to transform equation 2 into

Φn(a, b;0,Σ) = (b′1 − a′1)
∫ 1

0

(b′2 − a′2)

· · ·
∫ 1

0

(b′n − a′n)
∫ 1

0

dw.

(3)

Then, we can obtain the probabilities in higher dimensions

with random numbers in [0, 1], the univariate cumulative

normal distribution function and its inverse.

C. Confidence Region Detection

In spatial statistics, confidence region (also known as ex-

cursion set) detection is the process of identifying areas in a

given spatial region where the values exceed a certain level,

i.e., threshold u, or expected range with a certain level of

confidence 1−α. Assuming a random field X , we can define

the confidence set as shown in [2] by:

E+
u,α(X) = argmax

D

{|D| : P{
D ⊆ A+

u (X)
} ≥ 1− α

}
,

(4)

where A+
u (X) = {s ∈ Ω : X(s) > u} and Ω is the spatial

domain. The positive confidence function can be defined as:

F+
u (s) = sup{1− α; s ∈ E+

u,α(X)}. (5)

The confidence region can be easily computed using the

confidence function as {s : F+
u (s) ≥ 1− α}.

This process is used in many applications to locate places

where data points exceed predefined limits or exhibit unusual

patterns. Some examples are identifying the levels of air

pollution in a specific region [6] and recognizing tumors in

MRI images [7].

The mathematical definition of the confidence re-

gion/excursion set detection problem is as follows: given a

latent stochastic field x(s) and a set of observations denoted

as y, our goal is to identify the region E+
u,α. Here, the

threshold value u and confidence level 1 − α are user-

defined values. This E+
u,α can be approximately captured using

marginal probabilities as shown in [2], which needs to be

more precise to detect the correct regions. Hence, in the

work by Bolin and Lindgren [2], an algorithm is proposed,

focusing on the computation of Multivariate Normal (MVN)

probability for detecting confidence regions in spatial data.

However, the complexity of the MVN probability algorithm
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poses limitations, rendering it unsuitable for handling large

spatial areas, a necessity in numerous applications.

D. Task-based Linear Algebra Libraries and Dynamic Run-
time Systems

Task-based parallelism is a parallel computing paradigm that

deals with the target problem as a collection of tasks with

predetermined dependencies. These tasks can execute concur-

rently when computing resources are available and as long as

there are no violations of the pre-established dependencies.

Task-based parallelism offers flexibility and fine-grained com-

putations, making it suitable for various parallel computing

applications. Thus, cutting-edge parallel dense linear algebra

libraries, like Chameleon [13] and DPLASMA [14], utilize

task-based parallelism to deliver efficient and dependable

parallel linear solvers using meticulously designed tile-based

algorithms. Additionally, harnessing dynamic runtime systems

like StarPU [18], PaRSEC [23], QUARK [24], and others

can enhance task management and scheduling on available

resources, considering workload and resource availability for

improved performance. In this work, we rely on the StarPU

dynamic runtime system because of its high level of user-

productivity achieved via abstraction for expressing paral-

lelism, simplifying the development of parallel applications.

It also includes scheduling heuristics for optimizing data

movement between different memory hierarchies, which is

crucial for performance optimization.

E. Tile Low-Rank (TLR) Approximation

The low-rank approximation is a prevalent mathematical

technique used to estimate a dense matrix by representing

it as the product of one or more matrices with lower ranks.

Given the widespread use of tile-based algorithms in numerous

linear algebra packages, Akbudak et al. have introduced a Tile

Low-Rank (TLR) approximation method for manycore sys-

tems [15]. This approach enables the separate approximation

of each tile using the Singular Value Decomposition (SVD) al-

gorithm. In this method, the ranks of the tiles correspond to the

most significant singular values and vectors within each off-

diagonal tile. The effectiveness of the TLR technique hinges on

the ranks achieved for the off-diagonal tiles after compression,

which, in turn, is influenced by the precision requirements of

the specific application. The use of TLR approximation has

found application in various domains, enabling efficient com-

pression of dense matrices and rapid execution of underlying

linear algebra operations with acceptable accuracy. Examples

include climate modeling [15], [25], [26], astronomy [27], and

seismic computation [28].

IV. CONFIDENCE REGION DETECTION FRAMEWORK

This section introduces the proposed computational frame-

work for the confidence region detection problem. By con-

sidering a collection of spatial locations, their corresponding

measurements, a user-defined threshold u, and a user-defined

confidence level 1 − α, the proposed framework can identify

regions where values surpass the defined threshold u. We also

demonstrate our contribution in parallelizing the underlying

high-dimensional Multivariate Normal (MVN) probability al-

gorithm. For clarity, we summarize all symbols used in this

section in Table I to facilitate understanding of the content. We

use regular (unbolded) characters to denote scalar values, bold

lowercase characters for vectors, and bold uppercase characters

for matrices. We also use A(i, j) to denote the (i, j) element

in a matrix A, and A(i,j) to indicate the (i, j) tile in the matrix

A.

TABLE I: List of symbols.

Symbol Definition

geom A set of irregularly distributed spatial locations.

θ̂ Estimated statistical parameter vector.

1− α User-defined confidence level.

u User-defined threshold.

Σ Covariance matrix.

Φ(x) Univariate normal distribution function P(Z ≤ x).
pM Marginal probability vector P(Xi > u).
opM

Indices of ordered pM .

f Positive confidence function in equation 5.

a Lower limits of the MVN integration.

b Upper limits of the MVN integration.

A Matrix of n set of a vectors.

B Matrix of n set of b vectors.

R Random matrix filled with i.i.d U(0, 1) values.

A. Confidence Region Detection Algorithm

Algorithm 1 illustrates how to identify confidence regions

relying on the computation of Multivariate Normal (MVN)

probabilities. The algorithm takes several inputs, as indicated

in line 1, including θ̂ obtained using a specific covariance

function of the form C(‖h‖;θ), where h = s1 − s2 ∈ R
d

and ‖h‖ denotes the Euclidean norm. Herein, we employ the

Matérn covariance function [29] with the form:

C(‖h‖;θ) = σ2

2ν−1Γ (ν)

(‖h‖
a

)ν

Kν

(‖h‖
a

)
, (6)

where Kν(·) represents the modified Bessel function of the

second kind with order ν, and Γ(·) denotes the gamma

function. In this context, θ contains the marginal variance

(σ2 > 0), smoothness (ν > 0), and spatial range (a > 0). We

obtained the Matérn covariance parameters θ̂ for the given

dataset using the Maximum Likelihood Estimation (MLE)

algorithm employed in the ExaGeoStat software [30].

In line 2, the algorithm generates a covariance matrix Σ us-

ing the estimated parameters θ̂ and the set of locations geom.

In lines 3-5, the marginal probabilities of the locations denoted

as pM , are calculated using the mean μi, i.e., μi is the mean

in location i across time, where u is a user-defined threshold

value. In line 6, we store the indices of the locations based on

their marginal probabilities in opM
vector in descending order.

In line 7, the algorithm initializes the required data structures

that will be used in the computation, i.e., Chameleon/HiCMA

descriptors. The descriptors are unique data structures that
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Algorithm 1 Confidence Region Detection Algorithm

1: function CRD (geom: a set of spatial locations, Y a set of

measurements of sampled locations, θ̂: Matérn covariance

parameters; n: number of spatial locations)

2: Generate a covariance matrix Σ using θ̂ and geom
or read a given covariance matrix Σ.

3: for 0 ≤ i < n do
4: pM [i] ← 1− Φ((u− μ[i]− Y [i])/

√
Σ[i, i])

5: end for
6: opM

← descending order index(pM )
7: pmvn init()
8: L ← dpotrf(Σ) � Cholesky factorization

9: b ← {∞, . . . ,∞}
10: for n > i ≥ 0 do
11: c ← opM

[1 : i]
12: a ← {−∞, . . . ,−∞}
13: a[c] ← (u− μ[c]− Y [c])/

√
Σ[c, c]

14: f [c] ← PMVN(a, b,L, n,N,m)
15: end for
16: end function

enable the storage of matrices as a set of tiles managed by

one or more computing processes. In the case of HiCMA,

the pmvn init() function also encompasses the compression

of the covariance matrix Σ into the TLR format. In line 8, a

Cholesky factorization operation is performed over Σ to obtain

the lower triangular matrix L, where Σ = LL�. In lines 9-

15, the locations are extracted according to opM
and the joint

MVN probabilities are computed using the PMVN function in

algorithm 2 based on the lower and upper limits, constructing

the confidence function f .

(a)

B. Multivariate Normal Probability (PMVN) Algorithm

Algorithm 2 calculates the Multivariate Normal (MVN)

probability. To allow parallel implementation of the algorithm,

four matrices – A, B, R, and a temporary matrix Y – are

used. Matrices A and B incorporate redundant lower limits

vector a and upper limits vector b, respectively (lines 2-

3). Matrix R is set with values drawn from a unit uniform

distribution (line 4). In lines 5-7, the algorithm invokes the

QMC() (introduced later in Algorithm 3) to update the set of

tiles in the first row of matrices A, B, and Y . This loop can

be executed concurrently, with each task handling a single tile.

To propagate these changes to all the tiles in the next row, a

set of GEMMs operations are concurrently applied, as shown

in lines 10-13. The QMC() algorithm is once again invoked

for all the tiles in this row, as demonstrated in lines 15-17.

These procedures are repeated until the final row is reached,

resulting in the p probability vector for each column of tiles.

The final MVN probability, p, is computed as the mean of the

p vector (line 19).

(b)

(c)

(d)

Algorithm 2 Multivariate Normal Probability (PMVN) Inte-

gration Algorithm

1: function PMVN(a: lower limits; b: upper limits; L:

Cholesky factor; n: dimension; N : QMC sample size; m:

tile size)

2: A ← [a,a, . . . ,a] ∈ R
n×N

3: B ← [b, b, . . . , b] ∈ R
n×N

4: R ∈ R
n×N ;R(i, j)

i.i.d∼ U(0, 1)
5: for 0 ≤ k < N/m do � 
N/m� is # tile-by-column

6: QMC(L(0,0),R(0,k),A(0,k),B(0,k),p(k),Y (0,k))
7: end for
8: for 1 ≤ r < n/m do � 
n/m� is # tile-by-row

9: for r ≤ j < n/m do
10: for 0 ≤ k < N/m do
11: A(j,k) ← A(j,k) −L(j,r−1) · Y (r−1,k)

12: B(j,k) ← B(j,k) −L(j,r−1) · Y (r−1,k)

13: end for
14: end for
15: for 0 ≤ k < N/m do
16: QMC(L(r,r),R(r,k),A(r,k),

B(r,k),p(k),Y (r,k))
17: end for
18: end for
19: return mean(p)
20: end function

C. Quasi-Monte Carlo (QMC) Algorithm

Equation 3 shows that the parallelization of the algorithm is

feasible only across Monte Carlo (MC) chains. This limitation

arises because a′i, b
′
i, and yi are interdependent in an iterative

manner. Assuming tile-based A, B, and Y matrices within

a specific tile, each row relies on the preceding row for the

update process.

Algorithm 3 provides a mechanism to update a single tile

of p and Y while operating on m MC chains in total. For

simplicity, we assume all tiles have the same dimensions. The

algorithm requires one tile each for the lower Cholesky factor

L, the random matrix R, the lower and upper limits matrices

A and B, and the probability vector p, the random matrix

Y . In lines 3-7, we initialize the first row in a given tile

to compute a′1, b′1, and y1 in equation 3. In lines 8-15, we

simultaneously complete m steps for all the m MC chains.

The function does not provide a direct output, as the updates

to p and Y occur within the process and are propagated to

subsequent tiles during the subsequent steps in Algorithm 2.

In Algorithms 1 and 2, red boxes were added over spe-

cific lines to highlight the integration of task-based parallel

computation as follows: (a) Cholesky factorization, (b) and

(d) parallel QMC computations, and (c) parallel GEMMs.

The step (a) can be performed using both dense and TLR

computations. However, (b), (c), and (d) are only performed

in dense since A and B are non-admissable matrices.
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Algorithm 3 QMC for MVN probabilities Algorithm

1: function QMC(L: Cholesky factor tile; R: random matrix

tile; A: lower limits tile; B: upper limits tile; p: proba-

bility vector tile; Y : temp matrix tile)

2: m ← nrow(A) � Tile size

3: for 1 ≤ j < m do
4: A(0, j) ← A(0,j)

L(0,0) ; B(0, j) ← B(0,j)
L(0,0)

5: Y (0, j) ← Φ−1[R(0, j)·
{Φ(B(0, j))− Φ(A(0, j))}]

6: pj ← pj · {Φ(B(0, j))− Φ(A(0, j))}
7: end for
8: for 1 ≤ i < m do
9: for 1 ≤ j < m do

10: s ← L(i, 1 : (i− 1))Y (1 : (i− 1), j)

11: a′ ← A(i,j)−s
L(i,i) ; b′ ← B(i,j)−s

L(i,i)

12: Y (i, j) ← Φ−1 [R(i, j) · {Φ(b′)− Φ(a′)}]
13: pj ← pj · {Φ(b′)− Φ(a′)}
14: end for
15: end for
16: end function

V. RESULTS

This section evaluates the proposed implementation for the

MVN probability algorithm under various objectives. Initially,

we intend to gauge the performance in terms of time-to-

solution of the dense and TLR implementations on shared-

and distributed-memory systems. Subsequently, our focus is

on assessing the accuracy of the proposed framework in the

context of confidence region detection applications, encom-

passing both synthetic and real datasets. Lastly, our goal is to

evaluate the accuracy of TLR approximation in conjunction

with confidence region detection applications, considering the

compression level necessary to maintain the required precision

for the application.

A. Environment Settings

We assess the performance of our proposed framework

across various shared-memory architectures: a dual-socket 28-

core Intel Icelake 6330 running at 2.00 GHz, a dual-socket

64-core Intel Cascade Lake running at 2.30 GHz, a dual-

socket 128-core AMD Milan running at 2.00 GHz, and a

dual-socket 64-core AMD Naples running at 2.20 GHz. In

the distributed-memory experiments, we rely on a Cray XC40

system, Shaheen-II, at KAUST, with 6,174 dual-socket 16-core

Intel Haswell processors operating at 2.3 GHz. Each node in

this system is equipped with 128 GB of DDR4 memory. The

Shaheen system, boasting a total of 197,568 processor cores,

is backed by an aggregate memory of 790 TB.

We compile our software using gcc v10.2.0 and link it with

various libraries, including Chameleon, HiCMA, HWLOC

v2.8.0, StarPU v1.3.9, Intel MKL v2020.0.166, and NLopt

v2.7.0 for optimization.

B. Datasets

We use ExaGeoStat [30] to generate three spatial synthetic

datasets from the exponential kernel with the range parameter

equal to 0.033 (weak correlation), 0.1 (medium correlation)

and 0.234 (strong correlation). Each dataset contains 40,000
data points. The generated data comprise a set of locations

and corresponding measurements recorded at those locations.

We follow the synthetic data generation process in [17], where

6,250 samples under the additive noise N (0, 0.52) denoted as

y, are randomly selected from the original data for the sake of

computing the posterior covariance matrix Σpost as follows:

Σpost = (Σ−1 + (1/0.52)A�A)−1 (7)

where A ∈ R
6250×40000 denotes the indicator matrix, Σ is the

covariance matrix of x, and μpost is the posterior mean of x
which can be computed as:

μpost = μ+ (1/0.52)ΣpostA
�(y −Aμ) (8)

where μ denotes the mean of x. The posterior covariance

matrix Σpost can be used as input to Algorithm 1 (line 2) and

the posterior mean μpost can be used to update the a vector

in line 12.

We also present an analysis of wind speed data in Saudi Ara-

bia from 2013 to 2016 by [31]. The dataset consists of hourly

measurements aggregated into daily values across 53,362
locations. The focus of the study is to provide a quantitative

measure of wind speed on a specific day, specifically July 15,

2015. We performed postprocessing steps before applying the

confidence region detection algorithm to the data. First, we

computed the mean and standard deviation of the daily wind

speed, followed by standardizing the average wind speed on

the chosen day. We can then assume the wind field adheres

to a stationary Gaussian random field characterized by a zero

mean. Second, a Matérn kernel is fitted using ExaGeoStat on

the transformed field. The data and the estimated parameters

are inputs to the confidence region detection Algorithm 1

to delineate regions on the map with a 0.95 probability of

experiencing high wind speeds. The results include plots

illustrating the original plot, excursion sets derived through

the proposed methods, and the marginal probability map. The

comparison reveals that the marginal probability map differs

significantly from the collective excursion set, highlighting the

importance of modeling using multivariate normal probabili-

ties. Additionally, the excursion maps generated by the dense

and TLR methods exhibit consistency, with TLR being favored

due to its faster computation.

C. Qualitative Assessment

We aim to evaluate the accuracy of identifying confidence

regions using our proposed implementation for dense and TLR

computations. We employed synthetic and real datasets, as

elaborated in the following subsections. All the experiments

in this section rely on QMC sample size = 10,000, which

consistently yielded higher accuracy than smaller ones. In

the performance section, we show the performance of our

proposed implementations with different QMC sizes regardless

of the obtained accuracy.
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(c) Strong correlation (1, 0.234, 0.5).

Fig. 1: Confidence region detection accuracy assessment using 40K synthetic datasets generated in a regular grid with varying

correlation levels. The figure illustrates the accuracy of both dense and TLR results compared to MC results (MC error) and

the accuracy of TLR results compared to dense results.

1) Accuracy Assessment on Synthetic Datasets: For syn-

thetic dataset accuracy assessment, we use three datasets with

different properties, each consisting of 40,000 data points,

characterized by varying correlations, i.e., weak, medium,

and strong. The results are depicted in Figure 1. For each

correlation level, four images illustrate the detected regions

using marginal probability, detected regions employing the

confidence region detection algorithm, comparing dense and

TLR results with MC results (MC error), and comparing TLR

results with the dense results. An MC validation algorithm

can be used to validate the accuracy of confidence region

detection methods, such as the ones proposed in this paper.

This algorithm draws N samples from the fitted distribution,

where Ns represents the number of samples exceeding a given

threshold. The MC estimate of the confidence probability is

then expressed as p̂(α) = Ns/N , and it is expected that

p̂(α) ≈ 1−α if the confidence region is accurately estimated.

In the third column of Figure 1, we show the difference

1 − α − p̂(α) as a function of 1 − α, based on a sample

size of N = 50,000. The small discrepancy observed across

all α values is primarily attributed to the error associated

with the MC estimation of p̂(α); this error is unrelated to

the accuracy of our method. The two left-row graphs reveal

notable differences between the marginal probabilities and

the confidence region obtained through the MVN algorithm.

This underscores the significance of collectively evaluating

the multivariate normal (MVN) probabilities. In particular,

the confidence regions represent a subset where the joint

probabilities exceed 1− α.

In the two right-row graphs, a comparison is made between

probability results obtained from dense (red curves) and TLR

(blue curves) methods with results derived from naive MC

chains. These results maintain the same level of error as those

presented in [17] and are also an order of magnitude lower

than the second example in [2], which utilizes an approximate

posterior covariance matrix.

Additionally, we note that the difference between the re-

sults obtained from dense and TLR methods is minimal.
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To showcase these distinctions, we carried out experiments

using TLR with varying levels of accuracy. For weak and

medium correlations, an accuracy of 1e−1 is acceptable, with

discrepancies smaller than 1 × 10−3. As accuracy increases,

the gap between the two methods steadily diminishes in all

instances. When accuracy surpasses 1e − 3, the difference

becomes negligible enough to be ignored.

2) Accuracy Assessment on a Real Wind Speed Dataset: We

performed some data preprocessing on the wind data before

applying our algorithm, wherein we calculated the average

daily wind speed for all summer days between 2013 and 2016

in Saudi Arabia. Next, we compute the mean and standard

deviation of the summer wind speed over time. The July 15,

2015, wind speed record is then standardized by subtracting

the mean and dividing by the standard deviation. The standard-

ized data is subsequently fed into ExaGeoStat to estimate the

Matérn parameters, yielding the values (1, 0.005069, 1.43391).
In our analysis, we set the threshold value at 4 m/s following

[32]. Furthermore, we opt for a confidence level of 0.95. We

employ a dense tile size of 320, a TLR tile size of 980, and set

a maximum rank of 145, maintaining the TLR accuracy level

of 1e − 4. The experiment results are depicted in Figure 2.

Figure 2a illustrates the initial distribution of wind speeds

on July 15, 2015, highlighting elevated wind speeds in the

northern, eastern, and southwestern regions, varying from 2
m/s to approximately 12 m/s. Figure 2b displays the marginal

probability of wind speeds at various locations. However, the

results pose a problem, as a significant portion of Saudi Arabia

exhibits a probability greater than 0.8 of experiencing an

average wind speed exceeding 4 m/s on that particular day,

which is highly unrealistic.

To tackle this issue, we employ Algorithm 1 to identify

confidence regions. Figure 2c and Figure 2d depict these

confidence regions, focusing mainly on the mountainous areas

in the north, east, and west. Notably, the results obtained from

the dense and TLR versions exhibit substantial similarity. We

plot the differences between the dense and TLR results across

various probability levels to emphasize their distinctions. The

analysis reveals that the disparity is of the order of 1× 10−4,

further affirming the reliability of the TLR version as shown

in Figure 3.

D. Quantitative Assessment

Herein, we present the performance evaluation of our Multi-

variate Normal (MVN) probability implementation on shared-

and distributed-memory systems. The comparison includes

dense and Tile Low-Rank (TLR) approximations with varying

levels of accuracy, considering different MVN dimensions and

QMC sample sizes.

1) Performance on Shared-Memory Systems: We leverage

four distinct shared-memory architectures to evaluate the time-

to-solution of our PMVN algorithm (Algorithm 2) as stated in

section V-A. We operate on all the cores for each machine.

Performance curves on various architectures, with different

Multivariate Normal (MVN) problem dimensions and vary-

ing Quasi-Monte Carlo (QMC) sample sizes, are shown in

Figure 4. The dashed curve shows the performance achieved

with TLR approximation across various QMC sample sizes,

surpassing dense computation by up to 14X, 19X, 9X, and

20X on Intel Ice Lake, Intel Cascade Lake, AMD Milan, and

AMD Naples, respectively, as shown in table II. The table also

shows that TLR still can achieve better speedup than the dense

version with smaller QMC sample sizes, i.e., 100 and 1000.

System
QMC sample sizes

100 1000 10,000
56-core Intel Ice Lake 3X 3X 14X

40-core Intel Cascade Lake 3X 3X 19X

64-core AMD Milan 5X 5X 20X

128-core AMD Naples 2X 2X 9X

TABLE II: Speedup of TLR to dense implementations with

different QMC sample sizes on shared-memory systems.

The notable speedup achieved through the utilization of

TLR compared to dense computation comes from the fast

execution of the Cholesky factorization in the TLR format.

With a compression accuracy requirement of 1e−3, validated

above through accuracy assessments on synthetic and real

datasets, the small ranks of various tiles enable expedited

Cholesky factorization compared to the dense version.
Figure 5 illustrates the rank distributions of a 19,600 ×

19,600 matrix at a 1e − 3 compression accuracy. Most tiles

exhibit minimal ranks, facilitating a faster computation of the

Cholesky factorization operation. The settings employed align

with those detailed in Figure 1. Moreover, the figure shows

that the ranks exhibit a more pronounced degradation under

strong correlations than weak ones, which helps speed up the

execution when the correlation is stronger between different

locations.
To validate the accuracy of the detected confidence regions,

we use an MC validation algorithm as mentioned in V-C.

The execution overhead of the MC validation process on all

four machines above is shown in Figure 6 (average over 5

runs). However, because the MC validation is not a complete

algorithm to obtain the confidence regions, its execution time

should not be considered a part of our algorithm and is

unsuitable for comparisons.
2) Performance on Distributed-Memory Systems: To eval-

uate the effectiveness of our implementation on distributed-

memory systems, we rely on up to 512 nodes of a Cray XC40

system. In Figure 7, two sub-figures depict the performance on

two sets of nodes: 16, 32, 64, and 128, and 64, 128, 256, and

512. We experiment with varying the problem dimensionality

across different numbers of nodes. In the left figure, we

observe the efficiency of scalability for dense execution (repre-

sented by the red curves) across different node configurations,

scaling up to n = 360,000. The scalability of TLR (indicated

by the dashed blue curves) is also acceptable across various

node counts, although some performance degradation is shown

when utilizing 64 nodes. Table III shows the speedup of TLR

compared to dense using different numbers of nodes. The

speedup of TLR approximation execution compared to the
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Fig. 2: Results of summer wind speed data (on July 15, 2015) in the Middle East (Saudi Arabia).
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Fig. 3: Difference between dense and TLR results of summer

wind speed data (on July 15, 2015) in Saudi Arabia.

Number of nodes
Speedup using QMC

sample size = 10,000
16 1.8X

32 1.8X

64 1.4X

128 1.7X

256 1.3X

512 1.5X

TABLE III: Speedup of TLR to dense implementations on a

Cray XC40 system with different number of nodes. The most

accurate QMC sample size is used, i.e., 10,000.

dense computation is up to 1.8X. In the sub-figure on the

right, performance results for up to 512 nodes and 760,384
data points are presented. The figure demonstrates scalability

for both dense and TLR executions, except for the 256 nodes

configuration, which exhibits some performance issues at two

points. The maximum speedup achieved by TLR approxima-

tion execution compared to the dense execution in this sub-

figure is 1.7X.

Comparing the performance with shared-memory compu-
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(c) 64-core AMD Milan.
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(d) 128-core AMD Naples.

Fig. 4: Performance of one MVN integration operation on

multiple shared-memory architectures using dense and TLR

approximation.

tations, the dense computation in the MVN probability Al-

gorithm 2 takes more time than the Cholesky factorization

operation, which is the only part that can be computed in

either dense or low-rank format. This is why the differential

impact on performance is observed in the TLR version of

the algorithm on distributed-memory systems. According to

our experiments, the TLR Cholesky factorization within the

MVN probability algorithm only can achieve speedups of

5.2X, 4.5X, 2.6X, 3.1X, 1.9X, and 2.6X on 16, 32, 64, 128,

256, and 512 nodes, respectively, when compared to the dense

version.

273

Authorized licensed use limited to: KAUST. Downloaded on August 25,2024 at 10:18:59 UTC from IEEE Xplore.  Restrictions apply. 



3

4

3

4

4

4

4

5

4

5

4

4

4

3

5

7

10

27

47

980

4

5

5

4

5

4

4

5

5

5

4

6

6

5

22

10

13

66

980

3

5

5

4

5

5

5

7

8

7

4

6

8

5

21

27

65

980

4

4

4

5

5

4

5

8

10

37

3

5

5

3

5

47

980

4

5

5

5

8

5

5

7

37

8

5

23

22

5

8

980

4

4

5

4

5

3

3

3

4

3

7

10

26

48

980

4

4

5

5

5

3

2

3

3

3

10

13

67

980

5

5

7

8

7

3

3

4

5

3

26

66

980

4

5

8

10

38

4

3

5

8

4

48

980

5

5

7

38

8

3

3

3

4

3

980

4

4

4

3

5

7

10

25

47

980

4

6

6

5

23

10

13

66

980

4

6

8

5

23

27

67

980

3

5

5

3

4

47

980

5

22

23

4

8

980

7

10

26

48

980

10

13

67

980

27

66

980

49

980

980

Rank

[1,5]

[6,10]

[11,20]

[21,50]

[51,100]

[101,980]

(a) Weak correlation (1, 0.033, 0.5).
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(b) Medium correlation (1, 0.1, 0.5).
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Fig. 5: Rank distributions of a 19600× 19600 covariance matrix using a 980 tile size with Matérn covariance function under

three different settings when compressing the matrix using TLR approximation with accuracy 1e-3 (preserves the application

accuracy).
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Fig. 7: Performance of one MVN integration operation on a

Cray XC40 distributed-memory system using dense and TLR

approximation.

VI. RELATED WORK

Multivariate normal (MVN) probability frequently appears

in statistical applications, including the probability density

functions of several skew-normal [33], Bayesian probit mod-

els [19], and confidence regions detection problems [2], and

maximum likelihood estimation [12]. It can be defined as

a numerical integration problem with n dimensions, which

has a prohibitive computation when n is large. Computing

the MVN probability is a challenging task where quadrature-

based algorithms are impractical in higher dimensions. In

1992, Genz et al. [20] proposed a Monte Carlo-based solution

to reduce the complexity of computing the MVN probability

by applying a set of transformations to the original problem.

The proposed algorithm has O(n3) complexity to compute the

Cholesky factorization of n×n covariance matrix and O(n2) to

process a single MC sample. In the literature, many solutions

have been provided. For instance, Genton et al. [22] have

proposed a hierarchical quasi-Monte Carlo (QMC) method to

improve the underlying linear algebra operations to compute

the MVN probability. The provided optimization includes

compressing the covariance matrix using a hierarchical low-

rank approximation to reduce the complexity of processing a

single MC sample from O(n2) to O(mn + kn log(n/m)),
i.e., k is the rank of off-diagonal matrix blocks and m is

the inadmissible matrix blocks. In [34], the minimax tilting

method has been proposed as an efficient approximation to the

MVN problem, accurately estimating the required probability.

The minimax tilting method can improve the convergence rate

but requires an optimization step to O(n) parameters. In [35],

a two-step method has been proposed where the original MVN

probability is decomposed into a low-dimensional and high-

dimensional residual. However, this method can be used in the

case of orthant MVN problems with constant upper and lower

integration limits. The Multivariate Normal (MVN) probabil-

ity finds utility in various applications, including detecting

confidence regions. In such applications, the key objective

is identifying regions surpassing a specified threshold within

a given confidence level. These applications are prevalent in

medical [7], [9] and environmental sciences [36], [37].

VII. CONCLUSION

This study presents a novel mitigation of the problem of

the high complexity of utilizing MVN by proposing a parallel
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implementation of the SOV algorithm designed for manycore

systems. This implementation enables rapid computation of

MVN probability using dense and Tile Low-Rank (TLR)

approximation methods by relying on the StarPU dynamic

runtime system and advanced linear algebra libraries, i.e.,

Chameleon and HiCMA. Our proposed implementation has

been applied to the context of confidence region detection

applications, demonstrating its effectiveness in handling large

spatial regions encompassing up to 700K locations. Further-

more, our proposed TLR-based implementations exhibit a

notable speedup compared to the dense solution, achieving up

to 20X improvement on shared-memory systems. These en-

hancements come with high accuracy achievements compared

to dense solutions. We assess the accuracy of our implemen-

tation through confidence region detection applications using

synthetic and wind speed datasets.

In future work, we aim to incorporate multi- and mixed-

precision executions to enhance support for the MVN prob-

ability algorithm. The results obtained in this paper indicate

that the algorithm maintains the necessary accuracy even at

very low levels of TLR compression accuracy. Consequently,

we anticipate that lower-precision executions can expedite the

computation process with minimal impact on the required

accuracy. In such a scenario, the natural extension of this work

would involve GPU support, leveraging tensor core execution

for the underlying linear algebra operations.
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[33] E. González-Estrada and W. Cosmes, “Shapiro–wilk test for skew nor-
mal distributions based on data transformations,” Journal of Statistical
Computation and Simulation, vol. 89, no. 17, pp. 3258–3272, 2019.

[34] Z. I. Botev, “The normal law under linear restrictions: simulation and
estimation via minimax tilting,” Journal of the Royal Statistical Society.
Series B (Statistical Methodology), pp. 125–148, 2017.

[35] D. Azzimonti and D. Ginsbourger, “Estimating orthant probabilities of
high-dimensional Gaussian vectors with an application to set estima-
tion,” Journal of Computational and Graphical Statistics, vol. 27, no. 2,
pp. 255–267, 2018.

[36] T. P. Barnett, D. W. Pierce, and R. Schnur, “Detection of anthropogenic
climate change in the world’s oceans,” Science, vol. 292, no. 5515, pp.
270–274, 2001.

[37] S. Marsili-Libelli, S. Guerrizio, and N. Checchi, “Confidence regions
of estimated parameters for ecological systems,” Ecological Modelling,
vol. 165, no. 2-3, pp. 127–146, 2003.

276

Authorized licensed use limited to: KAUST. Downloaded on August 25,2024 at 10:18:59 UTC from IEEE Xplore.  Restrictions apply. 


