
Sustainably Modeling a Sustainable Future Climate
Rabab Alomairy1, Sameh Abdulah2, Qinglei Cao3, Marc G. Genton2, David E. Keyes2, and Hatem Ltaief2

1Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA,
rabab.alomairy@mit.edu

2Division of Computer, Electrical, and Mathematical Sciences and Engineering,
King Abdullah University of Science and Technology, KSA,

{Firstname.Lastname}@kaust.edu.sa
3Department of Computer Science, Saint Louis University, USA, qinglei.cao@slu.edu

Abstract—Voluminous highly resolved climate data requires
high-performance statistical modeling frameworks that are both
accurate and sustainable on modern supercomputing platforms.
Spatio-temporal modeling methods, such as Maximum Likeli-
hood Estimation (MLE), primarily rely on performing a dense
Cholesky factorization of large covariance matrices, which be-
comes a significant bottleneck at scale. We present an enhanced
version of ExaGeoStat, a high-performance geostatistical mod-
eling framework, designed to address this challenge through
tile-based matrix compression, mixed-precision arithmetic, and
architecture-aware scheduling. Building upon our previous work
on Fugaku, an Arm A64FX system, we extend our results to
three supercomputers featuring diverse hardware architectures:
Frontier (AMD MI250X GPUs), Alps (NVIDIA GH200 GPUs),
and Shaheen III (AMD EPYC Genoa CPUs). We demonstrate
that adaptive algorithms targeting low-rank and low-precision
opportunities can deliver up to 4× speedup, 2× memory
savings, and over 70% energy reduction while maintaining
application-acceptable accuracy. Our work demonstrates the
feasibility of running accurate climate-emulation workloads on
next-generation AI hardware in a power-efficient manner, thereby
advancing the sustainability of climate data science itself.

I. INTRODUCTION

Spatio-temporal statistical modeling with Maximum Like-
lihood Estimation (MLE) has shifted from data limitations
to computational challenges involving Cholesky factorizations
of large dense covariance matrices. This factorization is per-
formed within an optimization loop for estimating the model
parameters, requiring a different matrix to be processed at each
iteration. Given its quadratic memory complexity and cubic
computational cost for the number of correlated observations,
Cholesky factorization emerges as the primary bottleneck
when attempting to leverage the newly available massive
datasets from observations and simulations. This bottleneck
can be addressed effectively through massive parallelism, a
tile-based data structure for the matrix, adaptive tile rank,
adaptive tile precision, and a dynamic runtime system to
schedule tile operations and undertake the required conver-
sions, thereby minimizing memory footprint, data motion, and
computation while guaranteeing user-specified accuracy. A
practical implementation of this solution is provided by the
ExaGeoStat software [1].

The ExaGeoStat software was executed in 2022 on
Fugaku, the world’s leading supercomputer at the time, which

is a CPU-only system, as detailed in a 2023 publication [2]
that was a finalist for the 2022 Gordon Bell Prize. Since
then, supercomputer architectures have advanced significantly,
necessitating a reassessment of the implementation of MLE
for climate modeling and inference. Thus, in this work, we
integrate GPU support into our method by adopting a hybrid
execution model that assigns tile low-rank (TLR) computations
to CPUs and dense tile computations to GPUs. Further-
more, we incorporate mixed-precision (MP) techniques in both
dense and low-rank computations to enhance performance
and energy efficiency. To evaluate portability and architectural
adaptability, we port ExaGeoStat to three different systems,
utilizing MP arithmetic and TLR matrix approximations to
exploit the strengths of each hardware platform. The software
was first ported to Frontier, featuring AMD Instinct MI250X
GPUs and ranked second on the TOP500 list, then deployed
on Alps, ranked eighth and recognized as the top NVIDIA-
powered system with Hopper GPUs. To establish a modern
CPU baseline, it was also extended to Shaheen III (ranked
47th), enabling both MP and TLR+MP capabilities on dual-
socket, 96-core AMD EPYC Genoa processors.

Emerging supercomputer systems offer major improvements
in the sustainability of computing for climate applications,
but only if applications target the architectural sweet spots.
The main motivation for their high-performance low-precision
matrix engines is the training of neural network models. These
offer unprecedented efficiency, as measured in operations per
unit of energy. The system ranked at the top of the “Green500”
list has improved in energy efficiency by a factor of about
15 over the past decade. However, many climate models do
not utilize this hardware efficiently. Adapting scientific com-
putations to emerging AI-oriented hardware while preserving
application-worthy accuracy is a partial answer to the threat
to the climate posed by supercomputing itself. It is hardly
conscionable to exacerbate climate change while seeking to
respond to the need to understand the changing climate.
Indeed, our algorithmic advances – constituting a veritable
renaissance in computational linear algebra – apply in many
other domains beyond climate data sciences.

The intended impact of our application is to produce
actionable results that support decision-makers in drawing
inferences from spatial and spatio-temporal climate models.
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Such insights are critical for a wide range of real-world appli-
cations, including the optimal sizing and siting of renewable
energy infrastructure and storage based on solar and wind
availability, as well as temperature and weather variability on
the demand side. Our models also aid in crop planning by
capturing solar and precipitation cycles, inform the scheduling
and staffing of weather-dependent tourism operations, and
support preparedness for natural disasters and climate-related
healthcare emergencies. By enhancing the scalability and
efficiency of statistical climate emulation, our work enables
faster and more accurate responses to these pressing societal
and environmental challenges.

The ExaGeoStat software statistical modeling solution
has two steps: (1) a “training phase,” which consists of
applying MLE to fit the parameters of a statistical model using
data at space-time points from observation or first-principles
simulation and (2) an “inference phase,” called “kriging” in
statistics, which consists of estimating data at other points
where it is missing and required. We concentrate here on
the key computational kernel required for both phases: the
Cholesky factorization of the underlying covariance matrix,
which possesses as many rows and columns as the number of
spatio-temporal measurements that inform it.

In the literature, modeling based on ensemble averages of
first-principles simulations is a traditional means of delivering
the benefits mentioned above. It relies on fundamental physics
but suffers from inefficient utilization of modern hardware,
operating at a low fraction of peak performance due to
mismatches between memory bandwidth and computational
throughput. Moreover, it requires running many simulations
to achieve reliable statistical averages. In contrast, modeling
based on machine learning has emerged as a new approach
to achieving similar goals. While it relies less on first prin-
ciples, methods such as Physics-Informed Neural Networks
(PINNs) [3] can incorporate physical laws as regularizers
when desired. It suffers from the need to train a massive
number of parameters in a neural network – millions or billions
or beyond – with the risk of overfitting, in contrast to the
small number in statistical models. Indeed, neural network
training and inference are responsible for the lion’s share of
the compound annual growth rate in US electrical consumption
of approximately 18% between 2018 and 2023, with estimates
ranging up to 27% between 2023 and 2028.

Our statistical modeling of climate data, called emulation,
occupies a niche between simulation and machine learning.
Like simulation, it uses physical knowledge, in the form
of assumed correlation functions. Like machine learning, it
uses contemporary tensor-core intensive computer hardware
with high efficiency. All three approaches have value and
complement one another. Statistical emulation offers unique
advantages in terms of energy efficiency when paired with the
correct algorithm for the architecture.

II. BACKGROUND

Climate and weather data Zn are often modeled as real-
izations of a Gaussian random field. The underlying spatial

correlations are captured by a dense n× n covariance matrix
Σ(θ), defined via a parametric kernel C(h;θ), with separation
vector h between observations. MLE is used to estimate the
parameter θ by maximizing the Gaussian log-likelihood:

ℓ(θ) = −n

2
log(2π)− 1

2
log |Σ| − 1

2
Z⊤

nΣ
−1Zn, (1)

where evaluating the log-determinant and inverse requires
Cholesky factorization and scales as O(n3) in time and O(n2)
in memory. Prediction at m new locations is obtained from the
conditional Gaussian distribution of Zm given Zn:

Zm = ΣmnΣ
−1
nnZn. (2)

Here, Zm denotes the vector of unknown measurements
of size m, while Zn represents the vector of known mea-
surements of size n, and assuming that Zn has a zero-mean
function [1]. We accelerate these computations by integrating
MP arithmetic, TLR approximations, and GPU offloading into
a Cholesky-based solver, enabling efficient prediction.

All the optimizations we applied to the underlying linear
algebra operations leverage PaRSEC [4], [5], a task-based
runtime system designed for executing fine-grained computa-
tions on distributed, heterogeneous architectures. Representing
algorithms as Directed Acyclic Graphs (DAGs) enables asyn-
chronous, dependency-driven scheduling that minimizes idle
time and improves hardware utilization [6]. PaRSEC adapts
task placement based on architecture-specific characteristics
such as compute capability and memory hierarchy. To simplify
algorithm expressions, it offers Domain-Specific Languages
(DSLs); in this work, we use the Parameterized Task Graph
(PTG) model to describe dependencies compactly through
Job Data Flow (JDF) specifications, allowing for the efficient
generation and execution of tasks across computing resources.

III. RELATED WORK

Hierarchical matrix methods, including tile low-rank (TLR)
approximations, have become essential in scientific computing
for reducing memory usage and algorithmic complexity, espe-
cially in large-scale problems [7]–[9]. These methods exploit
the structure of the matrix by compressing off-diagonal tiles
up to a given accuracy threshold, enabling faster computations
with reduced resource demands. However, most existing TLR
approaches apply a uniform precision level across all tiles,
missing opportunities to further optimize performance through
precision-aware techniques.

To address this, [10] proposed a method that leverages the
Frobenius norm of individual tiles relative to the global matrix
norm to determine whether a tile can be safely computed
in lower precision. Our previous work [2] use this idea on
CPUs by combining mixed-precision with TLR to accelerate
the computations. More recent studies have applied this norm-
based precision adaptation to GPU architectures for dense
matrices [11], exploiting hardware accelerators like NVIDIA
and AMD. In this work, we advance the state of the art by
enabling hybrid CPU-GPU execution, where dense tiles are
offloaded to GPUs with adaptive precision, while low-rank
tiles are processed on CPUs. The PaRSEC runtime system
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orchestrates these computations, efficiently scheduling tasks
and managing data movement across heterogeneous resources.

IV. IMPLEMENTATION

A. A Hybrid MP/TLR Framework for Cholesky Factorization

MP algorithms have become central to modern scientific
computing, propelled by hardware advances originally de-
signed for AI and big data workloads [12], [13]. This synergy
has enabled substantial acceleration of large-scale scientific
problems, including research recognized by the Gordon Bell
Prize [14]–[16], and has demonstrated effectiveness in appli-
cations such as MLE-based climate prediction using Cholesky
factorization [17], [18]. TLR approximations offer a com-
plementary algorithmic strategy that reduces both memory
footprint and computational complexity by compressing off-
diagonal tiles up to a target accuracy threshold, preserving the
overall solution quality [19]. Traditionally, MP and TLR have
been applied separately, each providing distinct advantages:
MP accelerates computations via fast low-precision units,
while TLR exploits matrix data sparsity to minimize data
movement and resource consumption.

In this work, we combine these two paradigms within a
Cholesky solver. Specifically, we assign low-rank tiles, which
benefit from compression, to CPUs where memory bandwidth
and flexible data structures are more efficiently managed.
Dense tiles, on the other hand, are dynamically scheduled on
CPUs or GPUs depending on hardware availability, leveraging
MP execution to accelerate compute-bound operations and
exploit fast low-precision units on modern GPUs.

Our implementation extends the ExaGeoStat frame-
work [2], which we enhanced to support heterogeneous hard-
ware targets and multiple precision (FP64/FP32/FP16). To
manage the additional complexity introduced by heteroge-
neous data structures (dense vs. TLR), MP, and hybrid archi-
tectures, we rely on PaRSEC runtime system, which coordi-
nates task scheduling, manages dependencies, and orchestrates
execution across available resources. It also makes tile-level
decisions regarding data representation (dense or TLR) and
precision mode, adapting dynamically to runtime conditions
and user-defined accuracy requirements. Through this integra-
tion, we maximize concurrency and resource utilization while
maintaining the accuracy guarantees required by geostatistical
applications. This framework opens new opportunities for
high-resolution environmental modeling and prediction under
tight computational and memory constraints.

B. Precision- and Structure-Aware Runtime Decisions

We extend PaRSEC to incorporate both structure-aware and
precision-aware runtime decisions in the context of MP/TLR
Cholesky factorization. Earlier work [2] demonstrated the
benefits of MP and TLR on homogeneous CPU systems. We
unify these approaches into a single adaptive framework that
can target heterogeneous architectures, dispatching dense tiles
to CPUs or GPUs depending on resource availability and
suitability. We adopt a tile-centric heuristic guided by the
Frobenius norm of each tile relative to the global matrix norm.

In practice, this means PaRSEC monitors each tile’s contri-
bution to the matrix norm and selectively lowers precision
where error propagation remains within application tolerance.
Dense computational kernels handle on-the-fly data conversion
to match operand precision with the receiver side.

For structure-aware decisions, we implement heuristics to
assess tile rank before factorization. If a tile’s rank is too
high, indicating poor compressibility, it is converted back to
dense format. Conversely, low-rank tiles remain compressed,
thereby reducing both the memory footprint and computa-
tional cost. This approach couples precision- and structure-
aware decisions allowing PaRSEC to simultaneously balance
computational complexity, projected time-to-solution, and ac-
curacy requirements. The extended runtime also manages task
placement and scheduling across heterogeneous resources. It
monitors system load and hardware capabilities to dynamically
assign dense tiles with high compute intensity to GPUs or
CPUs, while coordinating data movement and precision ad-
justments transparently.

V. PERFORMANCE RESULTS

To illustrate the benefits of adapting a traditional algo-
rithm to emerging architectures, we conducted a series of
experiments on three systems beyond our original Gordon
Bell finalist submission [2] (which reported results on Fugaku
only). We generate synthetic matrices with varying correlation
strengths, based on the largest size that can be accommodated
in full precision in distributed memory. Maintaining that size,
we progressively weaken the correlations and observe how
much memory and time are saved by adapting the tiled matrix
data structure to the problem’s physics. We repeat the process
with successively smaller sizes to quantify how the savings
vary across different sizes. To gain a better understanding of
the context of this section, we recommend reading [2].

We performed experiments on ORNL’s Frontier supercom-
puter, ranked second on the TOP500 list1. Frontier comprises
9,472 nodes, each equipped with four AMD MI250X GPUs.
Each GPU is a multi-chip module containing two AMD
Graphics Compute Dies and four terabytes of flash memory.
Frontier has a theoretical peak performance of 2.06 EFlop/s in
double-precision (DP) operations. Alps at CSCS in Lugano,
Switzerland, is ranked eighth on the TOP500. While the
system offers diverse resources, we focus on the Grace-Hopper
partition, which consists of 2,688 CPU-GPU supernodes. Each
supernode includes four NVIDIA GH200 processors, each
featuring a 72-core Arm CPU and an NVIDIA H100 Tensor
Core GPU with 96 GB of HBM3 memory. This partition
has a theoretical peak performance of 353.75 PFlop/s in DP
operations. Finally, Shaheen III at KAUST, ranked 47th on
the TOP500, comprises 4,608 compute nodes, each equipped
with dual-socket, 96-core AMD EPYC processors, and offers
a theoretical peak performance of 39.61 PFlop/s.
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Fig. 1: Performance of the Matérn 2D space model with varying correlation levels (weak, medium, and strong) using 64/128/256
nodes of Alps with a total of 256/512/1024 GPUs, respectively.

A. Performance on GPU-based Systems: Alps and Frontier

Due to the lack of TLR implementations on GPU-based
systems, we apply only MP solution for our problem on Alps
and Frontier. To illustrate the memory savings achievable by
leveraging low-precision cores on modern GPUs, we generate
a series of model problems with random locations in a two-
dimensional domain. The realizations of random fields over
these observation points exhibit varying levels of correla-
tion that adaptive precision techniques can exploit. In spatial
statistics, the Matérn kernel is one of the most widely used
models for spatial data. It is defined by three primary statistical
parameters: variance (σ2), range (β), and smoothness (ν). For
further details, see [2]. In our study, we evaluate performance
across three different levels of correlation, as characterized by
β, to reflect the behavior of real-world datasets.

Performance results on Alps with GH200 Grace Hopper
GPU are shown in Figure 1 for different spatial correlations
and Figure 2 for a strongly correlated space-time kernel. We
focus on the strong kernel here, but weak and medium space-
time correlations also exhibit behavior similar to the spatial-
only kernel. A comparison of timings is provided in Table I.
For the AMD MI250X ORNL Frontier machine, Figure 3
illustrates the performance of the weak correlation space-time
kernel across various node configurations and problem sizes,
scaling up to a matrix size of 3.26M.

1) Memory Saving: Weaker correlations can exploit smaller
precisions, where full-precision mantissas would “fall off the
end” of arithmetic operations with disparate magnitude tile
arguments. This adaptation reduces memory requirements,
allowing larger datasets (in terms of the number of floating-
point words of all sizes) to reside higher in the memory
hierarchy. By gradually weakening the correlation from Strong
Correlation (SC) to Medium Correlation (MC) and finally to
Weak Correlation (WC), the memory efficiency improves.

With traditional full-precision as the baseline, on a system
with 64 nodes (256 GPUs), SC matrices save 20% of the
memory compared to full precision. Similarly, at 128 nodes
(512 GPUs), SC matrices save 12.5%, and at 256 nodes (1024
GPUs), they save 11%. These savings are meaningful and
allow larger matrices to fit into memory while preserving,

1https://TOP500.org/, June 2025
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taking into account the relatively strong spatial coupling.
Adaptive precision for MC matrices saves 40% memory at
64 nodes, 25% at 128 nodes, and 22% at 256 nodes. At 64
nodes, WC matrices achieve 80% memory savings, effectively
doubling the matrix size that can fit into memory compared
to full-precision. At larger configurations, WC matrices save
62.5% memory at 128 nodes and 67% at 256 nodes. Across
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TABLE I: Execution times for different correlation strengths
for the largest full-precision matrix across GPU configurations
on Alps.

Nodes GPUs Matrix
size

Time (s)
Dense
(FP64)

Time (s)
SC

(Dense+MP)

Time (s)
MC

(Dense+MP)

Time (s)
WC

(Dense+MP)
64 256 1.024M 159.27 134.84 114.05 74.95

128 512 1.64M 266.49 239.04 174.99 128.28
256 1024 1.84M 262.37 247.44 178.69 138.41

all configurations, WC matrices enable handling matrices up
to twice as large as those in full-precision without apprecia-
ble sacrifice in accuracy [2], showcasing their potential for
addressing large-scale problems.

2) Time Saving: An analysis of execution time for a matrix
of fixed dimensions on Alps, with precision adapted to vary-
ing correlation levels, reveals a clear trend of performance
improvement, as reported in Table I. SC matrices provide
modest speedups, with execution times reduced by up to 13%
compared to full-precision representation. MC matrices show
more substantial improvements, offering speedups in the range
of 26-34%. WC matrices achieve the most significant gains,
with execution times reduced by up to 52%, depending on
the system configuration. These improvements stem from the
reduced computational overhead associated with weaker corre-
lations, allowing more efficient data handling and computation.

At smaller scales, such as 64 nodes with 256 GPUs, the
performance benefits are most pronounced, with WC matrices
achieving execution times over 51% faster. Even at larger
scales, such as 256 nodes with 1024 GPUs, WC matrices
maintain substantial speedups of around 47%, highlighting
their scalability and efficiency. These results demonstrate that
WC matrices maximize memory savings and significantly
accelerate computation, making them an ideal choice for
large-scale systems where both performance and resource
efficiency are critical. By leveraging MP and adapting to the
correlation level, this approach enables faster computation for
large datasets while maintaining scalability across varying
hardware configurations. Figure 3 also reports a significant
performance gain when engaging matrix engines of AMD
GPUs on Frontier with low-precision computations using the
Dense+MP configuration on up to 256 nodes (a total of 2,048
GPUs), as opposed to Dense FP64 only, reaching up to a 4.1X
performance speedup.

3) Weak and Strong Scalability: Figure 4 illustrates the
weak and strong scalability on 256, 512, and 1,024 GPUs of
Alps. For weak scalability, the efficiency shows only a slight
drop, reaching 59% for strong correlation on 1,024 GPUs.
The results demonstrate good strong scalability, achieving an
efficiency of 63%, which is close to that of full-precision
computations (red line). We believe this performance can
be further improved by enabling CUDA-aware MPI within
the PaRSEC dynamic runtime system and leveraging Remote
Direct Memory Access (RDMA).
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Fig. 4: Weak and strong scaling of the Matérn 2D space-
time model with varying correlation levels (weak, medium,
and strong) on Alps using Dense+MP.

B. Performance on an x86-based System: Shaheen III

Introducing TLR into the MLE workflow accelerates com-
putation by applying low-rank approximations per tile. To
demonstrate the advantages of incorporating TLR, we adopt
the coupled (TLR+MP) algorithm on CPU-based systems,
specifically on Shaheen III, and augment our previous results
on the ARM-based Fugaku system. Like MP techniques, we
observe even greater benefits from TLR when the spatial cor-
relation is weaker than in scenarios with stronger correlations.

Figures 5 and 6, along with Table II, demonstrate the
performance of Shaheen III under varying correlation levels
in spatial and spatio-temporal scenarios. The results highlight
how TLR further enhances performance, making Shaheen III
competitive with the new GPU-based systems. Additionally,
we analyze the system’s energy consumption across different
scenarios to provide a comprehensive performance evaluation.

Figures 5 and Table II compare the times for various
problem sizes across node configurations (256, 512, 1,024,
and 2,048 nodes). For each configuration, we select the largest
matrix that can be accommodated within the memory of
the nodes using FP64 representation. The results show the
computation time for various correlation constraints (Strong
Correlation (SC), Medium Correlation (MC), Weak Corre-
lation (WC)) and computational approaches (Dense FP64,
Dense+MP, and TLR+MP). The results emphasize the per-
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Fig. 5: Performance of the Matérn 2D space model with varying correlation levels (weak, medium, and strong) across different
numbers of nodes of Shaheen III.

TABLE II: Execution times for varying correlation levels (SC, MC, WC) and algorithmic approaches (Dense FP64, Dense+MP,
and TLR+MP) for the largest full-precision matrix across different node configurations on Shaheen III, highlighting the impact
of MP on dense matrices (Dense+MP) and MP with TLR matrix approximation (TLR+MP) on performance.

Problem Time (s) Time (s): SC Time (s): MC Time (s): WC
# Nodes Matrix Size Dense FP64 Dense+MP TLR+MP Dense+MP TLR+MP Dense+MP TLR+MP

256 2.16M 2859 2847 1036 2180 921 1600 891
512 3.24M 4745 4742 1791 3009 1579 2649 1470
1024 4.32M 4910 4907 2213 4361 1906 3191 1767
2048 6.22M 6202 6207 3890 5575 3206 4962 2456

0.54M 1.08M 2.16M 3.24M 4.32M 6.22M
Matrix Size
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Dense FP64 - 256 nodes
Dense+MP - 256 nodes
TLR+MP - 256 nodes
Dense+MP - 512 nodes
TLR+MP - 512 nodes
Dense+MP - 1024 nodes
TLR+MP - 1024 nodes
Dense+MP - 2048 nodes
TLR+MP - 2048 nodes

Fig. 6: Performance of a strongly correlated Matérn 2D space-
time system on different numbers of nodes of Shaheen III.
(The top two curves overlap.)

formance improvements possible with successively weaker
correlations and applying advanced numerical techniques, such
MP and TLR compression, in reducing computational time.

The impact of correlation level is evident, with Weak Corre-
lation (WC) consistently achieving the shortest execution time.

As an example, at 512 nodes using MP, the SC matrix requires
4,742 seconds, the MC matrix takes 3,009 seconds, and the
WC matrix reduces this further to 2,649 seconds. Combining
MP with TLR compression (TLR+MP) significantly improves
performance. At 512 nodes, the WC matrix requires only
1,470 seconds with TLR+MP, compared to 1,791 seconds
for the SC matrix and 1,579 seconds for the MC matrix,
highlighting the combined advantages of adapting in precision
(exploiting smallness) and rank (exploiting smoothness) to
weaker correlations.

At 2,048 nodes, the combination TLR+MP delivers the most
significant improvements in time across all configurations.
Dense FP64 requires 6,207 seconds to solve a matrix of dimen-
sion 6.22M, serving as the baseline for comparison. Introduc-
ing MP, Dense+MP reduces the time for WC to 4,962 seconds,
achieving a 20% reduction compared to Dense FP64. Further,
applying TLR compression (TLR+MP) reduces the time even
further to 2, 456 seconds, representing a total improvement
of 60.4% compared to Dense FP64 and an additional 50.5%
reduction compared to Dense+MP. Figure 6 confirms similar
performance trends for the various configurations with spatio-
temporal scenarios in the presence of strong correlations.

These results highlight the remarkable effectiveness of
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TABLE III: Time to solution for weakly correlated systems
of similar problem size with a number of nodes appropriate
to the minimum memory required: Dense+MP on Alps and
Frontier, and TLR+MP on Shaheen III.

System # Nodes
# PUs
(GPUs/
CPUs)

Algorithms Matrix
Size Time (s)

Alps 256 1024 Dense+MP 3.07M 337.54
Frontier 256 2048 Dense+MP 3.26M 463.90

Shaheen III 2048 4096 TLR+MP 3.24M 497.94

TLR+MP in reducing computational overhead and improving
performance at large node counts. Combining MP and TLR
compression enables efficient scaling to handle larger matrices
while delivering significant reductions in time, making it a
compelling approach for high-performance computing at scale.

C. Performance Comparisons Across Systems

Table III shows performance comparisons across the three
systems: Alps, Frontier, and Shaheen III. With the algorithmic
solution, TLR+MP enabled with FP64/FP32 support only,
Shaheen III and its x86 technology can compete against
accelerator-based systems like Frontier with matrix engines for
low-precision computations, including FP16. For the minimum
node resources with the memory required to accommodate the
problem, Alps ultimately outperforms Frontier and Shaheen
III, thanks to the highest throughput for FP64/FP32/FP16
achieved via tensor cores.

D. Energy Saving

To demonstrate the impact of Dense+MP and TLR+MP on
energy efficiency compared to performing the entire computa-
tion in Dense FP64, we utilize a Matérn 2D space kernel for a
matrix size of 3.24M on 512 nodes of Shaheen III. The results
demonstrate substantial improvements in computation time
and energy consumption by adopting Dense+MP. Dense FP64
requires the highest energy consumption at 2,020 megajoules
(MJ) and a running time of 4,746 seconds. Switching to
MP (Dense+MP) reduces energy consumption to 1,065 MJ,
achieving a 47.3% improvement, and decreases computation
time to 2,650 seconds, representing a 44.2% reduction. This
demonstrates the efficiency of MP in lowering computational
and energy overheads while preserving accuracy.

Including TLR compression with mixed precision
(TLR+MP) further enhances these gains, reducing energy
consumption to 575 MJ, a total improvement of 71.6%
compared to Dense FP64 and an additional 46% reduction
compared to Dense+MP. The execution time is also reduced
to 1,471 seconds, representing a 69% reduction compared to
Dense FP64 and a 44.5% improvement over Dense+MP. These
findings highlight the compounding benefits of combining
MP and TLR compression.

VI. SUMMARY AND FUTURE WORK

We extend the spatio-temporal geostatistical modeling
framework ExaGeoStat in two directions that track evolving

opportunities in supercomputer architecture: the nearly ex-
clusive employment of GPUs on the world’s most capable
systems, supplying typically well over 90% of their peak
flop/s, and the shrinking precision of the highest-performing
matrix engines of these GPUs. These trends are welcoming
to MLE computations, particularly if memory working sets
can be compressed so that the data resides within the memory
available to the GPU. We demonstrate a tile-based algorithm
that can exploit the mathematical structure of the vast majority
of climate data sets, where, under proper ordering, the smooth
decay of correlations in space and time translates into low
rank in the vast majority of off-diagonal tiles and where the
small magnitude of such correlations further permits the use
of reduced precisions for a majority of such tiles.

We extend our demonstrations of these optimizations from
Fugaku in [2] to two of the world’s currently most interesting
architectures: NVIDIA Grace Hopper in Alps and AMD
MI250X in Frontier. We also compare them to the new AMD
Epyc Genoa CPUs in Shaheen III, equipped with large last-
level caches that can be leveraged with algebraic compression
via tile low-rank. The latter comparison reveals the additional
memory, time, and energy benefits from exploiting the TLR
structure of the covariance matrix. Porting this capability to
GPUs is a natural next step.

Adapting from default dense double precision to Dense+MP
and TLR+MP for Cholesky factorizations over the range of
covariance matrices considered yields dividends of up to 3–
4X in the three critical metrics of memory footprint, time-to-
solution, and energy. The performance opportunities available
from reduced rank and reduced precision do not, however,
extend indefinitely, because, after a point that depends on the
architectural balance of the nodes and the network, the costs
of data motion outweigh any further computational savings.
Tile size and desired accuracy are user-set parameters that
affect the potential gains from these algorithmic enhancements
of a default dense high-precision Cholesky. Tuning these
parameters to specific application-architecture combinations
can pay off handsomely, but such tuning is beyond the scope
of this short preface.
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