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Abstract In this work, we introduce an integrated depth measure for functional
data defined over complex multidimensional domains. We consider functional data
whose discrete realizations are irregularly spaced, and may be available only over
portions of the domain. To address this issue, we propose an integrated depth based
on a Voronoi tessellation of the multidimensional domain. This approach ensures
favorable statistical properties for the proposed depth, as well as computational
efficiency, enabling the analysis of large-scale functional datasets. We validate our
proposal with the study of air temperatures across the Earth surface, as provided
by the CESM2 Large Ensemble Community Project. The proposed depth is able to
capture the increase in global temperatures since the 1980s, coherently with global
warming.

1 Introduction

The data depth is a measure of centrality of a datum with respect to a distribution.
At first, it was introduced to establish an inward-outward ordering, and therefore
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a ranking, in the context of multivariate data [18, 9, 19]. Starting from the early
2000s [5], it was also generalized to analyze functional data [10, 11]. In addition,
the depth-induced rankings have allowed the solution of various statistical problems,
ranging from visualization and outlier detection [7, 16, 17] to hypothesis testing, as
well as clustering and classification [9].

The majority of the existing literature on functional data depth focuses on func-
tional data defined over one-dimensional domains. Only recently some authors have
started to focus on the problem of providing a data depth for functional data defined
over multidimensional domains, mainly considering simple two-dimensional planar
domains and hypothesizing the functional data observed on regular uniform grids
[6, 12]. However, many applications of interest concern data observed over com-
plex multidimensional domains and with measurement locations that are irregular in
space; furthermore, observations may be affected by some severe missing data pat-
terns. These problems may be handled naturally within the framework of functional
integrated depth, that has been recently extended also to partially observed func-
tional data over one-dimensional domains [3, 4]. However, the discretization of the
integrated depth needs to be handled cautiously, to guarantee favorable consistency
properties for real data sample. In this work, we propose to discretize the integrated
depth based on a Voronoi tessellation of the domain, which implicitly takes into
account the complex geometry of the domain, and also permits to correctly treat
irregular spatial measurements. The use of the Voronoi tessellation is also advan-
tageous in terms of computational efficiency. Indeed, while the existing functional
depth discretizations require the ranking (sorting) of the functional evaluations in
each measurement location [1, 13, 3], we only need to rank the evaluations in the
Voronoi seeds, significantly reducing the number of computations compared to the
full set of locations.

We illustrate our method with the analysis of Earth’s surface average yearly
temperatures over the period 1850-2100, as provided by the CESM2 Large Ensemble
Project [15]. The CESM2 Large Ensemble (LENS2) consists of a set of temperature
simulations at a 1-degree spatial resolution, covering the period 1850-2100 under
CMIP6 historical and SSP370 future radiative forcing scenarios. In this context, we
employ the proposed depth to study the evolution of average annual temperatures
between 1850 and 2014. Fig. 1 shows the average annual temperatures for the
years 1850 and 2014. By applying the proposed depth, we observe that temperature
functions have exhibited increasingly extreme behaviors since the 1980s. This finding
aligns with established knowledge about global warming, and demonstrates the
effectiveness of our method.

2 Integrated Functional Depth for Multidimensional Domains

Let D : Rx T — [0, 1] be a univariate depth that satisfies the conditions expressed
in [13], where I" is the space of distributions on R. These conditions are required
to guarantee the good properties of the overall integrated functional depth, and are
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Fig.1 Visualization of the annual average temperature (°C) field in 1850 and 2014 from the CESM2
Large Ensemble Project

encountered by the main univariate depths of interest, such as the halfspace depth
[18] and the simplicial depth [9]. Let Q c R< be the support of the functional data,
with d = 2, 3. In the application to temperature data introduced in Sec. 1, Q is the
Earth surface, a two-dimensional manifold embedded in R3. Consider a stochastic
process X : Q — R with law P. Let P, be the marginal distribution of X(p),
Vp € Q.

We consider a natural extension of the definition of the weighted integrated
functional depth, originally developed for a one-dimensional domain in [1]. Let ¢
be a positive continuous function on Q, ¢(p) > 0 Vp € Q. We define the following
weighting function:

¢(p)
Jo#(s)ds
We can thus define the Weighted Integrated Functional Depth (WIFD) for multi-

dimensional domains as follows. The Weighted Integrated Functional Depth of the
continuous function x : Q — R, with respect to P, is given by

we(p) = 1))

WIFD(x, P) = /Q D(x(p). Py)ws(p)dp. @

The weight function is used to weight differently different portions of the domain.
For instance, in the analysis of temperature across the Earth surface, we know
that the variability is reduced in water areas with respect to the inland, due to the
water’s thermal inertia, and we may wish to weight more either water or land areas,
depending on the target of the analysis. Notice that the weight function can also be
used to address partial observability in the functional data, as done by [3, 4] in the
context of univariate functional data over one-dimensional domains.
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2.1 Depth for Discrete Measurements

In practice the distribution P is not known in advance, and needs to be estimated
with a sample distribution. Let {X; : Q& — R};=;, ., be a set of i.i.d. stochastic
processes drawn from the distribution of interest P. Let P be the sample distribution
that assigns weight % to each X;, where n is the sample size, and let also 13,, be its
marginal distribution at p. The WIFD sample estimate is obtained by plugging P in
2).

Both the population and the sample versions of WIFD require the availability
of continuous functional observations. However, functional data are available only
through discrete measurements, and the integral in (2) needs to be approximated with
a discrete sum. In the existing literature for one-dimensional domains, this problem
has so far been addressed by assuming a common, regular measurement grid [14, 12],
therefore weighting each point equally. From a practical point of view, this approach
is equivalent to the vectorization of the functional data, therefore discarding the
information related to the spatial displacement of the measurements. When deal-
ing with multidimensional domains, the so obtained depth would be problematic
for various reasons. First, the curse of dimensionality imposes a significantly larger
number of measurement locations to observe each function with minimal accuracy.
Even if the functions were observed on a common set of locations — which is not
always the case — the computational burden of ranking functions for every location
quickly becomes prohibitive. Additionally, the measurement locations might follow
a highly irregular pattern, depending on the specific problem under consideration. In
such cases, assigning equal weights to all locations can disproportionately amplify
the influence of areas with a higher density of observations, skewing the overall
results. These factors collectively pose significant challenges in accurately and effi-
ciently determining functional depth measures for multidimensional domains. Such
difficulties can be solved by means of an appropriate discretization of the integral.

In this work, we consider a Voronoi tessellation of the multidimesional domain
Q; see, e.g., [2]. Voronoi tessellations can represent accurately complex multidi-
mensional geometries, including non-convex domains; moreover, they can be easily
obtained as the dual representation of triangular meshes, as shown in Fig. 2 for a
simple two-dimensional domain.

In order to approximate the depth’s integral, we represent the discrete realization
of the functional data with a step function, that takes as constant value, in each
Voronoi cell, the average of the datum’s measurements in the cell itself. Thus, the
point-wise depth in (2) is substituted in each cell by the univariate depth of n averages,
one for each functional datum. As a result, the discrete version of (2) is the sum of
the univariate depths computed in each cell multiplied by the Lebesgue measure of
the cell itself.

The approach can naturally handle different measurement grids across different
statical units, as well as irregular density of the measurement locations, without
overemphasis on the regions of the domain with more observations. For instance,
in the application to temperature data, the functions are measured on a regular
longitude-latitude grid (of size 55296), leading to much denser locations near the
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Fig. 2 Example of domain discretization in two dimensions. In the left panel, we show a detail
of the triangulation of a two-dimensional planar domain. In the right panel, we show instead the
corresponding dual Voronoi tessellation, where the edges of the Voronoi cells are depicted with
thicker linewidth with respect to the edges of the triangulation

poles with respect to the equator zone. Using a regular Voronoi tessellation of the
globe, instead of the point-wise observational grid, we avoid over-weighting the
contribution of the poles with respect to areas close to the equator. In addition,
the computational cost related to this formula is now depending on the number of
Voronoi cells, and no longer on the number of locations, allowing the analysis of
large data sets.

3 Application to LENS-CESME Temperature Data

The CESM2 Large Ensemble Community Project (LENS2) [15] is a publicly ac-
cessible collection of climate model simulations designed to enhance knowledge
of internal climate variability and climate change. Among the various simulations
available, we are interested in analyzing the set of surface temperatures in the pe-
riod 1850-2014. The data sample consists of 165 annual temperature simulations
observed at 1-degree spatial resolution, obtained under CMIP6 historical radiative
forcing scenarios. An example of such functions is depicted in Fig. 1. Given that
global warming has become to be evident from the late 1980s, we expect the temper-
ature functions to become more and more extreme after that time as whole functional
objects across the Earth surface. Therefore, we seek for validation from our methods
by applying the proposed depth to the aforementioned functional temperatures. In this
context, the domain is a two-dimensional sphere embedded in a three-dimensional
space. As anticipated above, the temperature surfaces are measured on a regular
longitude-latitude grid with 55296 locations.

We discretize the domain using a uniform triangulation of the domain of 13969
nodes, and the corresponding dual Voronoi tessellation. We then compute the pro-
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posed WIFD for the 165 functions using the univariate simplicial depth for D [9]. In

Weighted Integrated Functional Depth of Yearly Temperatures
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Fig. 3 WIFD computed with point-wise simplicial depth D for the Yearly Temperatures in the
period 1850-2014. Notably, the depth seems to decrease with time starting from 1980s on, and the
great majority of the most extreme years is clearly clustered in the last decade

Fig. 3 we show the depth associated with each annual temperature function against
the year. The data shows a noticeable decrease in depth starting from the 1980s,
signaling a trend of increasingly extreme air temperatures over time. This result
corroborates knowledge about global warming.

4 Conclusion

In this work we illustrated a functional depth for data defined on multidimensional
domains. Our proposal handles the difficulties related to the complexity of the domain
by means of a Voronoi-based integration. We apply the proposed depth to study the
global surface temperatures estimates for the years 1850-2014, showing that the
climate conditions have started becoming extreme in the last three decades.

There are several directions of research that could be explored, starting from this
work. One possible extension would be to exploit the weight function in (1) to handle
functional data that are only partially observable, similarly to what is done in [3, 4]
in the one-dimensional domain setting. Another natural extension of the proposed
depth goes toward functional vectors.
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