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Abstract
The paper “Exploratory Functional Data Analysis” provides a comprehensive review
of recent exploratory approaches for functional data, highlighting the challenges posed
by the high dimensionality and complexity of these data objects. Here, we further
comment on challenging aspects for the exploratory analysis of these data, which
present opportunities for future research.

Keyword Phase variation of functional data · Partially observed functional data ·
Functional data over multidimensional and complex domains · Functional spaces
beyond L2

The paper by Qu, Dai, Euan, Sun and Genton provides a comprehensive review
of recent techniques for Exploratory Functional Data Analysis (EFDA), which are
fundamental in various real-world applications. It covers key statistical concepts of
robust statistics, like quantiles and depth measures. The study examines visualization
tools, including rainbow plots and functional boxplots, to enhance data interpretation.
It also explores outlier detection methods integrated with visualization for anomaly
identification. Additionally, the paper reviews clustering techniques for functional
data, differentiating between dense and sparse observations. The authors also discuss
future directions in EFDA, highlighting new challenges in visualizing and analyzing
evolving functional data types, such as functional time series, spatial functional data,
andwearable health data.We believe this paper serves as a highly valuable resource for
researchers and practitioners, providing guidance for their research directions, while
also offering a comprehensive literature review on EFDA.

Here, we aim to further explore the complexities of functional data, highlighting
some key challenges that present opportunities for future research.

(1) Phase variation of functional data The authors appropriately discuss the prob-
lem of potential misalignment of functional data (Marron et al. 2015); indeed,
if not accurately taken into account, the phase variability may blur subsequent
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analysis. Concerning functional outlier detection, while much interest has been
dedicated to various kinds of amplitude outliers, as extensively discussed by the
authors, less attention has so far been given to phase outliers (Vantini 2012). Even
with effective registration procedures that may resolve most phase outliers, some
observations may still show anomalous residual phase variability. This issue can
be addressed either by detecting outlying warping functions or by developing
appropriate methods based on robust statistics, such as depths, to identify curves
exhibiting abnormal behavior in both phase and amplitude. However, much still
remains to be done in this respect, especially in the case of multivariate func-
tional data. Additionally, when present, misalignment may affect all phases of
the exploratory data analysis, including, for instance, dimensional reduction and
clustering, fueling a very active literature; see, e.g., the recent review in Olsen
et al. (2018).

(2) Partially observed or incomplete functional data Partially observed functional
data refer to the fact that each functional datum in the sample may lack any
observation on extensive portions of the support. These data are also referred
to as incomplete or fragmented functional data, or functional snippets. Likewise
misalignment, also partial observability influences all phases of the exploratory
data analysis and must be appropriately accounted for. This has spurred a highly
active body of research, addressing sparse or partially observed functional data
from multiple perspectives. Key approaches include functional principal com-
ponent analysis [see, e.g., James et al 2000, Yao et al. 2005, Liu et al. 2017,
Palummo et al. 2024], mean and covariance estimation [see, e.g., Kraus 2015,
Liebl and Rameseder 2019, Lin and Wang 2022], imputation of missing data
[see, e.g., Kraus 2015, Delaigle and Hall 2016, Kneip and Liebl 2020], super-
vised and unsupervised classification [see, e.g., James and Hastie 2001, Delaigle
and Hall 2013, Stefanucci et al. 2018, Kraus and Stefanucci 2019], as well as
functional depth measures, as discussed by the authors. In this respect, we would
like to kindly correct the authors, by specifying that the depth measure introduced
in Elías et al. (2023), and further explored in Elías and Nagy (2024), can han-
dle functional data observed over different grids and different domains, without
requiring any common domain of observation, nor data that are fully observed.
While the setting partially observed and of sparse functional data has garnered
significant interest, as the authors rightly discussed in their review, much work
remains to be done on EFDA for this crucial data setting, which frequently arises
in real-world applications.

(3) Functional data over multidimensional and complex domains The authors
provide an extensive discussion onmultivariate functional data. However, another
increasingly relevant type of functional data in modern applications involves
functions defined over multidimensional and complex supports. Such data are
particularly common in medical imaging. For example, neuroimaging techniques
like functional magnetic resonance imaging (fMRI) and magnetoencephalogra-
phy (MEG) capture biological signals from the brain. In these cases, the functional
data are defined upon complex domains, such as the cortical surface or the gray
matter volume [see, e.g., Lila et al. 2016, Arnone et al.2023, Clementi et al. 2023],
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which are non-convex and multidimensional, posing significant challenges for
exploratory data analysis, particularly in terms of efficient visualization.

(4) Functional spaces beyond L2 The authors primarily focus on functional data
within an L2 space, but in many applications, functional data reside in different
functional spaces, requiring tailored exploratory data analysis techniques. For
instance, densities are a form of constrained functional data that belong to the
Bayes space (Van den Boogaart et al. 2014), necessitating specialized methods
for classification (Nerini and Ghattas 2007) and dimensional reduction (Hron
et al. 2016; Delicado 2011). Beyond densities, various other types of functional
data require alternative embeddings, as discussed in Marron and Alonso (2014);
Marron and Dryden (2021) and related works. To ensure accurate analysis and
meaningful insights, it is essential to align exploratory data analysis methods with
the specific functional space in which the data naturally reside.

We conclude by commending the authors for their work, which offers a thorough
review and valuable insights into EFDA. Finally, we extend our gratitude to the Editors
of TEST for the opportunity to comment on this work.
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