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Abstract—Modified Bessel functions of the second kind
are widely used in physics, engineering, spatial statistics,
and machine learning. Since contemporary scientific appli-
cations, including machine learning, rely on GPUs for ac-
celeration, providing robust GPU-hosted implementations
of special functions, such as the modified Bessel function,
is crucial for performance. Existing implementations of
the modified Bessel function of the second kind rely on
CPUs and have limited coverage of the full range of values
needed in some applications. In this work, we present a
robust implementation of the modified Bessel function of
the second kind on GPUs, eliminating the dependence on
the CPU host. We cover a range of values commonly used
in real applications, providing high accuracy compared to
common libraries like the GNU Scientific Library (GSL)
when referenced to Mathematica as the authority. Our
GPU-accelerated approach also demonstrates a 2.68X per-
formance improvement using a single A100 GPU compared
to the GSL on 40-core Intel Cascade Lake CPUs. Our
implementation is integrated into ExaGeoStat, the HPC
framework for Gaussian process modeling, where the
modified Bessel function of the second kind is required by
the Matérn covariance function in generating covariance
matrices. We accelerate the matrix generation process in
ExaGeoStat by up to 12.62X with four A100 GPUs while
maintaining almost the same accuracy for modeling and
prediction operations using synthetic and real datasets.

Index Terms—Modified Bessel function of the second
kind, GPU implementation, Tile-based matrix computa-
tions, Gaussian processes.

I. INTRODUCTION

The modified Bessel function of the second kind,
denoted as Kν(x), where ν represents the order and
x the argument, arises in a wide range of applica-
tions across mathematics, physics, engineering, spa-
tial statistics, and machine learning. For instance, in
physics and engineering, Kν(x) frequently appears in
solving PDEs in cylindrical symmetry with radially
decaying behavior. Examples include heat conduction,
damped wave propagation [1], electromagnetic fields in
cylindrical waveguides [2], and Schrödinger’s equation
in axisymmetry [3]. Similarly, in Gaussian processes,
Kν(x) is used in the Matérn kernel function, which is
widely used to construct correlation matrices that capture
spatial relationships between locations [4]. These diverse

applications emphasize the importance of efficient com-
putation of the Kν(x) function.

In the literature, three methods are widely employed
to compute the modified Bessel function of the second
kind across a broad range of values for x and ν [5]: series
expansions [6], continued fractions [7], and asymptotic
expansions [8]. The first expresses Kν(x) as an infi-
nite series that involves powers of x. This approach is
particularly effective for small x, where truncating the
series to a finite number of terms provides a highly
accurate approximation. The continued fractions method
represents the Bessel function as an infinite recursive
fraction. This method is suitable for larger x than is
the series expansion, but it remains computationally
intensive. An asymptotic expansion approximates the
Bessel function by capturing its dominant behavior as
x becomes very large. By neglecting lower-order terms,
this method efficiently describes the primary growth
trend. However, it lacks accuracy for small x, where such
approximations fail to converge effectively. Combining
these three methods and other less common approaches
can effectively cover a wider range of x and ν values.
Nevertheless, these techniques are computationally de-
manding and inherently sequential, posing challenges for
parallelization on modern architectures, such as GPUs.

In this paper, we adopt an integration-based method
proposed by [5] to compute Kν(x) for real order
ν ∈ R, denoted by BESSELK, and optimize it for
GPU implementation. This approach, implemented in
CUDA, is well suited for parallel execution, as it rep-
resents the BESSELK function using quadrature over
finite intervals. The key advantages of this method,
beyond its parallelizability, are its flexibility and its
ability to efficiently cover a reasonable range of x and
ν values. Our implementation has been integrated into
ExaGeoStat [9], a scalable geospatial data modeling
and prediction framework optimized for manycore sys-
tems, including modern GPUs. ExaGeoStat possesses
three functionalities: synthetic data generation, model-
ing, and prediction. Each of these operations requires,
at a minimum, the generation of a covariance matrix



of size N × N , where N represents the number of
spatial locations in its simplest form. The Matérn kernel
(or covariance function), which involves the BESSELK
function, is often used in Gaussian processes to construct
this covariance matrix.

Our contributions are summarized as follows:
• We present a highly efficient GPU implementation

of the BESSELK function, which addresses a critical
performance bottleneck encountered in numerous
scientific applications.

• We accelerate an integration-based algorithm using
a unified integral bound for BESSELK, enabling
efficient handling of a practical range of x and ν
commonly encountered in Gaussian processes on
the GPU.

• We combine the accelerated integration-based algo-
rithm with a series expansion to accurately compute
the BESSELK function for x < 0.1, where the
integral-based approach specifically underperforms,
making our solution more comprehensive.

• Our refined algorithm combines series expansion
and integration, both of which are established meth-
ods to approximate BesselK. However, to the best
of our knowledge, we are the first to deploy these
approaches on massively parallel GPU hardware
accelerators.

• We integrate the refined algorithm into the covari-
ance matrix generation step of ExaGeoStat and
evaluate its performance and accuracy against exist-
ing CPU-based implementations, such as the GNU
Scientific Library.

• We assess the accuracy of the proposed algorithm
to compute the BESSELK function against existing
approaches. Additionally, we evaluate its accuracy
and overall impact within the ExaGeoStat software
pipeline using synthetic datasets and a real-world
wind speed dataset for climate and weather model-
ing applications.

II. RELATED WORK

The modified Bessel function of the second kind,
Kν(x) or BESSELK, arises in the separation of variables
solutions of partial differential equations [10]–[12]. A
key feature of BESSELK is its rapid decay at infinity.
The function diminishes exponentially as x → ∞,
providing a basis for solutions that vanish at large
distances. Applications include heat conduction [13],
wave propagation [14], and stochastic processes [15].

BESSELK also arises in the widely used Matérn
kernel, a covariance function for Gaussian processes. The
Matérn kernel finds extensive applications across various
fields. In spatial statistics, it is used to model spatial
correlations [4]. In machine learning, it is particularly
valuable for Gaussian process regression and Bayesian

optimization [16]. In signal processing, it helps capture
correlations in time series and spectral analysis [17].

At least six different methods for BESSELK can be
identified in the literature; however, not all of these
methods are adopted in existing tools and libraries. (1)
Series Expansions [6]: Kν(x) can be expressed as an
infinite series in powers of x, which is truncated to a
finite number of terms when x is small. Most existing
libraries utilize series expansions for small x, including
MATLAB, Mathematica, GSL, SciPy, and Maple. (2)
Continued Fractions [7]: Kν(x) can be represented as
an infinite fraction with a recursive structure, particularly
suitable when x is moderate or large. This method is also
used in most existing libraries for moderate x values. (3)
Asymptotic Expansions [8]: This method focuses on the
dominant behavior of x as it becomes large, ignoring
lower-order terms, which reduces the accuracy for small
x. This method is also used in most existing libraries
for large x values. (4) Integral Representations [5], [18]:
Kν(x) is expressed as integrals. This method is flexible
and can work with small or large values of x. Some
libraries that rely on this method include Mathematica,
SciPy, and GSL. (5) Polynomial Fitting [19]: Polynomial
fitting approximates Kν(x), by fitting polynomials to
precomputed values of the function over restricted ranges
of x and ν. (6) Differential Equation Solvers [20]:
Numerical methods for solving differential equations,
such as finite difference schemes and Runge-Kutta meth-
ods [21], can be employed to compute Kν(x). These
solvers approximate the solution of Kν(x) by discretiz-
ing the domain and applying iterative algorithms to solve
the governing differential equation.

III. BACKGROUND

This section addresses the challenges in the modeling
of Gaussian processes and highlights the importance of
accelerating the computations of the BESSELK functions
to enhance the modeling procedure. Furthermore, we
provide an overview of the ExaGeoStat software and
its implementation, as a testbed to evaluate our novel
BESSELK implementation.

A. Gaussian Processes and Matérn Kernel

Gaussian process (GP) modeling is a probabilistic
machine learning approach that defines distributions over
functions and distinguished by its mean function m(x),
and covariance function C(x,x′), where x, x′ are lo-
cations. A commonly used method in Gaussian process
modeling is the maximum likelihood estimation (MLE).
In MLE, an optimization process iterates over a given
log-likelihood function to estimate statistical parameters
that describe the underlying data. This is achieved by
constructing a positive definite covariance matrix that



captures the correlation between different observations.
The log-likelihood function L(θ) is represented as:

L(θ) = −1

2

[
N log(2π) + log (|Σ(θ)|) + z⊤Σ(θ)−1z

]
,

where θ is a set of parameters to be fit, N is the number
of observations, Σ(θ) is the parameterized covariance
matrix, |Σ(θ)| is its determinant, and z is the vector of
observed data. The Matérn function serves as a funda-
mental component in spatial statistics, representing a sig-
nificant domain where Gaussian processes demonstrate
their utility, owing to its adaptability in characterizing
spatial correlation structures. Its parametric flexibility
enables precise modeling of spatial relationships across
diverse applications and datasets [4].

The Matérn function can be represented as:

C(x,x′) = M(r;θ) =
σ2

2ν−1Γ(ν)

(
r

β

)ν

Kν

(
r

β

)
,

where r = ∥x− x′∥ is the distance between two spatial
locations and θ = (σ2, β, ν)⊤, ν > 0 is a parameter that
controls the smoothness of the function, β is the length
scale parameter, σ2 is the variance, Γ(ν) is the Gamma
function, and Kν(·) is the modified Bessel function of
the second kind of order ν (BESSELK(x, ν)).

The BESSELK is the core in the generation of the co-
variance matrix when using the Matérn function, which
is required not only during the modeling process but
also for prediction tasks and the generation of synthetic
datasets [22], [23].

B. ExaGeoStat: A Parallel Tile-Based Framework for
Geospatial Data Analysis

ExaGeoStat is a high-performance software pack-
age for large-scale climate and environmental geostatis-
tics [9]. It evaluates the log-likelihood function for
spatial datasets using a range of covariance models,
including the Matérn covariance function. This en-
ables efficient parameter estimation and prediction for
large-scale spatial datasets by leveraging state-of-the-art
dense linear algebra libraries (e.g., CHAMELEON [24],
and DPLASMA [25]) and runtime systems (e.g.,
StarPU [26], and PaRSEC [27]). ExaGeoStat achieves
high performance across diverse hardware architectures,
including multicore CPUs, GPUs, and distributed sys-
tems. The software supports both exact and approximate
computations [28]–[31].

ExaGeoStat relies on tile-based algorithms to effec-
tively leverage the underlying runtime system to dis-
tribute tasks across available hardware resources. The
runtime system efficiently schedules the processing of
matrix tiles across computational units, maximizing per-
formance and resource utilization. All executions are
conducted exclusively on GPUs to further optimize the
performance of ExaGeoStat.

IV. ALGORITHM FOR BESSELK

Our BESSELK algorithm is built to compute a reason-
able range of x, and ν that covers a wide spectrum of
applications builds upon two existing methods: Temme’s
series expansion and Takekawa’s algorithm, reviewed,
respectively, in the following two subsections.

A. Temme’s series expansion

Most existing libraries rely on series expansions to
compute the BESSELK function when x is small [6].
Series expansions offer an efficient and accurate approx-
imation in this regime, with the series expressed as:

Kν(x) =

∞∑
k=0

ckfk, Kν+1(x) =
2

x

∞∑
k=0

ckhk, (1)

where

ck =
(x2/4)k

k!
, hk = −kfk + pk,

and pk and qk are recurrence relations defined as:

pk =
pk−1

k − ν
, qk =

qk−1

k + ν
.

The term fk is computed iteratively:

fk =
kfk−1 + pk−1 + qk−1

k2 − ν2
.

The recurrence relations are initialized with:

p0 =
1

2

(x
2

)−ν

Γ(1+ν), q0 =
1

2

(x
2

)ν

Γ(1−ν), (2)

f0 =
νπ

sin(νπ)

[
cosh(σ)Γ1(ν) +

sinh(σ)

σ
ln

(
2

x

)
Γ2(ν)

]
,

(3)
where σ and Γ1(ν), Γ2(ν) are precomputed constants
for the expansion.

The original formulation of Temme’s series expansion
in [6] does not provide sufficiently stable or accurate re-
sults for ν ≥ 1.5. The direct evaluation of p0, q0, and f0
for large orders of ν increases the error of this ap-
proximation method. To address these limitations and
improve numerical stability and accuracy, Campbell [32]
proposed leveraging the recurrence relation for large-
order ν = µ+M (where M = ⌊ν + 0.5⌋) of Kν(x).

This approach uses starting values Kµ(x) and
Kµ+1(x), with − 1

2 ≤ µ < 1
2 , and applies the forward

recurrence relation:

Kη+1(x) =

(
2η

x

)
Kη(x) +Kη−1(x). (4)

We employ Temme’s series expansion and the recur-
rence relation to evaluate the BESSELK function in the
small-x regime (x < 0.1).



B. Integral-based Algorithm (Takekawa’s Approach)

In [5], Takekawa introduced a method to compute the
BESSELK function using an integral approach. Kν(x) is
represented by the following integral from [33]:

Kν(x) =

∫ ∞

0

e−x cosh(t) cosh(νt) dt ∆
=

∫ ∞

0

fν,x(t) dt,

(5)
where x > 0 and ν ∈ R. This representation is
computationally intensive but provides accurate results,
especially for small and moderate x.

Takekawa worked with the logarithm of the integrand
e−x cosh(t) cosh(νt). Namely,

gν,x(t) = log cosh(νt)− x cosh(t). (6)

The first-order, and second-order derivatives of gν,x(t)
with respect to t are given by:

g′v,x(t) = v tanh(vt)− x sinh(t),

g′′v,x(t) = v2 sech2(vt)− x cosh(t).

At t = 0, we have gν,x(0) = −x and g′ν,x(0) = 0.
Consequently, if ν2 ≤ x, the function gν,x(t) will
always decrease, implying that the maximum value of the
function in Equation (6) occurs at t = 0, as g′′ν,x(0) ≤ 0.
In contrast, if ν2 > x, the function in Equation (6) will
reach its maximum at some t ≥ 0, since g′′ν,x(0) > 0.
More details are provided in [5].

To integrate Equation (5), the region where the max-
imum value of t, denoted as tmax, is located, can be
defined as the region where fν,x(t) ≥ ϵmachinefν,x(tmax),
where ϵmachine is the machine epsilon. This region can be
expressed as interval [t0, t1], defined as:
[t0, t1] = {t | gν,x(t) ≥ log(ϵmachine) + gν,x(tmax)}. (7)

Takekawa defines the integral range by determining tmax
from Equation (6). If ν2 ≤ x, then tmax = 0. Other-
wise, tmax can be found by searching within a specific
range of the function gν,x(t). Since g′ν,x(tmax) = 0 and
g′ν,x(t) < 0 for t > tmax, the range can be defined
as [2m−1, 2m], where m is the smallest value such
that g′ν,x(2

m) < 0. For a detailed explanation, refer to
the FINDRANGE algorithm in [5]. Afterward, the tmax
value can be obtained using binary search and Newton
methods; refer to the FINDZERO algorithm in [5].

The integration range is also determined using the
FINDZERO algorithm. To compute t0 (the lower bound
of integration), if ν2 ≤ x, then t0 = 0. Other-
wise, the FINDZERO algorithm is applied to find t0
within the range [t0, tmax]. For t1, the FINDZERO al-
gorithm is used similarly to search within the range
[tmax + 2m−1, tmax + 2m].

After determining t0 and t1, integration is performed
over the range using a fixed number b of bins. To

ensure numerical stability, the log_sum_exp function
is applied to gν,x(tm), resulting in:

logKν(x) ≈

gν,x(tmax)+ log

b∑
m=0

h exp
{
cm

(
gν,x(tm)− gν,x(tmax)

)}
.

(8)

Here, the parameters are defined as:

h =
t1 − t0

b
, tm = t0 +mh,

c0 = cn =
1

2
, cm = 1 (m = 1, . . . , b− 1).

Kν(x) can be obtained by taking the exponential.

C. The Proposed Refined Algorithm

Existing numerical libraries, such as MATLAB, SciPy,
and Boost C++, do not offer GPU support to evalu-
ate the BESSELK function, resulting in a significant
performance bottleneck for GPU-accelerated scientific
applications that depend on this function. Performing
BESSELK computations on the CPU while executing
other tasks on the GPU is highly time-consuming due
to the overhead of data transfers between the CPU
and GPU and the GPU’s superior parallel processing
capabilities compared to the CPU. Although Plesner et
al. [34] recently introduced a GPU-accelerated library for
BESSELK evaluation, its performance gains are limited.
Their implementation outperforms GSL only within the
parameter range (x, ν) ∈ (150, 4000] × (150, 4000] and
exhibits a relatively limited performance outside of this
range compared to GSL.

To address this gap, we propose a novel ap-
proach that advances the state-of-the-art in GPU-
accelerated BESSELK computation, delivering improved
performance across a reasonable parameter space. We
adopt the quadrature-based algorithm proposed by
Takekawa [5]. Although Takekawa’s algorithm demon-
strates substantial accuracy for large values of x and
ν, it notably lacks discussion of cases where x < 0.1,
a range frequently encountered in applications such as
spatial statistics. Our analysis reveals that within this
range, the integration algorithm exhibits a significant loss
of accuracy. Figure 1 shows a heatmap of the relative
error in Takekawa’s approach for x < 0.1, compared
to referential results obtained using Mathematica [35].
Following Takekawa in [5], we compute the relative
error (RE) at each x and ν as:

RE = log10

(
1 +

|Mathematica’s output − output|
εmachine

)
where εmachine = 2−52 ≈ 2.22 × 10−16 for double-
precision numbers.

We propose a novel algorithm for the BESSELK
function that extends the range of x values beyond those



Fig. 1: Relative error of Takekawa’s algorithm vs Math-
ematica for (ν, x) ∈ [0.001, 5]× [0.001, 0.1].

supported by Takekawa’s method. We refer to this en-
hanced approach as the Refined Algorithm. Furthermore,
we provide an efficient GPU-based implementation for
generating large matrices using BESSELK within the
ExaGeoStat software that relies on the StarPU runtime
system. Our key contributions to improving Takekawa’s
algorithm are summarized as follows:

1) Our algorithm simplifies the integral in Equation (5)
by setting the lower bound to 0, as reducing the range by
computing t0 and t1 is more computationally expensive
than extending the range on the GPU. 2) The upper
bound is set to a maximum value determined through
an empirical bound finder, ensuring applicability across
all x and ν ranges. 3) Instead of using the FINDZERO
algorithm to find a global tmax, as in Takekawa’s method,
we compute a local tlmax for each division within the
integral range, enabling faster computation. 4) To im-
prove accuracy, we increase the number of bins b in
the integral, which offsets the expanded range [t0, t1]
and leverages GPU computational power with minimal
performance impact. 5) For x < 0.1, we combine the
integral algorithm with Temme’s expansion, reducing the
relative error from 6.78682 in Takekawa’s method to
0.73180 in the refined algorithm, provided a sufficient
number of bins.

Algorithm 1 Empirical Upper Bound Finding

1: Given: X × V = [0, 140] × (0, 20], MBK(x, ν) the
reference level of LOGBESSELK using Mathematica, and
RBK(x, ν) := log

[∫ L

0
e−x cosh(t) cosh(νt) dt

]
, where

the integration follows the Equation (8).
2: for all (x, ν) ∈ X × V do
3: AE(x, ν)← |MBK(x, ν)− RBK(x, ν)| (Absolute

Error for (x, ν))
4: t1 ← minL s.t. maxx,ν AE(x, ν) ≤ 10−9

For x ∈ [0.1,∞), we use a refined version of
the integration algorithm proposed in [5] to evaluate
BESSELK. Instead of determining the integration range

[t0, t1] dynamically based on x and ν, we fix t0 = 0
and t1 = 9. We set t0 = 0 to match the starting point
of the integral, and through the empirical upper bound
finding algorithm, we establish t1 = 9 as the optimal
endpoint for parameters within (x, ν) ∈ [0, 140]×(0, 20],
which corresponds to the expected parameter range in
geospatial applications involving the Matérn kernel. To
elaborate on, in geospatial and machine learning studies,
we can always rescale the 2D plane inside a unit square,
whose maximum distance is

√
2. The typical starting

point of optimizing the β parameter in the Matérn
kernel is 0.01, which gives us the maximum x we have√
2/0.01 ≈ 140. We are choosing x ∈ [0, 140]. The

smoothness parameter ν controls the smoothness of the
data and has mathematical interpretation as the m-th
differentiability for integers m < ν. The case ν > 20
can be approximated by the squared exponential kernel.
Thus, choosing this study region is reasonable. Empiri-
cally finding the upper bound is shown in Algorithm 1.
This broader integration range may slightly increase
computational cost but improves GPU efficiency by
avoiding performance-degrading conditional branching.
Besides, this unified upper bound, no matter what (x, ν),
largely decreased the computational burden compared to
the original method, which determines the lower and
upper bound for each (x, ν) pair using Newton-based
zero-finders.

Algorithm 2 provides a detailed explanation of the
steps of our proposed algorithm. The inputs are the pair
(x, ν) to compute Kν(x). To define b, the number of
bins, increasing it can improve accuracy, but at the cost
of reduced performance, as the algorithm must identify
the local maximum point tlmax for each division. How-
ever, we observed that fixing the number of bins to 40
provides a balance, achieving an accuracy threshold that
ensures computational stability across different values of
x and ν. In Algorithm 2, Temme’s expansion method is
used to compute the Bessel function if x ≤ 0.1 (lines
3-7); otherwise, use Equation (8) to compute the Bessel
function using b bins (lines 8-13).

Algorithm 3 presents the pseudocode for the CUDA
algorithm used to generate a single tile of the covariance
matrix based on the Matérn covariance function and the
BESSELK function, using the refined algorithm. Using
the StarPU runtime system, the matrix is partitioned
into smaller tiles and each tile is assigned to a different
GPU to dynamically compute the full covariance matrix,
while handling the data transfer from host-to-device
and device-to-host. Memory allocation is handled via
StarPU to optimize data transfer performance between
the CPU (host) and the GPU. In lines 5-13, each GPU
thread processes a single tile value to compute the
BESSELK function based on the corresponding x value,
as described in Algorithm 2.



Algorithm 2 Refined Algorithm (BESSELK(x, ν))

1: Input: (x, ν) ∈ X × V , where X × V is the problem
region of evaluation of BESSELK

2: Given: b number of bins for numerical integration
3: if 0 ≤ x < 0.1 and ν ∈ V then
4: Set M = ⌊ν + 0.5⌋ and use µ = ν −M
5: Use Equation (2) and Equation (3) to initialize

p0, q0, f0 for smoothness µ
6: Set 15000 instead of∞ for the sum of Temme’s series

for Kµ(x) in Equation (1)
7: Use the recurrence relation

Kη+1(x) =

(
2η

x

)
Kη(x) +Kη−1(x)

until η + 1 = ν to acquire Kν(x)

8: else x ∈ X\[0, 0.1) and ν ∈ V
9: t0 ← LB (fixed to 0)

10: t1 ← UB (empirical upper bound for all (x, ν))
11: tlmax ← maxi=0,...,b ti
12: Use

logKν(x)← gν,x(tlmax)+

log

b∑
m=0

h exp
{
cm

(
gν,x(tm)− gν,x(tlmax)

)}
,

where h, tm, cm are given in Equation (8) and gν,x(·)
given in Equation (6)

13: Kν(x)← exp(log(Kν(x)))

14: Output: BESSELK(x, ν)← Kν(x)

Algorithm 3 GPU Single-Tile Matérn Covariance Gen-
eration Algorithm

1: function GENERATEMATÉRNCOVARIANCE(ℓ1x, ℓ1y , ℓ2x, ℓ2y ,
σ, β, ν,m, n) where ℓ1 and ℓ2 represents location vectors.

2: Initialize CUDA grid with dimension (m+8−1//m)∗
(n + 8 − 1//n) and block dimensions 8 × 8 (which
means 64 threads for each block)

3: Use starpu_malloc() for efficient CUDA mem-
ory allocation, enabling fast CPU-GPU and GPU-GPU
transfers.

4: Copy location vectors and parameters to GPU memory
5: for each thread (i, j) in parallel do
6: if i < m and j < n then
7: c← σ2/(2ν−1Γ(ν))
8: d←

√
(ℓ2x[j]− ℓ1x[i])2 + (ℓ2y[j]− ℓ1y[i])2)

9: r ← d/β
10: if r = 0 then
11: A[i+ j ×m]← σ2

12: else
13: A[i+ j ×m]← c · rν · BESSELK(r, ν)
14: Transfer back the generated submatrices and parame-

ters to CPU
15: Synchronize CUDA stream
16: Free the CUDA memory and destroy the CUDA stream

D. GPU Optimizations on Algorithm 2

Algorithm 2 is written for CUDA where threads are
collected in blocks of threads; 64 threads in our case
gained good performance. The threads in a block are
collected in warps of 32 threads, where each warp is
used for the Single Instruction Multiple Threads (SIMT)
execution model [34]. When naively parallelized on
GPUs, the i-th thread computes Kν(x) for the i-th input
value (xi, νi).

Specifically, the covariance matrix we target involves
computing the modified Bessel function for r/β, where
r represents the distance between two spatial locations,
and β is a fixed parameter during a single generation
operation. In our implementation, we ordered the spatial
locations using Morton’s ordering [36] to ensure that
distances within the same block remain close and con-
sistently follow a single branch of the if-else condition
in the CUDA implementation since we are operating in
a tile-based manner.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the implementation of
the refined BESSELK algorithm on the GPU within the
ExaGeoStat software, focusing on its impact in accel-
erating the computation of individual matrix elements
when millions to trillions of elements are computed. The
experiments focus on four main objectives: (1) Assessing
the accuracy of computing BESSELK for specific x
and ν values; (2) Analyzing the overall accuracy of
spatial statistical modeling using a synthetic dataset,
emphasizing our GPU-based implementation for matrix
generation across different spatial correlation levels; (3)
Validating the accuracy of the proposed implementation
in modeling real datasets within the context of climate
and weather applications; (4) Evaluating the performance
of full covariance matrix generation within ExaGeoStat,
using both single and multiple GPUs.

The implementation associated with this research,
which functions independently from the ExaGeoStat
framework and focuses exclusively on optimizing
BESSELK for the CUDA architecture, is available for
public access at: https://github.com/stsds/CuBesselK

A. Experimental Configuration

The results for the overall accuracy of the spatial
statistical modeling (Figures 4 – 7) are generated using
NVIDIA GV100 32GB with Intel Cascade Lake 256GB
CPU, each with 100 repetitions. The real dataset applica-
tion follows the same settings. Performance assessments
(Figures 9 – 12) use five repetitions for benchmarking.
We use NVIDIA GV100 32GB and NVIDIA A100
80GB GPUs with Intel Cascade Lake CPU. For Exa-
GeoStat, we use CUDA 11.8, gcc 11.2.1, CMake 3.24.2,
OpenMPI 4.1.4, OneAPI 2022.3, and StarPU 1.3.11.



B. Relative Error Analysis Against Mathematica

For accuracy assessment, existing work on implement-
ing the BESSELK function often uses Mathematica’s
BesselK[nu, x] as the benchmark. In this study, we
compare the performance of the GSL library, Takekawa’s
algorithm, and the refined algorithm against Mathemat-
ica. The relative errors for various values of x and ν are
presented as a heatmap. The heatmap spans the region
(ν, x) ∈ [0.001, 20]×[0.001, 140], which adequately cov-
ers the parameter range relevant to Gaussian processes.

Figure 2 presents three heatmaps for the target region
using the three implementations. As shown, the relative
errors of the LOGBESSELK in Takekawa’s algorithm
are larger than those of GSL and the refined algorithm,
with a maximum error of 6.54807. This is mainly due
to the uncovered region where x < 0.1. GSL and
the refined algorithm exhibit very close relative errors,
with values of 1.67896 and 1.65466, respectively. To
highlight the advantages of our method over Takekawa’s
method for x ≤ 0.1, we further zoom into the region
(ν, x) ∈ [0.001, 5]× [0.001, 0.1] in Figure 3.

(a) Takekawa’s algorithm. (b) Refined algorithm.

(c) GNU Scientific Library.

Fig. 2: LOGBESSELK accuracy comparisons using
heatmap for (ν, x) ∈ [0.001, 20]× [0.001, 140].

C. Spatial Data Modeling Accuracy within ExaGeoStat

Estimating the relative error of the Bessel function for
each pair (x, ν) is crucial to evaluate the effectiveness
of a given implementation. However, beyond this, the
function BESSELK, which is buried within a kernel to
generate a matrix, can affect the accuracy of subsequent
matrix operations if the accumulated error from differ-
ent calculations becomes significant. We integrate our

(a) Takekawa’s algorithm. (b) Refined algorithm.

(c) GNU Scientific Library.

Fig. 3: LOGBESSELK accuracy comparisons using
heatmap for (ν, x) ∈ [0.001, 5]× [0.001, 0.1].

implementation into ExaGeoStat to generate the Matérn
kernel covariance matrix to assess this point. We use
the modeling process in ExaGeoStat, specifically MLE
with gradient-free optimization, which requires multiple
iterations to converge and generate a set of estimates of
the parameters σ2, β and ν that effectively describe the
underlying field.

The accuracy of the MLE operation is typically eval-
uated using simulations in which synthetic data are
generated [37]. We use synthetic data generated within
a 2D space, as described in [38]. We assess the accuracy
of the modeling results across three representative sce-
narios commonly encountered in spatial statistics. These
scenarios were characterized by different levels of spatial
correlation: weak (β = 0.03 and β = 0.025), medium
(β = 0.1 and β = 0.075) and strong (β = 0.3 and
β = 0.2), for two different levels of smoothness, rough
field (ν = 0.5) and smooth field (ν = 1), respectively.
The variance was fixed at σ2 = 1 in all experiments.

Figures 4a – 4f provide a comparison of parameter
estimation using MLE, taking advantage of both GSL
and the proposed refined algorithm. The analysis, con-
ducted across three correlation levels (weak, medium,
and strong), includes boxplots that illustrate the estima-
tion of three key parameters (σ2, β, ν) and iteration
counts.

In the weak correlation scenario (Figure 4a), both im-
plementations achieve comparable accuracy in parameter
estimation. Furthermore, the average iteration count for
the refined algorithm is similar to that of GSL, indicating
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(a) Weak correlation β = 0.03, when ν = 0.5.
σ2 β ν

0.48

0.49

0.50

0.51

0.52

0.06

0.08

0.10

0.12

0.14

0.16

0.8

1.0

1.2

1.4

E
s
ti

m
a
te

d
 P

a
ra

m
e
te

r

100

200

300

N
u

m
b

e
r 

o
f 

It
e
ra

ti
o

n
s

Algorithm
GSL
Refined

(b) Medium correlation β = 0.1, when ν = 0.5.
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(c) Strong correlation β = 0.3, when ν = 0.5.
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(d) Weak correlation β = 0.025, when ν = 1.
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(e) Medium correlation β = 0.075, when ν = 1.
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(f) Strong correlation β = 0.2, when ν = 1.

Fig. 4: Boxplots of MLE optimization results over 100 replicas comparing GSL (CPU) and refined algorithm (GPU).
Left column: ν = 0.5 cases. Right column: ν = 1 cases. All plots show parameter estimates (σ2, β, ν) and iteration
counts with red dashed lines indicating true values of parameters.

a comparable computational efficiency. The medium
correlation scenario (Figure 4b) demonstrates increased
variability in parameter estimation. Both implementa-
tions maintain comparable accuracy, but the refined algo-
rithm exhibits slightly more consistent estimates across
all parameters. For strong spatial correlation (Figure
4c), the most challenging scenario, both implementations
exhibit wider parameter distributions, reflecting the in-
creased difficulty of the estimation process. The refined
algorithm achieves comparable accuracy and number of
iterations.

In the smoother case where ν = 1.0, Figures 4d, 4e,
and 4f demonstrate that the refined algorithm achieves
an accuracy similar to GSL. However, it shows a slightly
higher bias between the median and ground truth in
the strong correlation scenario, which remains within
an acceptable range. This is expected, as a larger ν

makes the BESSELK approximation more sensitive to
the number of bins used for numerical integration.
However, the refined algorithm requires significantly
fewer iterations than GSL. We also experimented with
a strong correlation scenario using b = 40 instead of
16. The results are shown in Figure 5. The refined
algorithm achieves a level of accuracy similar to that of
GSL, and the bias in parameter estimation is eliminated.
These results indicate that the refined algorithm largely
preserves accuracy compared to GSL while achieving
improved computational efficiency. Despite requiring a
similar number of optimization iterations, each iteration
is significantly faster, as demonstrated in the next section.
Furthermore, consistent performance across varying cor-
relation strengths highlights the robustness of the refined
algorithm for spatial statistics and Gaussian process
applications. By comparing Figure 4f and Figure 5, it
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Fig. 5: Boxplots of MLE optimization results over 100
replicas using GSL on CPU and the refined algorithm
on GPU when ν = 1 and using b = 40 bins.

can be concluded that adjusting the number of bins
inherently involves a trade-off between accuracy and
computational efficiency. Users are advised to carefully
consider this balance, particularly in cases where ν is
larger and the spatial correlation is strong.

D. Accuracy Across Different Numbers of Bins

The numerical approximation accuracy of the
BESSELK function, as defined in Equation (8), is sig-
nificantly influenced by the discretization parameter b
(number of bins). Following the previous discovery, we
vary the number of bins (b = 16, 40, and 128) to assess
its impact on the estimated parameters under weak,
medium, and strong correlation levels when ν = 0.5
and sample size N = 51,076, as illustrated in Figure 6.
Additionally, we analyze the effect of the number of bins
on the iteration count required for convergence across the
three correlation levels, as shown in Figure 7.

Although a smaller number of bins might intro-
duce larger approximation errors given fixed integration
bounds, this does not significantly affect the MLE pro-
cedure when ν is small. Through extensive numerical
experiments (Figures 4, 5, 6, and 7), we have empirically
demonstrated that parameter estimation remains robust
even with a reduced number of bins, supporting our
hypothesis that accurate estimation can be achieved
without requiring fine-grained discretization, although
discretization should be chosen based on the specific
application and desired accuracy level according to the
aforementioned analysis. Overall, our approach suggests
a practical balance between computational efficiency and
numerical accuracy in evaluating the Matérn covariance
function.

E. Wind Speed Application

For real data analysis in this study, we use a wind
speed dataset of 1M locations generated using the WRF-
ARW model for the Arabian Peninsula. The model has
a horizontal grid resolution of 5 km and 51 vertical
levels, extending to a maximum altitude of 10 hPa. The
dataset spans a geographical region from 20◦E to 83◦E

(a) Weak correlation β = 0.03.

(b) Medium correlation β = 0.1.

(c) Strong correlation β = 0.3.

Fig. 6: Parameter estimation over 100 replicas using the
refined algorithm was evaluated for varying bin counts to
estimate σ2, β, and ν across different correlation levels
with problem size 51,076. Red dashed lines: true values
of parameters.

longitude and 5◦S to 36◦N latitude, covering 37 years of
daily records. Each file contains hourly wind speed mea-
surements across 17 atmospheric layers. Our analysis
specifically focused on wind speed data from September
1, 2017, at 00:00 AM, examining measurements at 10
meters above ground level (layer 0). To address the
skewed distribution of wind speeds, we plot the square
root of wind speed against longitude and latitude, as
shown in Figure 8.

Starting with an initial dataset of 1M locations, we
randomly sampled 160,000 locations for modeling and
25,000 for testing. To improve numerical stability, the
location coordinates are preprocessed through normal-
ization. Given the length and width of a squared region
ℓ1, ℓ2: (1) Compute the scaling factor ℓ := max(ℓ1, ℓ2).
(2) Rescale location (x0, y0) to ({x0−min(x0)}/ℓ, {y0−
min(y0)}/ℓ). This transformation maps the spatial co-
ordinates into a unit square [0, 1] × [0, 1], which helps
mitigate numerical issues in subsequent computations.



(a) Weak correlation
(β = 0.03).

(b) Medium correlation
(β = 0.1).

(c) Strong correlation
(β = 0.3).

Fig. 7: The number of iterations for MLE optimization
over 100 replicas using the refined algorithm was evalu-
ated with b = 16, 40, and 128 bins across different corre-
lation levels with problem size 51,076, when nu = 0.5.

Fig. 8: Residuals of a wind speed dataset of 1M locations
in the Middle East region.

Table I presents the estimated parameters and the final
log-likelihood values obtained by the GSL and the re-
fined algorithms. The experiments were carried out on a
40-core Intel Cascade Lake CPU with 383GB of memory
and a 80GB single A100 GPU. Both methods estimated
nearly identical parameters, achieving nearly the same
maximum log-likelihood value (llh), and produced the
same mean square prediction error (MSPE).

However, using the GSL library required 596.61
minutes of execution time, while the refined algorithm
reduced this to 299.89 minutes. For fairness, only the
matrix generation was performed either by the CPU
(GSL) or the GPU (refined algorithm), while all other
operations were executed on the GPU.

TABLE I: Comparison of GSL and refined algorithms
on 160K random locations from the wind speed dataset.

(σ2, β, ν) llh MSPE Time
estimates value (min)

GSL (2.505, 0.178, 0.426) 6984.660 0.037188 596.61
Refined (2.510, 0.179, 0.426) 6984.598 0.037186 299.89

F. Performance Assessment

For single-node performance evaluation, we use a 40-
core Intel Cascade Lake CPU to run the GSL version
and generate an entire covariance matrix within the
ExaGeoStat framework for varying numbers of locations.
Additionally, we use 1 to 4 V100 (32 GB) or A100 (80
GB) GPUs on a single node to evaluate the implemen-
tation of the refined algorithm.

Fig. 9: Execution time for generating an N ×N covari-
ance matrix using GSL and the refined algorithm on a
40-core Intel Cascade Lake CPU and 1-4 NVIDIA V100
GPUs.

In the single-GPU (V100) configuration (Figure 9),
tests on datasets with a number of locations ranging
from 57,137 to 202,500 demonstrated that the refined
algorithm achieved a 1.16X speedup compared to the
CPU-only implementation. The performance improve-
ments became increasingly pronounced with additional
GPUs, reaching a 4.44X speedup with four GPUs. For
NVIDIA A100 GPUs, the single-GPU configuration
(Figure 10), tested on datasets with a number of locations
ranging from 57,137 to 99,225, showed a 2.68X speedup
over the CPU-only implementation. This improvement
scaled significantly with additional GPUs, achieving a
12.62X speedup with four GPUs. These results highlight
the effectiveness of GPU acceleration with the refined
algorithm for matrix generation, with benefits becoming
more pronounced when leveraging multiple GPUs and
larger datasets.

Although the single-matrix generation time highlights
the efficiency of the refined algorithm on GPUs com-
pared to GSL, its impact becomes even more significant



Fig. 10: Mean execution time (s) for generating an N×N
covariance matrix using GSL and the refined algorithm
on a 40-core Intel Cascade Lake CPU and 1-4 NVIDIA
A100 GPUs.

Fig. 11: Comparison of overall MLE execution time
between the GSL library and the refined algorithm on
a V100 GPU across various problem sizes. The reported
time accounts for multiple iterations of the log-likelihood
function, including matrix generation and all associated
linear algebra operations within the MLE process [9].

in operations like MLE. During MLE, the matrix genera-
tion function is invoked multiple times while optimizing
the log-likelihood function until convergence, amplifying
the benefits of the refined algorithm. Figure 11 illustrates
the performance of executing the full MLE process
on five different problem sizes, comparing the GSL
implementation with the refined algorithm using up to
four A100 GPUs. Due to the long execution time of the
GSL function, the full MLE process was not estimated
for N = 82, 521 and N = 99, 225. For N = 71, 289, the
complete MLE process took 186.21 minutes with GSL
(CPU) and 78.87, 49.36, 30.01, and 26.38 minutes using
the refined algorithm on 1 GPU, 2 GPUs, 3 GPUs, and
4 GPUs, respectively.

Figure 12 shows the scalability of the refined al-
gorithm across up to six nodes, each equipped with
two V100/A100 GPUs. As available memory increases,

GPUs can handle larger problem sizes and the perfor-
mance scales almost linearly with more GPUs.

Fig. 12: Mean matrix generation time varying node
counts and GPU architectures (V100 and A100).

VI. CONCLUSION

We present a highly efficient GPU-accelerated imple-
mentation of the modified Bessel function of the second
kind (BESSELK) using CUDA, effectively addressing
critical computational bottlenecks in Gaussian processes
and various other scientific applications. This approach
can also be extended to other modeling frameworks, in-
cluding non-Gaussian processes, where BESSELK func-
tions frequently arise. It integrates Temme’s series ex-
pansion for small input values and a refined version
of Takekawa’s integral-based approach for larger val-
ues, ensuring accuracy and computational efficiency
across a reasonable parameter space. Incorporating this
optimized algorithm into the ExaGeoStat framework
demonstrates significant performance improvements in
generating covariance matrices for spatial data modeling.
The GPU-based implementation achieved substantial
speedups compared to traditional CPU-based methods
while maintaining high numerical accuracy, validated
through synthetic datasets and real-world climate data.
These improvements are particularly notable in large-
scale applications that require massive matrix compu-
tations. Our work improves the computational capabili-
ties of BESSELK evaluations on GPUs and establishes
the foundation for integrating such optimizations into
other domains based on these functions. Future work
includes extending the implementation to support the
evaluation of derivatives of BESSELK, enabling gradient-
based optimization techniques, as well as transitioning
from single-threaded to a multi-threaded evaluation of
Kν(x) to further improve performance.
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