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Abstract

Parameter estimation with the maximum Lq-likelihood estimator (MLqE) is
an alternative to the maximum likelihood estimator (MLE) that considers the
q-th power of the likelihood values for some 0 < q < 1. In this method, extreme
values are down-weighted because of their lower likelihood values, which yields
robust estimates. In this work, we study the properties of the MLqE for spatial
data with replicates. We investigate the asymptotic properties of the MLqE
for Gaussian random fields with a Matérn covariance function, and carry out
simulation studies to investigate the numerical performance of the MLqE. We
show that it can provide more robust and stable estimation results when some
of the replicates in the spatial data contain outliers. In addition, we develop a
mechanism to find the optimal choice of the hyper-parameter q for the MLqE.
The robustness of our approach is further verified on a United States precipitation
dataset. Compared with other robust methods for spatial data, our proposal is
more intuitive and easier to understand, yet it performs well when dealing with
datasets containing outliers.
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1. Introduction
The Maximum Likelihood Estimator (MLE) has been one of the most powerful statisti-
cal methods widely used in various domains (Aldrich 1997). Its applications have been
extended across various fields, including econometrics (Greene 1980; Cramer 1989), ge-
netics (Shaw 1987; Beerli 2006) and geography (Elhorst 2005; Ree and Smith 2008).
The MLE has gained popularity for its asymptotic properties, such as consistency and
efficiency (see, e.g., Casella and Berger 2024). It also plays an important role in the
analysis of spatial and spatio-temporal data (Mardia and Marshall 1984; Gelfand et al.
2010), and in recent years, some tools have been developed to efficiently compute the
MLE for large-scale spatial data, for example ExaGeoStat (Abdulah et al. 2018) and
GpGp (Katzfuss and Guinness 2021).
However, when using the MLE with datasets containing outliers, the likelihood evalua-
tion might be largely distorted by these extreme values, and this can lead to inaccurate
estimation results (Chen et al. 2014). The maximum Lq-Likelihood estimator (MLqE)
proposed by Ferrari and Yang (2010) provides an effective way to address this problem.
Unlike the MLE which calculates the direct summation of the log-likelihood values at
each data point, the MLqE sums the q-th power of the likelihood values for some q < 1,
which down-weights the extreme values and leads to robust estimation. Ferrari and
Yang (2010) and Ferrari and La Vecchia (2012) established the asymptotic normal-
ity of the MLqE under some regularity conditions and provided the expression of its
asymptotic variance.
In this work, our aim is to employ the MLqE method to estimate the covariance pa-
rameters for replicated spatial data. We consider the replications of spatial data as
independent realisations of a random field over the spatial domain, and estimate the
parameters of the covariance function of the random field using the MLqE. The outliers
in this work are defined in the following way. Outliers are considered to be replicates
of the random field whose dependence structures are largely different from the rest of
the sample. The fraction of outliers in the data depends highly on the application and
can vary significantly; therefore, in the simulation experiments of this work, we con-
sider several different settings, where the fraction of contaminated data in the datasets
varies from 1% to 20%. We focus on Gaussian random fields with the Matérn covari-
ance function, which is one of the most influential models for spatial statistics. The
Matérn covariance function was proposed by Matérn (1960), and became popular later
after the work of Handcock and Stein (1993). It is used in many well-known tools in
R, such as RandomFields (Schlather et al. 2013) and fields (Nychka et al. 2021). A
comprehensive review of the application of the Matérn covariance function in spatial
statistics and many other related research fields can be found in Porcu et al. (2024).
There are several different widely accepted ways to parameterise the Matérn covariance
function; see Wang et al. (2023) for a comprehensive comparison of the three most pop-
ular parameterisations. In this paper, we adopt the following formulation of the Matérn
covariance function, which is the first type of parametrisation in Wang et al. (2023):

M(h; θ) = σ2

Γ(ν)2ν−1

(
h

β

)ν

Kν

(
h

β

)
. (1)

Here, h is the distance between a pair of spatial locations, and θ = (σ2, β, ν)⊤ is the
parameter vector that we aim to estimate in a robust way with our proposed method. Its
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components σ2, β, ν are the variance, range and smoothness parameters, respectively,
and Kν(·) is the modified Bessel function of the second kind of order ν.

In the literature, there have been various attempts to apply robust statistical methods
on spatial data. For example, Cressie and Hawkins (1980) proposed a robust proce-
dure for estimating the variogram of spatial data, and Hawkins and Cressie (1984)
also proposed a robust kriging method based on their previous work. Genton (1998)
proposed a highly robust variogram estimator and compared it with the one in Cressie
and Hawkins (1980), while showing that the latter is actually not strictly robust but
only less non-robust than the empirical variogram estimator. A comprehensive review
of classical robust methods for spatial data can be found in Lark (2000). Marchant and
Lark (2007) used the residual maximum likelihood for robust estimation of the vari-
ogram, which was based on the robustified MLE proposed in Richardson and Welsh
(1995) for linear mixed models. The latest approach proposed by Künsch et al. (2013)
is a robust method to estimate the external drift and the variogram of spatial data.
Their main idea is to replace the residual function with another bounded function of
the observations, so that the influence of outliers in the data can be bounded. Unfortu-
nately, their method is not very practical because it is not able to deal with large-scale
datasets. Indeed, in their numerical studies they only used datasets limited to a few
hundreds of locations, which is often not sufficient because the scale of modern spatial
datasets is getting very large. Hence, a robust likelihood-based method for estimating
the parameters of the spatial covariance function for large-scale datasets is lacking.

We first demonstrate how the MLqE diminishes the influence of outliers in the dataset
on parameter estimation results using a motivating example of precipitation data from
the United States retrieved from https://www.image.ucar.edu/Data/US.monthly.
met/USmonthlyMet.shtml. The detailed definition of the MLqE can be found in Sec-
tion 2. The dataset that we consider here contains hourly precipitation data from 1895
to 1997 recorded at thousands of observation stations throughout the country. In this
example, we consider the average hourly precipitation in the month of January from
1928 to 1997 recorded at 621 different monitoring stations located in the contiguous
United States. The coordinates of these locations are normalised to be within the 2-
dimensional unit square. We first conduct the parameter estimation using the MLE
and the MLqE with several different values of the hyper-parameter q, and then try to
remove the years in the data with the most outliers and redo the parameter estimation
using the MLE, to see whether the MLE after removing the outliers is closer to the
MLqE without removing the outliers for some q < 1. For the average January data for
each year, we first estimate the empirical variogram of the data, which is an empirical
function that describes the spatial dependence of the random field, using the R package
geoR (Ribeiro Jr and Diggle 2007); next, we find out the years for which the January
data behave differently from other years via a functional boxplot of the correspond-
ing empirical variogram, using the R command fbplot (Sun and Genton 2011). The
resulting functional boxplot for the January data of all the 70 years is shown in the
first sub-figure of Figure 1, where the dashed-curves represent the outliers identified
among the 70 empirical variograms. Here we identify 5 outliers in total. Additionally,
in the same plot, the black curve is the median of the variograms, and the purple area
represents the 50% central region. In the last three sub-figures of Figure 1, the blue
horizontal lines represent the MLE results with the original data, and the red dashed

https://www.image.ucar.edu/Data/US.monthly.met/USmonthlyMet.shtml
https://www.image.ucar.edu/Data/US.monthly.met/USmonthlyMet.shtml
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lines are the MLE results after removing the 5 outliers from the dataset, while the
black curves are the MLqE results without removing the outliers. The blue dots in
those sub-figures are the MLqE values for q = 1, which coincide with the MLE values.
We can see that the red dashed line intersects the black curve at a q < 1, which means
that the existence of outliers significantly affects the parameter estimation results, and
the MLqE is able to reduce their effect with a q < 1. It suggests that applying the
MLqE for some q < 1 is able to provide parameter estimation results that automati-
cally diminish the effect of outliers, without the need to identify and remove outliers
manually in the dataset beforehand.
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Figure 1: Plots from the motivating example of US precipitation data. In the first sub-
figure we present the functional boxplot of the variograms of the January precipitation
data, which we use to identify the outliers in the dataset. The remaining three sub-
figures present MLE and MLqE estimation results of the three parameters, variance
(σ2), range (β) and smoothness (ν), with the January data from 1928 to 1997. The
black curves represent the MLqE results with different values of q, and when q = 1
(indicated by the blue dot on the curve), the MLqE is the same as the MLE. The blue
horizontal lines and the red dashed lines denote the MLE results with and without the
outliers in the dataset.

In this paper, we first investigate the asymptotic properties of the MLqE in the scenario
of Gaussian random fields with Matérn covariance function. Then, we carry out simula-
tion studies to investigate the numerical performance of the MLqE with synthetic spatial
data, which demonstrate that the MLqE is able to provide a more robust and stable
parameter estimation in the presence of outliers. This observation is also corroborated
by experiments with real data. Next, we develop a methodology to choose the optimal
value of the hyper-parameter q for the MLqE. Since spatial data are often large-scale in
practice, we implement our method using the software ExaGeoStat, which provides a
high-performance computing framework for spatial and spatio-temporal data, making
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our implementation capable of dealing with large-scale data efficiently.
The remainder of this paper is organised as follows. Section 2 describes the proposed
methodology and provides some of its theoretical properties on Gaussian random fields,
with some of the corresponding proofs placed in Appendix A. We also present our
procedure of tuning the hyper-parameter q for the MLqE, as well as our algorithm
for computing the Lq-likelihood. In Section 3, we present the data generation method
and numerical results from simulation studies for synthetic data, and compare the
behaviour of the MLqE and the MLE on both clean data and contaminated data, while
some additional experimental results can be found in the supplementary materials.
The experiments on our mechanism for choosing the optimal value of q are included in
Section 3 as well. Section 4 expands the application of the MLqE on the precipitation
data in the United States. Conclusions and discussions are presented in Section 5.

2. Method

2.1. Maximum Lq-likelihood estimator
Let f1 and f2 be two probability density functions and X be a random variable whose
density exists. The q-entropy (Tsallis 1988) of f2 with respect to f1 is defined as

Hq(f1, f2) = −Ef1{Lq[f2(X)]}, q > 0, (2)

where

Lq(u) =

log u, if q = 1;
(u1−q − 1) /(1− q), otherwise.

(3)

The Maximum Lq-Likelihood Estimator (MLqE) is defined through the empirical q-
entropy, where we replace f1 and f2 in (2) by the empirical density and the density
of the parametric model, respectively. Consider an i.i.d. sample X1, . . . , Xn from the
distribution g(x; θ0) with parameter θ0 ∈ Θ ⊆ Rp for some integer p ≥ 1. The MLqE
for the true parameter θ0 is formulated as

θ̂ = arg max
θ∈Θ

n∑
i=1

Lq{g(Xi; θ)}, 0 < q ≤ 1. (4)

From this definition we can see that, when q = 1, the MLqE is exactly the same as the
MLE, because in this case the function Lq is nothing but the logarithmic function. In
addition, it can be shown that, when q → 1, if the MLqE θ̂ exists, it approaches the
MLE.

2.2. MLqE for Gaussian random fields
The main objective of this work is to apply the MLqE to spatial data with replicates.
We consider m sets of independent realisations of an identical zero-mean Gaussian
random field, with m > 1, denoted by {Zi(s) : s ∈ Rd}, where i = 1, . . . , m and
d ∈ Z+. Here, d denotes the dimension of the locations. For most geographical and
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environmental datasets, we have d = 2, and this will be the setting for all the datasets
that we use in the numerical experiments of this work as well. The spatial covariance
function of each of the Zis is assumed to be the Matérn covariance function shown
in (1). We consider the case in which all the m realisations of the random fields,
denoted by {Zi, i = 1, . . . , m}, are recorded on a fixed set of n locations, where n > 1.
Therefore, each Zi is an n-dimensional vector with identical zero-mean multivariate
Gaussian distribution with common probability density

f(z; θ) = 1
|2πΣM|1/2 exp

(
−1

2z⊤Σ−1
Mz

)
, z ∈ Rn, (5)

where ΣM is the n×n covariance matrix obtained from the Matérn covariance function
M(h; θ) in (1) based on the n locations.
It follows that the MLqE θ̂ defined in (4) for {Zi, i = 1, . . . , m} can be expressed as

θ̂ = arg max
θ∈Θ

m∑
i=1

Lq{f(Zi; θ)}, 0 < q ≤ 1,

where the function f is as in (5) and Lq is as in (3).
Define

U (z; θ) = ∂

∂θ
log f (z; θ) .

Then for {Zi, i = 1, . . . , m}, the MLqE θ̂ can alternatively be represented by the
solution of the following equation:

m∑
i=1

U(Zi; θ̂)f(Zi; θ̂)1−q = 0, 0 < q ≤ 1. (6)

2.3. Asymptotic properties
In this subsection, we prove the consistency and derive the asymptotic variance of the
MLqE for Gaussian random fields with Matérn covariance.
Note that the density function (5) can be rewritten as

f(z; θ) = exp
[
{η (θ)}⊤ b (z)− A (θ)

]
,

where we define

b (z) =
[

z
vec

(
zz⊤

)] , η (θ) =
[

0n

vec
(
−1

2Σ−1
M

)] ,

and A (θ) is a normalising constant. Recall that according to (1), the dimension of θ
is 3, which is smaller than the dimension of the vector η (θ) for any integer n > 1.
Therefore, f(z; θ) belongs to a curved exponential family, see p. 25 and Note 10.6 on
p. 79 in Lehmann and Casella (1998).
In Section 3 of Ferrari and Yang (2010), the asymptotic distribution theory for MLqE
was derived for full-rank exponential families. However, the parameters for curved
exponential families estimated via the MLqE also follow similar asymptotic normality as
derived in Theorem 3.2 in Ferrari and Yang (2010), and further generalised in Theorem
4.2 in the same article. Using these results, we have the following lemma and theorem.
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Lemma 1. Let qm > 0 satisfy qm → 1 as m→∞, and let the value of the underlying
parameter θ0 of the sample be an interior point of the parameter space Θ, which is
compact. Then, the probability that Equation (6) has a unique solution θ̂ converges to
1 as m→∞ and θ̂

P−→ θ0 as m→∞.

Proof. This lemma follows directly from Theorem 3.2 in Ferrari and Yang (2010).

Next, the following theorem states asymptotic Gaussianity of the MLqE along with the
form of the asymptotic dispersion matrix. Before stating the theorem, we first define
some necessary quantities for it. Let

U∗
n(Z; θ, q) =

(
1

(2π)n/2|ΣM|1/2

)1−q

exp
{
−1− q

2
(
Z⊤Σ−1

MZ
)}

×
[

1
2Z⊤Σ−1

M
∂ΣM

∂θ
Σ−1

MZ− 1
2tr

(
Σ−1

M
∂

∂θ
ΣM

)]
, (7)

V∗
n(Z; θ, q) = (1− q)

(
1

(2π)n/2|ΣM|1/2

)1−q

exp
(
−1− q

2
(
Z⊤Σ−1

MZ
))

×
[

1
2Z⊤Σ−1

M
∂ΣM

∂θ
Σ−1

MZ− 1
2tr

(
Σ−1

M
∂

∂θ
ΣM

)]2

+
(

1
(2π)n/2|ΣM|1/2

)1−q

exp
(
−1− q

2
(
Z⊤Σ−1

MZ
))

×
{[

1
2Z⊤Σ−1

M

[
∂2ΣM

∂θ2 − 2∂ΣM

∂θ
Σ−1

M
∂ΣM

∂θ

]
Σ−1

MZ
]

−1
2tr

(
−Σ−1

M
∂ΣM

∂θ
Σ−1

M
∂ΣM

∂θ
+ Σ−1

M
∂2ΣM

∂θ2

)}
, (8)

where ΣM, ∂ΣM/∂θ and ∂2ΣM/∂θ2 are functions of θ, but we drop the argument θ
for brevity. Here for any vector a, we denote the operation a⊗2 = aa⊤; in addition,
∂ΣM/∂θ is a p-dimensional vector of matrices, and ∂2ΣM/∂θ2 is a p × p matrix of
matrices, where p is the dimension of θ. Every element of ∂ΣM/∂θ and ∂2ΣM/∂θ2 is
an n× n matrix, and ∂ΣM/∂θ and ∂2ΣM/∂θ2 are defined as follows:

∂

∂θ
ΣM =

(
∂

∂θ1
ΣM, . . . ,

∂

∂θp

ΣM

)⊤

; ∂2

∂θ2 ΣM =


∂2

∂θ2
1
ΣM

∂2

∂θ1∂θ2
ΣM . . . ∂2

∂θ1∂θp
ΣM

... ... . . . ...
∂2

∂θp∂θ1
ΣM

∂2

∂θp∂θ2
ΣM . . . ∂2

∂θ2
p
ΣM

 .

The matrix operations involving ∂ΣM/∂θ and ∂2ΣM/∂θ2 are carried out element-wise
over the individual n×n matrix elements, so that U∗

n(Z; θ, q) is a p-dimensional vector
and V∗

n(Z; θ, q) is a p×p matrix. Define θ∗
m such that it satisfies Eθ0 [U∗

n(Z; θ∗
m, qm)] =

0. Also define Jm = Eθ0 [V∗
n(Z; θ∗

m, qm)], Km = Eθ0 [U∗
n(Z; θ∗

m, qm)U∗
n(Z; θ∗

m, qm)⊤].
We have the following theorem:
Theorem 1. Let qm → 1 as m→∞, and the parameter value θ0 of the sample be an
interior point of the compact parameter space Θ. Then,

√
m
(
J−1

m KmJ−1
m

)−1/2 (
θ̂ − θ∗

m

)
d−→ Np(0p, Ip) as m→∞.



8 Robust Covariance Estimation for Replicated Spatial Data

If
√

m(qm − 1)→ 0 as m→∞, then we have

√
m
(
J−1

m KmJ−1
m

)−1/2 (
θ̂ − θ0

)
d−→ Np(0p, Ip) as m→∞.

Here, 0p and Ip represent the zero vector of dimension p and the identity matrix of
dimension p× p, respectively. The proof of this theorem, as well as the expressions of
the derivatives ∂ΣM/∂θ and ∂2ΣM/∂θ2, are deferred to Appendix A.

2.4. Influence function
The robustness of the MLqE method was explored in Ferrari and La Vecchia (2012) for
multivariate observations using the influence function. Similar results can be obtained
for replicated spatial data in our setup, which we present here.

Lemma 2. Let the influence function for θ̂ be denoted by IFq(z, θ). Then,

IFq(z, θ) = −q−1J−1
m U∗

n(z; θ, q).

The proof of the lemma follows directly from the discussion in Section 3.2 in Ferrari
and La Vecchia (2012). Note that

min{|λi|}∥z∥2 ≤
∣∣∣∣∣z⊤Σ−1

M
∂ΣM

∂θ
Σ−1

Mz
∣∣∣∣∣ ≤ max{|λi|}∥z∥2,

where {λi} are the eigenvalues of Σ−1
M(∂ΣM/∂θ)Σ−1

M . Since for any q < 1,∫
∥z∥2 exp

{
−1− q

2
(
z⊤Σ−1

Mz
)}

dz <∞,

as exp[−{(1− q)/2}(z⊤Σ−1
Mz)] corresponds to the density of a Gaussian random vector,

we have
∥z∥2 exp

{
−1− q

2
(
z⊤Σ−1

Mz
)}
→ 0

as ∥z∥ → ∞. Therefore, it follows that the influence function IFq(z, θ) is bounded when
q < 1. On the other hand, when q = 1, which is the case of the MLE, the exponential
term in U∗

n(z; θ, q) vanishes, and hence IFq(z, θ) is unbounded. The boundedness
can be further verified by the sensitivity curves for the MLqE, which are presented in
Figures S1 and S2 in the supplementary materials.

2.5. Choice of q

Although smaller values of the hyper-parameter q can reduce the influence of outliers in
the data to a larger extent, it also results in higher variance and numerical instability, as
we will see from the numerical results in Sections 3.1 and 3.2. Therefore, a mechanism
for finding the optimal value of q is desired. The method we apply to tune the hyper-
parameter q is inspired by the one introduced in Ribeiro and Ferrari (2022), with the
idea of performing an adequate grid search. The goal is to find a sub-interval of (0, 1]
such that all values of q taken from this sub-interval lead to similar estimation results.
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For this purpose, we need to find a metric that jointly evaluates the three parameters
that we estimate.
The first option is to follow the idea in Ribeiro and Ferrari (2022), which is to stan-
dardise the parameter estimates with their corresponding asymptotic variance, and then
sum them up. Define an ordered grid of values for q, denoted by q0 = 1 > q1 > q2 >
· · · > qK > 0, and for each qk with 0 ≤ k ≤ K, denote the corresponding p-dimensional
MLqE by

θ̂qk
=
(
θ̂1

qk
, . . . , θ̂p

qk

)⊤
,

and define the corresponding vector of standardised estimates ζqk
as

ζqk
=
 θ̂1

qk√
m se

(
θ̂1

qk

) , . . . ,
θ̂p

qk√
m se

(
θ̂p

qk

)
⊤

,

where m is the number of replicates of the spatial data, and se(θ̂) denotes the asymptotic
standard deviation of θ̂ derived in Section 2.3. For 1 ≤ r ≤ p, se(θ̂r

qk
) is the r-th diagonal

entry of the matrix (
Jm(θ̂qk

)−1Km(θ̂qk
)Jm(θ̂qk

)−1
)1/2

.

Furthermore, we define the standardised quadratic variation (SQV) for each qk with
1 ≤ k ≤ K as

SQVqk
=
∥ζqk−1

− ζqk
∥

p
,

and choose the value of q based on this quantity.
The corresponding algorithm to find the optimal value of q, denoted by q∗, through
SQV, is shown in Algorithm 1. This algorithm basically follows what is proposed in
Ribeiro and Ferrari (2022) and aims to find an optimal q∗ such that the MLqE is
stabilised in a neighborhood of q∗. However, if no optimal value of q∗ can be found in
this way, the algorithm still returns q∗ = 1: we may not be able to obtain robustness
in this case, so we still choose the MLE to ensure stability.
However, directly summing up the standardised values of the parameters may not be
the best way to select q. Another option we consider is to make use of the function κ
defined as

κ(σ2, β, ν) = σ2β−2ν , (9)
which was proved in Zhang (2004) to be able to identify Matérn covariance parameters
under infill asymptotics. Therefore, compared to the previous option using the SQV,
the function κ is capable of providing an evaluation of the fitness of the model with the
estimated parameters. Moreover, the computation time using the function κ is much
faster, since computing the SQV requires computing the asymptotic standard errors of
the parameters, which is extremely time-consuming, as it involves a lot of complicated
large matrix operations.
Similarly to the previous option, for the parameter estimation results using each qk with
0 ≤ k ≤ K, we calculate the corresponding value of the function κ, denoted by κqk

.
The algorithm for finding the optimal value of q, denoted by q∗, through the function
κ, is shown in Algorithm 2.



10 Robust Covariance Estimation for Replicated Spatial Data

Algorithm 1: Tuning the hyper-parameter q with SQV.
Input : An ordered grid for q: q0 = 1 > q1 > · · · > qK = qmin > 0, a threshold for

the SQV: L > 0, a threshold for the difference between values of q: ϵ > 0.

while q0 − qmin > ϵ, do
Initialise q∗ ← 1;
Calculate SQVqk

for each k = 1, . . . , K;
if ∀k, SQVqk

< L then
q∗ ← q0;
break;

end
Let k∗ be the largest integer among 1, . . . , K such that SQVqk∗ ≥ L;
Define a new equally spaced grid for q: q0 = qk∗ > q1 > · · · > qK = qmin > 0;

end
Output: q∗

Algorithm 2: Tuning the hyper-parameter q with the function κ.
Input : An ordered grid for q: q0 = 1 > q1 > · · · > qK = qmin > 0, a threshold

coefficient: L > 0, a threshold for the difference between values of q:
ϵ > 0.

while q0 − qmin > ϵ, do
Initialise q∗ ← 1;
Calculate κqk

for each k = 0, . . . , K;
Calculate dκqk

= |κqk−1/κqk
− 1| for each k = 1, . . . , K;

if maxk{dκqk
} < L ·mink{dκqk

} then
q∗ ← q0;
break;

end
Let k∗ be the largest integer among 1, . . . , K such that dκqk∗ ≥ L ·mink{dκqk

};
Define a new equally spaced grid for q: q0 = qk∗ > q1 > · · · > qK = qmin > 0;

end
Output: q∗

In addition to the evaluation metric, another change we make here is that instead of
the fixed threshold in Algorithm 1, we apply a floating threshold based on the values
of κqk

, with a threshold coefficient L. In our simulation studies in Section 3, we set the
value of the coefficient L equal to 4.
In general, the results given by Algorithms 1 and 2 are quite similar, while the results
from Algorithm 2 are more stable than those of Algorithm 1, as will be shown in Section
3 through a comparison. Moreover, the computation using Algorithm 2 is much faster
than Algorithm 1 due to its simplicity. Therefore, in Sections 3 and 4, in which we
conduct numerical experiments on both simulated and real world datasets, we tune the
hyper-parameter q using Algorithm 2.
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2.6. Computations
The computation of the MLqE is implemented in the software ExaGeoStat (Abdulah
et al. 2018). To make computation easier and more compatible with the environment
in ExaGeoStat, while evaluating the Lq-likelihood, we first evaluate the log-likelihood
and perform an additional transformation on the log-likelihood if q ̸= 1.
From (5), the log-likelihood for a realisation Z of length n from a zero-mean Gaussian
random field with covariance matrix ΣM parametrised by θ can be expressed as

l(Z; θ) = −n

2 log(2π)− 1
2Z⊤Σ−1

MZ− 1
2 log |ΣM|.

Furthermore, from (3), the expression of the Lq-likelihood in this case is

Lq(Z; θ) =

l(Z; θ), if q = 1;
{exp[l(Z; θ)× (1− q)]− 1} /(1− q), otherwise.

The detailed Algorithm 3 for computing the Lq likelihood can be found in Appendix B.
In addition, as Ferrari and Yang (2010) pointed out, for a fixed q, the MLqE θ̂ would
converge to θ0/q in probability; therefore, a correction of the final estimation result
could be considered. However, these authors also mentioned that the numerical results
after the correction are not promising, a claim that was further confirmed by our own
experiments. Therefore, in all the numerical studies in this work, we directly consider
the estimation results without correction to be the MLqE results.

3. Simulation Study
In this section, we conduct simulation studies on the proposed method, in which we use
the software ExaGeoStat to both generate the data and estimate the parameters. The
optimisation algorithm we use for parameter estimation is BOBYQA (Powell 2009), which
is a bound-constrained algorithm without using derivatives embedded in ExaGeoStat.
In each of the experiments, we generate synthetic data from a zero-mean Gaussian
random field with Matérn covariance matrix ΣM parametrised by θ, with n locations
and m replicates, and the level of contamination r. If r = 0, then we are generating
clean data without outliers, which is used in Section 3.1; if r > 0, which means that
the synthetic data are contaminated by outliers and is used in Section 3.2, then we
generate the clean data first and add noises to parts of the data afterward. The detailed
Algorithm 4 is shown in Appendix B. In the rest of this section, we show the estimation
results of the variance, range and smoothness parameters in each setting. In addition,
we plot the estimated value of the function κ in (9), to evaluate the fitness of the
model with the estimated parameters. Throughout this section and the supplementary
materials, in the figures in which we show our experimental results, the “function κ”
refers to the function κ in (9). Moreover, for all the simulation experiments in this
section, we tune the value of q using Algorithm 2.



12 Robust Covariance Estimation for Replicated Spatial Data

0.8 0.9 0.95 0.975 1 s

0.
7

0.
9

1.
1

1.
3

Variance, with no outliers

q

σ̂2

0.8 0.9 0.95 0.975 1 s

0.
08

0.
12

0.
16

Range, with no outliers

q

β̂

0.8 0.9 0.95 0.975 1 s

0.
45

0.
50

0.
55

Smoothness, with no outliers

q

ν̂

0.8 0.9 0.95 0.975 1 s
6

8
10

14

Function κ, with no outliers

q

κ̂

Figure 2: The MLE and MLqE estimation results with no outlier in the data. The
red horizontal lines correspond to the true values of the parameters or the function κ
in (9). The blue vertical lines correspond to the value of q leading to the smallest mean
squared error (MSE), which in this case is q = 1 (MLE).

3.1. Clean data
First of all, we performed some experiments to compare the performance of MLqE with
MLE when there are no outliers in the simulated data.
In Figure 2, we show the experimental results with simulated data from the Matérn
covariance function with σ2 = 1, β = 0.1, ν = 0.5, which is essentially the exponential
covariance function with a medium spatial dependence strength. Here we simulate
the data with n = 1,600 locations and m = 100 replicates, and the experiment is
repeated on 100 different datasets generated from the same random field to make the
boxplots. We use red horizontal lines to indicate the true values of the parameters and
the function κ in (9), and blue vertical lines correspond to the value of q leading to the
smallest mean squared error (MSE). We can see that in this case the MLE is giving
the best performance in terms of both consistency and efficiency. We also notice that
when q is close to 1, the MLqE is converging to the MLE as expected.
However, in real applications, we do not have the luxury of performing parameter
estimation on different datasets from the same random field to find the value of q with
the smallest MSE. Therefore, we also conduct choice-of-q experiments using Algorithm
2 for each of the 100 datasets individually, to examine whether the optimal value of q
can also be found in this way. In the last column of each panel of Figure 2, denoted
by “s”, we present the boxplot of the parameter estimation results using the values of
q chosen by Algorithm 2, which have slightly larger bias than the MLE results with
q = 1. This is also what we expect as the compromise of using a robust method, i.e.,
that it results in slightly larger variability than the MLE when applied on clean data.
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Figure 3: The MLE and MLqE estimation results with the data contaminated by
noises generated from N(0, 1), with 1%, 10% and 20% probability respectively from
the first row to the third. The last column of each panel with the label “s” indicates
the estimation results using the q values selected using Algorithm 2. The values of q we
use here are 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.925, 0.95, 0.975, 0.99, 0.999, 0.9999, 1. The
red horizontal lines correspond to the true values of the parameters or the function κ
in (9), and the blue vertical lines correspond to the value of q leading to the smallest
MSE. The MLE (q = 1) results are indicated by the purple vertical dashed lines. In
the first row, the q values leading to the smallest MSE for variance and range are 1,
and in the corresponding figures the blue and purple lines overlap.

3.2. Contaminated data

Next, we test the performance of the MLqE and compare it with the MLE when there
are different types of outliers in the simulated data. For all the results shown here in
Figures 3 and 4, the data are generated from a Gaussian random field with the Matérn
covariance function with σ2 = 1, β = 0.1, ν = 0.5. Here also, we simulate the data with
n = 1,600 locations and m = 100 replicates, and the experiment is repeated on 100
different datasets generated from the same random field to make the boxplots. The
mechanism of contaminating the data is as described in Algorithm 4. However, since
we only have 100 replicates for each dataset, in the experiments in which the data are
contaminated with probability 1% (see the first rows of Figures 3 and 4) we actually
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Figure 4: The MLE and MLqE estimation results with the data contaminated by noises
generated from N(0, 9), with 1% probability in the first row and 10% in the second.
The last column of each panel with the label “s” indicates the estimation results using
the q values selected using Algorithm 2. The values of q we use here are 0.7, 0.8, 0.9,
0.925, 0.95, 0.96, 0.98, 0.99, 0.999, 0.9999, 1. The red horizontal lines correspond to
the true values of the parameters or the function κ in (9), and the blue vertical lines
correspond to the value of q leading to the smallest MSE. The MLE (q = 1) results are
indicated by the purple vertical dashed lines.

randomly select exactly 1 of the 100 replicates to be contaminated.
In the first row of Figure 3, where we only add noises from N(0, 1) to 1% of the data,
the MLE still performs well. For the variance and the range parameters, our hyper-
parameter tuning method suggests that q = 1 is the best choice. However, as we can
see from the rest of Figures 3 and 4, when we increase the proportion of data with
noises from N(0, 1) to 10% or 20%, the MLE results deviate significantly from the true
values. Nevertheless, even if q is only slightly smaller than 1, the MLqE results are
much closer to the true values, and q = 0.99 is suggested to be the best choice for these
two cases. For data with outliers generated by adding noises from N(0, 9) with 1% or
10% probability, as we show in Figure 4, since the magnitude of outliers is much larger,
smaller values of q are needed to provide better MLqE results, compared with the data
with added noises from N(0, 1) with the same probability. In addition, as before, we
use red horizontal lines to indicate the true values of the parameters and the function κ
in (9), and blue vertical lines correspond to the value of q leading to the smallest MSE.
The MLE (q = 1) results are indicated by the vertical purple dashed lines.
Furthermore, similar to Figure 2, in Figures 3 and 4, we still add one column to the
right of each panel labeled with “s”, to present the boxplot of the parameter estimation
results using the values of q chosen by Algorithm 2. The choice-of-q experiments are
conducted on each of the 100 datasets individually. We notice that in all three of these
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Figure 5: The histograms of the values of q chosen by Algorithm 2, with the same
synthetic data as in the experiments shown in Figures 2 to 4. The y-axes indicate the
frequency (in percentage) of the selected q.

cases, for most simulated datasets, the estimation results using the chosen q are similar
to the results using the value of q with the smallest values of MSE indicated by the blue
vertical lines. In Figure 4, since outliers in the datasets are generated in a relatively
extreme way, it is more often that the optimal value of q is not chosen, compared to
Figure 3. Nevertheless, despite those several extreme cases, Algorithm 2 is working
well and the resulting parameter estimation results are very close to the true values.
Experimental results with synthetic datasets from some other values of the true param-
eters (i.e., other strengths of dependence and smoothness) are presented in Figures S3
to S14 in the supplementary materials. In fact, the behaviour of the MLqE in those
experiments is similar to the results shown here in Figures 2 to 4. For clean data, the
MLE has the lowest bias and variability; the bias of the MLqE is also quite low as long
as q is not too small (generally not less than 0.95), while it is not as good as the MLE
in terms of efficiency. For contaminated data, the MLE is always biased for all cases,
while the MLqE with q between 0.97 and 0.99 generally gives fairly unbiased estimation
results.

3.3. Chosen values of q

In addition to the boxplots, we also present histograms of the frequency (in percentage)
of the chosen values of q using Algorithm 2 in Figure 5, with the same datasets that
we used to plot Figures 2 to 4.
For clean data, as expected, q = 1 is chosen for most simulated datasets, and among the
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Figure 6: Comparison of the MLE and MLqE of several different cases. In each of
the four sub-figures, from the left to the right, the four boxplots represent the MLqE
of the smallest MSE in the second row of Figure 3, the MLE (q = 1), the MLqE with q
selected by Algorithm 1 (“s1”), and the MLqE with q selected by Algorithm 2 (“s2”),
respectively. The red horizontal lines correspond to the true values of the parameters
or the function κ in (9).

rest, q > 0.99 is chosen for most cases, with q < 0.99 chosen only a very small number
of times. For contaminated data, in each of the five cases, the most frequently chosen
value of q is less than 1, which means the MLqE outperforms the MLE. When the
dataset is contaminated by noises from N(0, 9), the most frequently chosen value of q
would be smaller than for the dataset contaminated by the same fraction of noises from
N(0, 1). Moreover, the algorithm to tune q is designed in such a way that it chooses
1 if the MLqE results are too unstable, which explains why in the most extreme case
where the data contain 10% outliers generated by adding noises from N(0, 9), q = 1 is
chosen more frequently than the other cases of contaminated data. Those datasets for
which q = 1 is chosen also correspond to most of the outlying points in the columns
labeled “s” in the second row of Figure 4.
In addition, we present a comparison between the two methods of choosing q, namely
Algorithms 1 and 2, in Figure 6, using the same data as the experiment shown in the
second row of Figure 3. In Figure 6, we show the parameter estimation results with the
values of q chosen by Algorithm 1 (in the columns named “s1”) and Algorithm 2 (in the
columns named “s2”), together with the MLE results (q = 1) and MLqE results with
q = 0.99, which is the q leading to the smallest MSE in the second row of Figure 3. The
red horizontal lines correspond to the true values of the parameters or the function κ in
(9). Both Algorithms 1 and 2 are able to give quite unbiased estimation results, while
the results in “s2” are more stable than in “s1”, since there are many fewer outlying
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points. Further considering the massive advantage on computation speed of Algorithm
2 over Algorithm 1, in practice, it is recommended to apply Algorithm 2 to tune the
hyper-parameter q.

4. Precipitation Data Analysis
We return to the US precipitation data we used as a motivating example in Section
1. To eliminate the influence of missing data on our experiment, we select the data
from 1928 to 1997 on n = 621 observation stations whose data do not contain any
missing values for those m = 70 years. In addition, we extract the data of each month
in the dataset and study them separately, making 12 sub-datasets. For example, for
the experiment labeled “Jan”, we used only the precipitation data of January from
1928 to 1997 at all observation stations. In this way, it is reasonable to assume that
all the replicates (i.e., data from different years) in each experiment are from the same
distribution. Moreover, to remove the trend in precipitation, the data for each year are
centralised separately.
In Figure 7, we present the experimental results using the data. In each of the subplots,
the results corresponding to three consecutive months are presented for compactness.
The triplets of the months are formed based on seasons: December, January and Febru-
ary correspond to Winter, March, April and May correspond to Spring, June, July and
August correspond to Summer, and finally September, October and November corre-
spond to Autumn. In the first 3 columns, we show the estimation results using MLqE
with different values of q, while it degenerates to the MLE when q = 1; in the last
column, we show the estimated value of the function κ in (9). The values of q that we
use here are 0.9, 0.925, 0.95, 0.96, 0.97, 0.98, 0.99, 0.999, 0.9999, and 1. The dot on
each curve shows the optimal value of q selected for the data using Algorithm 2.
We can see from Figure 7 that, for all 12 months, the MLqE results with most values
of q < 1 are different from the corresponding MLE results. This observation indicates
that outliers exist in the 12 sub-datasets of the 12 months; otherwise the MLqE results
with q slightly smaller than 1 are expected to be similar to the MLE results. To
examine whether there are really outliers in all the 12 sub-datasets, we apply the same
method that we used to detect the outliers in the January data that we described in
Section 1, which is to first find the empirical variogram of the data from each year,
and then find out the years for which the data behave differently from other years via
functional boxplots using the R command fbplot. It turns out that outliers exist in
all of the 12 sub-datasets, which explains why the MLE and MLqE results with q < 1
are different for all the 12 months. In addition, we note that for the October data,
the optimal selected value of q is 1, because the MLqE results, especially for the range
parameter, cannot stabilise as q decreases, and the MLE is considered as the optimal
choice to ensure that we still have a reasonable estimation result. For the data for each
of the other months, the optimal values of q are all selected as a point such that the
curve of the estimation results becomes relatively flat in a neighborhood of it, which
means that stable MLqE results can be achieved using the values q close to this value.
We also present the MLqE results using the selected value of q, together with the
MLE results, in Table 1. Except for October, where the MLqE and MLE are identical
because q = 1 is chosen, the MLE overestimates the variance for all other months due
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Figure 7: The MLE and MLqE estimation results with different values of q, for the US
precipitation data of different months. Each column shows the plot of the estimation
of the same parameter or the function κ in (9), and each row shows the results for the
same months. The legends in the second column of each row apply to all sub-figures in
the same row. The dots on the curves indicate the values of q selected with Algorithm
2 and their corresponding estimation results.

to the presence of outliers in the datasets. Meanwhile, the MLE often underestimates
both the range and smoothness of the Matérn covariance function. For the 11 months
where the MLqE differs from the MLE, the range parameter is underestimated for 10
months and the smoothness is underestimated for 8 months. Outliers generally have
higher variance compared to non-outliers, and the noise in the data reduces the range
and smoothness of the random field. Consequently, the non-robust MLE tends to
overestimate variance while underestimating range and smoothness. In contrast, the
robustness of the MLqE provides estimates that more accurately reflect the true spatial
dependence of the datasets.

5. Conclusion
To conclude, both simulation and real data experiments have shown that the MLqE can
indeed outperform the MLE with the existence of outliers in the data. With a suitable
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Table 1: The MLqE results of the three parameters of Matérn covariance function (1),
σ2, β and ν, for the US precipitation data of all the 12 months, using the values of q
selected via Algorithm 2, followed by the MLE results of the same data.

q selected σ̂2 MLE β̂ MLE ν̂ MLE
Jan 0.95 15.94 28.85 1.614 1.080 0.119 0.098
Feb 0.95 13.54 20.57 8.797 1.099 0.094 0.096
Mar 0.925 8.908 22.69 16.92 0.799 0.042 0.087
Apr 0.925 8.329 20.73 1.835 0.621 0.037 0.076
May 0.95 13.59 23.62 0.467 0.408 0.059 0.064
Jun 0.95 18.49 25.09 3.906 0.371 0.060 0.053
Jul 0.925 18.61 22.62 1.230 0.283 0.069 0.044
Aug 0.95 15.42 23.92 3.998 0.360 0.034 0.048
Sep 0.95 12.16 26.46 0.354 0.401 0.039 0.064
Oct 1 23.82 23.82 0.810 0.810 0.077 0.077
Nov 0.925 8.765 26.70 2.712 1.395 0.069 0.085
Dec 0.925 8.725 28.93 4.730 1.580 0.054 0.095

choice of q, the parameter estimation results via the MLqE exhibit very low bias and
high efficiency, compared to the MLE, when the data are contaminated. On the theory
side, the MLqE holds desirable asymptotic properties as well. The mechanism of tuning
the hyper-parameter q for the MLqE that we developed was also proved to work very
well in our experiments. Moreover, our method can efficiently deal with data on a much
larger scale than in the literature, with the help of the high-performance computing
framework ExaGeoStat, which is extremely important for spatial data analysis.
A limitation of the current work is that the current method is only able to provide robust
estimation for spatial data with multiple replicates, since it can only treat some of the
replicates as outliers as a whole. An interesting follow-up work would be investigating
how to adjust this method so that it can be applied on spatial data with only one
replicate as well. Another possible extension of this work would be integrating the
proposed method with high-performance approximation methods for numerical linear
algebra, such as the tile low-rank algorithm and the mixed-precision method, so that
the MLqE can be further applied on even larger-scale datasets efficiently.
There are also several other possible extensions of the method presented in this work.
First, for convenience, here we only considered the case in which all the replicates of
the spatial data are from the same fixed set of locations. However, it is also possible
to apply the proposed method on replicated spatial datasets where the locations for
each of the replicates are not exactly the same, given that they are still from the
same region so that we are able to assume that those replicated data are essentially
from the same Gaussian random field. Second, we did not include the nugget effect
in the model. It is also possible to estimate the nugget effect together with the three
parameters in the Matérn covariance function that we considered, with some minor
modifications of the code. However, for the choice-of-q mechanism, since the nugget
effect does not appear in the function κ in (9), Algorithm 2 may not work that well
in this case. Furthermore, the methodology presented here can also be potentially
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adapted to estimate the parameters of non-Gaussian random fields, such as t-random
fields (Røislien and Omre 2006) or Tukey g-and-h random fields (Xu and Genton 2017).
These processes are useful to model non-Gaussian heavy-tailed or skewed spatial data.
In the present work, however, we concentrated on the more popular Gaussian process
with Matérn covariance function. In future work, the performance of this methodology
for non-Gaussian processes can be explored.
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A. Proofs

A.1. Proof of Theorem 1
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From (10) we get that the expression of U∗
n(Z; θ, q), which is the same as (7) in the

main text of this article, and it matches the quantity U∗(X; θ, q) defined in (2.6) in
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in Ferrari and Yang (2010).
Next,

∂2

∂θ2 Lq[f(Z; θ)] =
(

∂

∂θ
f 1−q(Z; θ)

)
∂

∂θ
log f(Z; θ) + f 1−q(Z; θ) ∂2

∂θ2 log f(Z; θ)

= (1− q)f 1−q(Z; θ)
(

∂

∂θ
log f(Z; θ)

)2

+ f 1−q(Z; θ) ∂2

∂θ2 log f(Z; θ).

We proceed to derive the expression of ∂2 log f(Z; θ)/∂θ2. Note that

∂2

∂θ2 log |ΣM| = ∂

∂θ
tr
(

Σ−1
M

∂

∂θ
ΣM

)
= tr

(
∂

∂θ

(
Σ−1

M
∂

∂θ
ΣM

))

= tr
((

∂

∂θ
Σ−1

M

)(
∂

∂θ
ΣM

)
+ Σ−1

M
∂2

∂θ2 ΣM

)
,

∂

∂θ
z⊤ΣMz = z⊤

(
∂2

∂θ2 Σ−1
M

)
z = −z⊤

(
∂

∂θ

(
Σ−1

M
∂ΣM

∂θ
Σ−1

M

))
z,



24 Robust Covariance Estimation for Replicated Spatial Data

∂

∂θ

(
Σ−1

M
∂ΣM

∂θ
Σ−1

M

)
=
(

∂

∂θ
Σ−1

M

)
∂ΣM

∂θ
Σ−1

M + Σ−1
M

∂

∂θ

(
∂ΣM

∂θ
Σ−1

M

)

=
(

∂

∂θ
Σ−1

M

)
∂ΣM

∂θ
Σ−1

M + Σ−1
M

∂2ΣM

∂θ2 Σ−1
M + Σ−1

M
∂ΣM

∂θ

(
∂

∂θ
Σ−1

M

)

= −2Σ−1
M

∂ΣM

∂θ
Σ−1

M
∂ΣM

∂θ
Σ−1

M + Σ−1
M

∂2ΣM

∂θ2 Σ−1
M

= Σ−1
M

[
∂2ΣM

∂θ2 − 2∂ΣM

∂θ
Σ−1

M
∂ΣM

∂θ

]
Σ−1

M ,

∂2

∂θ2 z⊤ΣMz = −z⊤
(

∂

∂θ

(
Σ−1

M
∂ΣM

∂θ
Σ−1

M

))
z

= z⊤Σ−1
M

[
−∂2ΣM

∂θ2 + 2∂ΣM

∂θ
Σ−1

M
∂ΣM

∂θ

]
Σ−1

Mz.

Hence,

∂2

∂θ2 log f(z; θ) = −1
2

∂2

∂θ2 log |ΣM| −
1
2

∂

∂θ
z⊤ΣMz

= −1
2tr

((
∂

∂θ
Σ−1

M

)(
∂

∂θ
ΣM

)
+ Σ−1

M
∂2

∂θ2 ΣM

)

−1
2z⊤Σ−1

M

[
−∂2ΣM

∂θ2 + 2∂ΣM

∂θ
Σ−1

M
∂ΣM

∂θ

]
Σ−1

Mz,

and it follows that

∂2

∂θ2 Lq[f(Z; θ)]

= (1− q)f 1−q(Z; θ)
(

∂

∂θ
log f(Z; θ)

)2

+ f 1−q(Z; θ) ∂2

∂θ2 log f(Z; θ)

= (1− q)
(

1
(2π)n/2|ΣM|1/2

)1−q

exp
(
−1− q

2
(
Z⊤Σ−1

MZ
))

×
[

1
2Z⊤Σ−1

M
∂ΣM

∂θ
Σ−1

MZ− 1
2tr

(
Σ−1

M
∂

∂θ
ΣM

)]2

+
(

1
(2π)n/2|ΣM|1/2

)1−q

exp
(
−1− q

2
(
Z⊤Σ−1

MZ
))

×
{[

1
2Z⊤Σ−1

M

[
∂2ΣM

∂θ2 − 2∂ΣM

∂θ
Σ−1

M
∂ΣM

∂θ

]
Σ−1

MZ
]

−1
2tr

(
−Σ−1

M
∂ΣM

∂θ
Σ−1

M
∂ΣM

∂θ
+ Σ−1

M
∂2ΣM

∂θ2

)}
.

Therefore, the expressions of Km and Jm defined in the statement of the theorem match
with Kn and Jn defined in (3.4) and (3.5) in Ferrari and Yang (2010), respectively, which
completes the proof with reference to Theorems 3.2 and 4.3 in Ferrari and Yang (2010).
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A.2. Expressions of derivatives
For practical use of Theorem 1, we need to evaluate ∂ΣM/∂θ and ∂2ΣM/∂θ2. Note
that ∂ΣM/∂θ and ∂2ΣM/∂θ2 are arrays consisting of the second-order derivatives of
the terms of ΣM with respect to θ. The terms of ΣM are of the form as in (1).
Then we have
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Here, Ψ(·) represents the digamma function.
For the cross terms:
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B. Algorithms
Here in Algorithm 3, we describe how we evaluate the Lq-likelihood for an observation
vector Z from a zero-mean Gaussian random field with Matérn covariance parametrised
by θ. The Cholesky factorisation, solving of the linear system and dot product are all
parallelised in ExaGeoStat.

Algorithm 3: Calculation of the Lq-likelihood.
Input : Observation vector Z of length n, parameter θ (initial value or the value

from the previous iteration of optimisation), the n locations.
Calculate the Matérn covariance matrix ΣM using θ and the locations based on
(1);

LL⊤ = ΣM: Cholesky factorisation;
Calculate Znew by solving the linear system LL⊤Znew = Z;
logdet← log |ΣM|;
prod← Z⊤

newZnew;
lq ← −0.5 · prod− 0.5 · logdet− 0.5 · n · log(2π);
if q ̸= 1 then

lq ← {exp[lq × (1− q)]− 1}/(1− q);
end
Output: The Lq likelihood value lq.

Algorithm 4: Generating synthetic data for simulation experiments.
Input : Fixed locations, true parameter θ, number of locations n, number of

replicates m, level of contamination r with 0 ≤ r < 1.
Calculate the Matérn covariance matrix ΣM using θ and the locations, based on
(1);

LL⊤ = ΣM: Cholesky factorisation;
for i in 1 : m do

Generate vector ei of length n from i.i.d. standard normal distribution;
Zi ← L · ei;
if r > 0 then

Generate ri from continuous uniform distribution between 0 and 1;
if ri < r then

Generate random noise vector zi of length n from i.i.d. normal (or other
reasonable distributions);

Zi ← Zi + zi;
end

end
end
Output: Realisations {Zi, i = 1, . . . , m}.
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In practice, since q is fixed throughout one single optimisation process, when q ̸= 1,
to simplify the calculation in the final step of the algorithm, we only need to let lq ←
exp[lq × (1− q)] instead of evaluating the full expression. Moreover, since the value of
the log-likelihood can be very small, the term exp[lq×(1−q)] is likely to be exactly 0 in
most computing systems when the number of locations n gets large. To solve this issue,
again in the final step of the algorithm, when q ̸= 1, we let lq ← exp[(lq + n)× (1− q)],
which means that we multiply the Lq-likelihood by the constant exp[n × (1 − q)], to
make the computation possible.
In Algorithm 4, we describe how we generate synthetic data from a zero-mean Gaussian
random field with Matérn covariance matrix ΣM parametrised by θ, with n locations
and m replicates, and level of contamination r.
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