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Abstract
There is a wide availability of methods for testing normality under the assumption of independent and identically distributed
data.When data are dependent in space and/or time, however, assessing and testing themarginal behavior is considerablymore
challenging, as the marginal behavior is impacted by the degree of dependence, which typically leads to an inflation in Type I
error rates. We propose a new approach to assess normality for dependent data by non-linearly incorporating existing statistics
from normality tests as well as sample moments such as skewness and kurtosis through a neural network with adaptive cut-offs
by which the Type I error inflation issue is fixed. We calibrate (deep) neural networks by simulated normal and non-normal
data with a wide range of dependence structures andwe determine the probability of rejecting the null hypothesis.We compare
several approaches for normality tests and demonstrate the superiority of our method in terms of statistical power through
an extensive simulation study. A real world application to global temperature data further demonstrates how the degree of
spatio-temporal aggregation affects the marginal normality in the data.

Keywords Adaptive cut-off · Aggregation of test statistics · Neural network · Normality test · Spatio-temporal statistics

1 Introduction

One of the fundamental tasks for both model design and val-
idation is to identify a marginal distribution for the data (or
the residuals according to some trend), and to test whether it
can be ascribed to a known parametric model. Arguably one,
if not the most, important case is that of the normal distri-
bution. In this case, in addition to informal methods such as

B Stefano Castruccio
scastruc@nd.edu

Minwoo Kim
mwkim@pusan.ac.kr

Marc G. Genton
marc.genton@kaust.edu.sa

Raphaël Huser
raphael.huser@kaust.edu.sa

1 Department of Statistics, Pusan National University, Busan
46241, South Korea

2 Statistics Program, King Abdullah University of Science and
Technology, 23955-6900 Thuwal, Saudi Arabia

3 Department of Applied and Computational Mathematics and
Statistics, University of Notre Dame, Notre Dame, IN 46556,
USA

quantile-quantile plots and histograms, there is awide variety
of normality tests under the assumption of independent and
identically distributed (i.i.d.) data; see, e.g., Anderson and
Darling (1952); Shapiro and Wilk (1965); Lilliefors (1967),
and Jarque and Bera (1980). Normality tests are based on
statistics such as skewness and kurtosis, which summarize
some properties of the distribution and compare them to the
statistic expected from a normal distribution. The tests may
not provide unanimous results if, for instance, the data resem-
ble a normal distribution with respect to one statistic but not
with respect to others; see Thode (2002).

When the data are not i.i.d., with dependence informed
possibly (but not necessarily) by space and/or time, test-
ing the marginal behavior is considerably more challenging.
Indeed, while it is methodologically convenient to assume
a Gaussian process, i.e., a random function with marginal
Gaussian distribution, the dependence leads to excessive
rejections in normality tests intended for i.i.d. data. As an
extreme example, one may consider a Gaussian process with
perfect correlation: every realization will comprise of a vec-
tor of identical values, hence leading to the impossibility of
assessing the marginal behavior. Therefore, standard tests
intended for i.i.d. data are bound to exhibit inflated Type I
error rates on dependent data, even if the process is in fact
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Gaussian. It is hence necessary to develop tests that account
for dependence, and which would adjust the decision crite-
rion accordingly.However, only a limited number of previous
studies have explored testing methods for dependent data.
The recent work of Horváth et al. (2020) proposed a modi-
fication of the Jacque-Bera normality test (Jarque and Bera
1980) by estimating the spatial structure. In their review on
multivariate normality tests, Chen and Genton (2023) also
extended the test of Horváth et al. (2020) to the multivariate
setting.

While a test adjustment may provide a partial solution,
relying on only a single test with dependent data is limiting,
as the null distribution of the test statistic strongly depends
on the correlation structure. For instance, the null distribution
of a single test statistic such as the Shapiro-Wilk normality
test (Shapiro and Wilk 1965) will differ depending on the
strength of the spatial dependence. In order to enhance the
test power, a solution is to combine different tests so as to
use multiple statistics at the same time.

One simple approach is the Bonferroni correction, which
predicates rejection of H0 if at least one of the m tests is
rejected at level α/m; see, e.g., Haynes (2013). The Bonfer-
roni correction guarantees the appropriate Type I error rate
but is overly conservative and has an optimal power only
if the test statistics are independent. Another approach to
combine m tests is to use Fisher’s method, which combines
information from the p-values of all tests. If the tests are all
independent, then −2

∑m
i=1 ln pi follows a χ2

2m distribution
(Fisher 1992; Kost and McDermott 2002). A linear combi-
nations of p-values has also been suggested in Edgington
(1972). Winkler et al. (2016) reviewed fifteen methods for
combining p-values.

Neural networks-based approacheswith descriptive statis-
tics as inputs for i.i.d. data have been introduced to test for
normality and compared with standard tests (Wilson and
Engel 1990). Sigut et al. (2006) assessed univariate normality
using trained neural networks with input features including
sample skewness, sample kurtosis, test statistics in Shapiro
and Wilk (1965), the Fisher transform of the Pearson corre-
lation coefficient, and the family of test statistics proposed
by Vasicek (1976). More recently, Simić (2021) extended
previous approaches by adding summary statistics such as
minimum, maximum, and sample size to the representative
input set. All the past studies showed that neural network
approaches can often outperform typical statistical tests by
combining information in a non-linear fashion.

In this work, we propose a more general neural network-
based test for normality aimed at dependent data (in space,
time, space/time, or simply multivariate) with a novel adap-
tive cut-off technique. Since the strength of the underlying
dependence results in Type I error inflation, we assume that
the cut-off is a function of the dependence parameter. We
employ aMatérn covariancemodel,which ismost commonly

used in spatial analysis, but our adaptive cut-off technique can
be flexibly applied to any other statistical model as well. It
will be shown that the adaptive cut-offs suitably control the
nominal Type I error rate. Also, in terms of power, our neural
network-based test outperforms currently available methods
for testing normality when the independence assumption is
violated.

The paper proceeds as follows. In Sect. 2, we present the
general framework of combining multiple tests (Sect. 2.2),
introduce our neural network methodology (Sect. 2.3), and
describe our novel adaptive cut-off technique (Sect. 2.4).
In Sect. 3, we conduct a simulation study for testing the
assumption of normality on a spatial grid and we show the
improvement against currently available methods. In Sect. 4,
we apply the proposed method to spatially distributed data
from a global climate model simulation in order to test nor-
mality at different levels of spatial aggregation. In Sect. 5, we
discuss conclusions and directions for future research.

2 Methodology for normality testing

Let Y = (Y (s1), . . . , Y (sM ))� ∈ R
M be a random vector on

amanifold.Thismanifold can represent a spatial domain such
as a Euclidean space or a sphere for a spatial random vector,
the positive real line for time series or a Cartesian product
of the two in the case of space-time domain. Let H0 be any
model property thatY (·)may satisfy (in our case themarginal
distribution being Gaussian). We aim to create a classifier
C : Y �→ {0, 1} (where 0 corresponds to normality) which
is more powerful than any other classifier whose test statistic
is a function of the test statistics from a selection of well-
known classifiers, for a fixed Type I error rate α. Formally,
we have P(C(Y) = 1 | H0 true) = α and for any other
available classifier C̃ at the sameType I error ratewehave that
P(C(Y) = 1 | H0 false) ≥ P(C̃(Y) = 1 | H0 false). In
our work, H0 being false means that the data are not normal,
which implies an overly general class of models. As such, we
only focus on some particular classes of non-Gaussianity, as
will be specified later.

2.1 Individual normality tests

For simplicity of notation, we denote with Yi = Y (si ),
i = 1, . . . , M , Y = (Y1, . . . ,YM )� the data for which one
wants to assess normality.We focus on four tests that are used
as inputs for our neural network: Shapiro and Wilk (1965);
Lilliefors (1967); Jarque and Bera (1980), and Anderson and
Darling (1952).

The Shapiro–Wilk test relies on calculating the order
statistics and comparing the observed versus expected values
W = (

∑M
i=1 aiY(i))

2/
∑M

i=1(Yi − Ȳ )2, where Y(i) is the i th

order statistic, Ȳ is the samplemean, and ai is a weight calcu-
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lated from the expected means and covariances of the order
statistics under the null hypothesis of i.i.d. data. Despite its
popularity, the Shapiro–Wilk test relies on the availability
of appropriate values of ai which have no closed form, so
the values are determined through Monte Carlo simulation,
and for large sample sizes M , it is more difficult to obtain
accurate ai estimates (Das and Imon 2016). Indeed, in all the
code implementation we used throughout this work, the size
of M is limited to a few thousand points.

The Lilliefors test is an adaptation of the Kolmogorov–
Smirnov test for Gaussian data. It measures the maximum
deviation of the empirical and theoretical cumulative distri-
bution functions (CDFs), denoted with FM and F , respec-
tively: DM = supy |FM (y) − F(y)|. Then DM is compared
to the expected distribution under the null hypothesis, and a
p-value is calculated.

The Anderson–Darling test statistic is also based on devi-

ation from the theoretical CDF: A2 = M
∫ ∞
−∞

{FM (y)−F(y)}2
F(y){1−F(y)}

dF(y). Rather than measuring the maximum deviation
between the empirical and theoretical CDFs, Anderson–
Darling weighs deviations in the tails more heavily.

Finally, the Jarque–Bera test calculates the test statis-
tic J B = M

6 {S2 + (K − 3)2/4}, where S and K are the
sample skewness and kurtosis, respectively. Informally, the
Jarque-Bera test checks whether the sample’s skewness and
kurtosismatch those of a normal distribution. The asymptotic
expected values of the empirical skewness and kurtosis are
0 and 3, and the asymptotic variance of the empirical skew-
ness and kurtosis are 6/M and 24/M . Thus, the Jarque–Bera
statistic is a squared sum of two asymptotically independent
standardized normal distributions, and thus distributed as a
χ2 random variable.

These four tests focus on different yet related methods to
compare the data with the Gaussian distribution: the order
statistics (Shapiro-Wilks), the unweighted or weighted CDF
distance (Lilliefors and Anderson-Darlin, respectively) and
skewness and kurtosis (Jarque-Brera). It is therefore of inter-
est to devise an approach to find a test which merges the
information available from the individual tests.

2.2 Combining tests

Let C1,C2, . . . ,Cm be m classifiers with Type I error α.
Insofar as they are distinct classifiers, they assess at least
partly different properties implied by H0. For example, to test
H0: Y(s) is normally distributed, C1 may be testing whether
the skewness is zero, while C2 may be testing whether the
excess kurtosis is zero. Both are appropriate level-α tests of
H0 and their performance,measured by statistical power,will
vary depending on how the departure of the alternativemodel
hypothesis H1 to H0 affects the properties assessed by each
classifier.

Ideally, we would like to combine the m classifiers into a
single level-α classifier C that is more powerful. In our case,
combining the classifiers is complicated because of twomain
issues. First, since each individual classifier is testing differ-
ent but related properties of H0, them classifiers are expected
to be dependent; the Bonferroni correction is overly conser-
vative because the effective number of tests is less thanm due
to this dependence and Fisher’s method’s asymptotic distri-
bution is no longer valid. In the following subsection, we
explain how to combine m different tests. We consider both
linear and non-linear combinations using a logit transforma-
tion and a neural network, respectively. Parameters in both
combinations are optimized by simulated samples from H0

and H1.

2.3 Combining tests through neural networks

If T1, T2, . . . , Tm are test statistics for classifiersC1,C2, . . . ,

Cm , the simplest approach to combine them is through a
classifier comprisingof a linear combination and a logit trans-
formation: logit{P(C(Y) = 1)} = γ0 + γ1T1 + · · · + γmTm .
While this approach allows to combine information across
tests, its functional form limits its flexibility. In this work, we
propose a more flexible approach which relies on a (deep)
neural network, i.e., we filter the test statistics through a
combination of multiple non-linear functions (Chapter 6 in
Goodfellow et al. (2016)). More specifically, we consider the
following:

F(Y) = P(C(Y) = 1)

= S{WLσL−1(WL−1σL−2 · · ·W4σ3(W2σ1(W1T )))}, (1)

which is a composition of:

1. The m-dimensional vector of all the test statistics consid-
ered T = (T1, . . . , Tm)�. If no classifiers are available,
one may also consider T to be the identity function so
that the vector of the observed data Y itself is the desired
input. For simplicity of notation in the next points, we set
n0 = m.

2. L matrices representing linear transformations Wi :
R
ni−1 �→ R

ni , i = 1, . . . , L . The parameter ni is the
width of layer i , while L is the depth of the neural net-
work.

3. L fixed non-linear transformations σi that are applied
component-wise. In this paper, we use the common rec-
tified linear unit (ReLU, Chapter 6 in Goodfellow et al.
(2016)) activation function defined by σ(z) = max(0, z).

4. A sigmoid function S(z) = (1+e−z)−1,which guarantees
an output in [0, 1] that we can interpret as P(C(Y) = 1).

Inference (i.e., learning) can be performed by simulating
the representative samples Y H0

1 , . . . ,Y H0
N0

∈ R
M satisfying
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H0 andY
H1
1 , . . . ,Y H1

N1
satisfying H1. Thematrix entries ofWi

in (1) are then learned by optimizing the binary cross-entropy
(or log loss), which penalizes overly-confident incorrect pre-

dictions. Indeed, if we denote by pH0
i = P

(
C

(
Y H0
i

)
= 1

)

and pH1
i = P

(
C

(
Y H1
i

)
= 1

)
, both terms depend on the

neural network parameters in (1). Therefore, the logloss

logloss =
N0∑

i=1

log
(
1 − pH0

i

)
+

N1∑

i=1

log pH1
i (2)

is also a function of the same parameters and can be mini-
mized with respect to them.

In this work, we use the stochastic gradient descent-based
optimization algorithm Adam (Kingma and Ba 2015). Since
the neural network outputs a probability, instead of setting an
arbitrary cut-off of 0.5, we set it such that the method has a
pre-specified Type I error rate α. Formally, this cut-off qα is
defined using a neural network calibrated with the training
data and the outputs (1) as:

qα = inf
q∈[0,1]

[
1

N0

N0∑

i=1

I{F(Y H0
i ) > q} ≤ α

]

, (3)

where F is the probability of rejection of H0 as defined in
(1).

2.4 Adaptive cut-off

In this section we assume for simplicity that the Gaus-
sian training data are spatially dependent and generated
from a Matérn covariance model (Stein 1999) with varying
degrees of spatial dependence. The proposed adaptive cut-off
approach can however be easily generalized to other practi-
cal dependence structures including but not limited to spatial,
temporal, and spatio-temporal models. For any two observa-
tions Y (si ),Y (s j ) at two generic locations si , s j ∈ R

2, the
covariance in the Matérn model is:

cov{Y (si ),Y (s j )}

= σ 2

2ν−1�(ν)

(‖si − s j‖
β

)ν

Kν

(‖si − s j‖
β

)

, (4)

whereKν is the modified Bessel function of the second kind
of order ν > 0, and ‖si − s j‖ is the Euclidean distance. The
parameter σ 2 specifies the marginal variance and β > 0 con-
trols the range of the spatial dependence: when we consider
a distance

√
8ν/β, the spatial correlation is near 0.1 for all ν

(Stein 1999). Finally, ν specifies the regularity/smoothness
of the process, i.e., the degree of mean square differentiabil-
ity. Regardless of the number of locations (dimension of the

data), the three parameters, σ 2, β, and ν, fully characterize
a Matérn covariance model.

Since we simulate the training data by varying the spa-
tial range β, a single cut-off value independent of this
parameter would inevitably result in incorrect Type I error
rates. In this work, we propose a more flexible cut-off
qα in (3) as a function of β. Specifically, let nβ;train be
the number of range parameters for the training set such
that β1, . . . , βnβ;train are the parameters used to generate

Y H0
1 , . . . ,Y H0

N0
. For each βg and its corresponding observa-

tions, a cut-off value is elicited as in (3) denoted by qα(βg)

for g = 1, . . . , nβ;train. We employ non-parametric kernel
regression to estimate the cut-off function based on nβ;train
pairs (β1, qα(β1))

�, . . . , (βnβ;train , qα(βnβ;train))
�. We use a

Gaussian kernel and assume that the estimated cut-off at a
new testing value β is:

q̂α(β) =
∑nβ;train

g=1 Kh(β − βg)qα(βg)
∑nβ;train

g=1 Kh(β − βg)
, (5)

where Kh(β − βg) = h−1K
(
h−1(β − βg)

)
, K (z) =

exp
(−z2/2

)
/
√
2π for any z ∈ R, and h is a selected band-

width. We implement this kernel regression using the R
package np (Li and Racine 2003; Li et al. 2013). The figures
in Sect. 3.3 show examples of estimated cut-off functions and
demonstrate that the cut-off functions effectively address the
inflated Type I error rates.

2.5 Algorithms with adaptive cut-offs

Wedescribe steps for calibrating a neural network andobtain-
ing a cut-off curve:

Algorithm 1: how to obtain adaptive cut-offs
Step 0.Determine the structure of a neural network spec-
ifying L and (n1, . . . , nL)�. In the sensitivity analysis
later on, we will show the robustness with respect to
choices of neural network architectures.
Step 1. Generate representative Gaussian samples, Y H0

1 ,

. . . ,Y H0
N0
, and non-Gaussian samples, Y H1

1 , . . . ,Y H1
N1
.

Here, different values of dependence parameters are used
to generate the samples.We focus on themost commonly
used Matérn covariance model, but other dependence
model can also be applied (see supplementary material).
Step 2. Using the generated samples in Step 1, optimize
Wi by minimizing the loss (2). Here we use the popular
Adam optimizer, though other methods are also possible.
Step 3. Let β represent a general dependence parameter
for a statistical model. For each β, using corresponding
samples, compute the adaptive cut-offs in (3) denoted by
qα(β).
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Step 4. Employing non-parametric kernel regression in
(5), obtain a smooth cut-off curve.

Note that although we outlined here the steps needed to
derive a one-dimensional cut-off curve, our adaptive cut-off
approach can be straightforwardly generalized to hyper-
surfaces when β is a vector of dependence parameters. We
also note that, after calibrating a neural network in Step 2,
the adaptive cut-offs qα(β) for varying values of α can be
computed without recalibrating a neural network.

Next, we explain the step-by-step process of conducting
our normality test for a given data vector using the Matérn
covariance function as an example. LetY denote a realization
of a random vector from a spatial domain. Then, the steps to
determine the normality of Y are as follows:

Algorithm 2: how to conduct normality test
Step 1.Estimateβ and ν in (4) givenY and let the estima-
tors be denoted by β̂ and ν̂, respectively. In this paper, we
use the software ExaGeoStatR (Abdulah et al. 2023)
to estimate the parameters.
Step 2. Using the estimated value, ν̂, generate represen-
tative Gaussian and non-Gaussian samples as in the Step
1 of the Algorithm 1.
Step 3. Calibrate a neural network following the Algo-
rithm 1 and obtain a cut-off curve.
Step 4.Determine the normality ofY comparing the out-
put of the calibrated neural network and the cut-off value
corresponding to β̂ from the obtained cut-off curve. Here,
the inputs of the calibrated neural network are individual
test statistics computed using Y.

According to the steps outlined in Algorithm 2, representa-
tive datamust be generated and a new neural networkmust be
calibrated whenever a new data vector is encountered. How-
ever, this approach is inefficient when dealing with a large
number of data points. We fix the value of ν for the simu-
lation experiments in Sect. 3 and, for a real-world example
in Sect. 4, we describe how to practically apply the algo-
rithms. Specifically, we use six representative values of ν

and six corresponding neural networks are calibrated. Then,
each data point is assigned to one of the six neural networks
based on its estimated ν value. This approach is computation-
ally convenient as it only uses a small number of pre-trained
networks.

2.6 An existing test for dependent normal data

Horváth et al. (2020) introduced a test to determine whether
some dependent data on a regular grid can be regarded as
a realization of a Gaussian process. We show here the main
idea behind their approach, and we refer to their manuscript
for a comprehensive derivation of the test statistic and rele-

vant estimators. Their method involves modeling a process
that accounts for the spatial correlation and computing two
statistics related to sample skewness and kurtosis. The test
can be performed since Horváth et al. (2020) demonstrated
that the sum of squares of the two statistics asymptoti-
cally follows a chi-square distribution with two degrees of
freedom. Specifically, the data {Y (s1), . . . ,Y (sM )}, where
{s1, . . . , sM } ∈ Z

d are locations in a d-dimensional spatial
domain, are assumed to follow the moving average model
Y (s) = μ + ∑

s′∈Zd a(s′)ε(s − s′), s ∈ Z
d , where μ is

the process mean and ε(s), s ∈ Z
d are independent, stan-

dard normal innovations. We denote sample skewness and
kurtosis with the standardized data by SM and KM respec-
tively, and by φ2

S and φ2
K their asymptotic variances (which

depend on μ and a(s′)). The test statistic is defined as
S2
M/φ̂2

S + K2
M/φ̂2

K, where φ̂2
S and φ̂2

K are kernel estimators
whose detailed explanation and comprehensive derivations
are given in their paper. In Sect. 3 of this work, we use this
test as a benchmark to compare the performance of our pro-
posed method. We use a truncated kernel with bandwidth
h = �4(M/100)0.2, as noted for its stability in Section 3 of
Horváth et al. (2020). The truncated kernel KT R is defined
as KT R(t) = I (|t | ≤ 1).

Horváth et al. (2020)’s method exhibits lower Type I error
rates compared to classical testswhich assume independence,
however, it still incurs unstableType I error rates as the degree
of the dependence varies (see figures in Sect. 3.3).

3 Simulation study

3.1 Simulation design

We simulate a zero mean, isotropic Gaussian random field
with Matérn covariance function in (4) on a two dimensional
unit square regular grid of size 60 × 60 such that the spatial
dimension 3600 is sufficiently large to be advantageous for
the asymptotic properties discussed in Horváth et al. (2020).
We assume ν ∈ {0.5, 1.0} where the former value simpli-
fies the covariance function to σ 2 exp(−‖si − s j‖/β). We
present results for ν = 0.5 in this section, while the results
for ν = 1.0 are deferred to the supplement Section A. We
choose nβ;train = 30 equally spaced values of β between 0
and βmax = 0.234 (including both endpoints) in the train-
ing set, spanning from zero to strong dependence on a unit
square. The range parameter bound βmax is chosen so that
the effective range, i.e., the distance at which the correla-
tion between two locations reaches 0.05, is 0.7. This bound
is valid only for the unit square, so it requires a rescaling
in the application, and also depends on ν. In the test set we
choose nβ;test = 50 equally spaced values of β from 0 to
βmax, to demonstrate that the neural network is capable of
interpolating between different choices of range parameters.
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The sets of βs in the training set and testing set are denoted
by Btrain and Btest, respectively, such that |Btrain| = nβ;train
and |Btest| = nβ;test. Non-normal distributions in the train-
ing and testing set were created by applying a signed power
transformation to the baselineMatérnGaussian randomfield.
Specifically, for an exponent parameter p, a value z was
transformed to f (z; p) = |z|psign(z), for values of p in
the set Ptrain = {1.2, 1.4, 1.6, 1.8} in the training set, and
in the set Ptest = {1.1, 1.2, . . . , 2.0} in the testing set, to
demonstrate the neural network’s ability to interpolate and
(modestly) extrapolate. We denote by |Ptrain| = n p;train and
|Ptest| = n p;test, and we generate nsample = 200 sample
points for each combination of (β, p) in the case of non-
normal data. Therefore, the training set contains nβ;train ×
n p;train × nsample = 24, 000 (non-normal) data points, while
the testing set contains nβ;test × n p;test × nsample = 100, 000
(non-normal) data points. For the null hypothesis, i.e., nor-
mal data with p = 1, we generate an equivalent number of
samples, i.e, the training set contains 48, 000 points, while
the testing set contains 200, 000 points using the same sets
Btrain and Btest, respectively.

Type I errors for individual normality tests introduced in
Sect. 2.1 are presented in Sect. 3.2. Results in terms of Type I
error and power for our neural network, the linear classifiers
and Horváth et al. (2020)’s method are shown in Sect. 3.3.

The hypotheses H0 and H1 can be specified in terms of
the aforementioned values and set notations. For the training
set, we have:

H0 : p = 1 and β ∈ Btrain, H1 : p ∈ {1.2, 1.4, 1.6, 1.8} and β ∈ Btrain.

In the testing set, the hypotheses are:

H0 : p = 1 and β ∈ Btest, H1 : p ∈ {1.1, 1.2, . . . , 2.0} and β ∈ Btest.

3.2 Classical tests

The Type I errors for the classical normality tests increase
as the range of dependence increases in the simulation data,
as is apparent in Fig. 1. These tests are therefore not appro-
priate given their assumption of independence. Given their
uncalibrated Type I error, we do not calculate the power of
these tests and do not compare them with the other methods
shown in the following sections.

3.3 Tests for dependent data

We use m = 6 inputs: the four test statistics of the normality
tests in Sect. 2.1 along with the sample skewness and kurto-
sis. We rely on a neural networks with L = 2 hidden layers
and with n1 = 256 and n2 = 128 nodes. To at least partly
mitigate overfitting we use dropout (Srivastava et al. 2014)
during training, which randomly removes a fraction of nodes

Fig. 1 y-axis: Type I errors for Shapiro–Wilk test (red), Lilliefors test
(blue), Anderson–Darling test (green), and Jarque–Bera test (orange).
x-axis: The dependence parameter β of a Matérn covariance function
as shown in (4) when the other two parameters are fixed, σ 2 = 1 and
ν = 0.5. The black dashed horizontal line in the figure represents 5%
of Type I error

Fig. 2 Simulation study: non-parametric Gaussian kernel regressions
as defined in (5) with a bandwidth h = 0.3 for neural network (red)
and linear (blue) classifiers. On the x-axis are the range parameter β of
the Matérn covariance (4), while on the y-axis the predicted cut-off and
corresponding pointwise 95% confidence interval are represented by
solid lines and bands, respectively. The other two parameters are fixed
at σ 2 = 1 and ν = 0.5

during each training step and acts as a form of regularization.
In each of the L layers, 30% of nodes are randomly removed
during each training step. We provide a sensitivity study in
Sect. 3.3.4 to demonstrate the robustness of the results with
respect to other choices of network depth, width and drop-
out rate. Inference is performed by minimizing the binary
cross-entropy logarithmic loss (2), which is equivalent to
maximizing the log-likelihood. For each β ∈ Btrain, we set a
cut-off at the observed 1−α = 95th percentile in (3) using the
associated Gaussian data in training set such that we collect
(β1, qα(β1))

�, . . . , (βnβ;train , qα(βnβ;train))
� and obtain cut-

off functions for neural network and linear classifiers from
non-parametric kernel regression as shown in Fig. 2.

3.3.1 Type I error comparison

First, we compare the Type I errors for the method in
Horváth et al. (2020), the linear and the neural networks
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Fig. 3 Panel a Type I errors for neural network (red), linear classi-
fier (blue), and Horváth et al. (2020)’s method (green) assuming that
the parameters β ∈ Btest are known where |Btest| = 50 and the other
two parameters of a Matérn covariance function are fixed, σ 2 = 1 and
ν = 0.5. Averaged standard errors for neural network, linear classifier,

and Horváth et al. (2020)’s method are 0.0150, 0.0149, and 0.0152,
respectively; Panel b Same as (a) when the parameters β on the x-axis
and σ 2 are estimated bymaximum likelihood estimates and the smooth-
ness parameter is fixed to ν = 0.5. The black dashed horizontal line in
each panel represents the 5% Type I error

classifiers assuming that the true βs in Btest are known,
in order to calibrate the testing data points with a suitable
cut-off value from the pre-computed kernel regressions. In
practice, the true values of β are unknown and require esti-
mation, so in order to assess the Type I errors in a real case,
we estimate β and σ 2 simultaneously with fixed ν = 0.5
using the software ExaGeoStatR (Abdulah et al. 2023),
which allows a unified, high-performance parallel system
designed to optimize a covariance-basedGaussian likelihood
for spatial data. With the help of advanced high perfor-
mance dense linear algebra libraries, ExaGeoStatR offers
exact solutions for calculating the inverse of the covariance
matrix and its determinant, which are necessary for eval-
uating the Gaussian log-likelihood. The optimization step
in ExaGeoStatR relies on the Bound Optimization BY
Quadratic Approximation (BOBYQA) method, which is a
numeric, global, derivative-free and bound-constrained opti-
mization algorithm (Powell 2009), such that we can obtain
faster and more accurate estimation than brute force meth-
ods. Figure3 illustrates the resulting Type I errors for both
the cases of known and unknown parameters. In the first
case (known parameters), our adaptive cut-off methods have
approximately nominal 5% Type I error rates for all β val-
ues (see the red and blue lines in Fig. 3) while Horváth et
al. (2020)’s method has unstable Type I error rates as the
dependence parameter varies (see the green lines in Fig. 3).
In the second scenario (unknown parameters), the outcomes
are still comparable to those of known parameters although
we utilize estimated βs instead of the true values. Overall,

with both non-linear and linear combinations, our adaptive
cut-off approach efficiently mitigates the Type I error issue
in the testing for dependent data.

We discuss the case where the parameter ν is misspecified
in Section A of the supplement. Specifically, we train the lin-
ear and neural network models using the data generated with
ν = 1, while the actual test data are generated with ν = 0.5,
and vice versa. The misspecification of ν significantly wors-
ens the size of tests because the value of βmax, which controls
the size of a test, is computed based on the wrong ν, so incor-
rect cut-off functions are derived (see Fig. 2 and Figure S1 in
the supplement). In Sect. 3.4, we present simulation results
when ν is varied in order to further investigate the impact of
various smoothness parameters on Type I errors and powers.
The results in Sect. 3.4 demonstrate that our adaptive cut-
off methods achieve well-controlled Type I errors across all
smoothness parameter choices, from rough to smooth, while
also providing higher powers.

In real-world scenarios, ν has to be estimated along with
the linear models and neural networks. In Sect. 4, we demon-
strate how to practically calibrate the tests with an estimated
ν.

3.3.2 Power comparison

In order to identify the best test, we need to assess the power
under the alternative hypothesis H1 while maintaining a pre-
determined Type I error rate α. We compare powers for our
proposed neural network model and linear aggregation with
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Fig. 4 Panel a Averaged powers across all choices of β ∈ Btest for
neural network (red), linear classifier (blue), and Horváth et al. (2020)’s
method (green) given a value of exponent p (i.e., non-normality param-
eter) on the x-axis assuming that the parameters β ∈ Btest are known
where |Btest| = 50 and the other two parameters of aMatérn covariance
function are fixed, σ 2 = 1 and ν = 0.5. Averaged standard errors for

neural network, linear classifier, and Horváth et al. (2020)’s method are
0.0044, 0.0059, and 0.0232, respectively; Panel b Same as (a) when
the parameters (β, σ 2) are estimated by maximum likelihood estimates
and the smoothness parameter is fixed, ν = 0.5. The black dashed
horizontal line in each panel represents the power of 5%

adaptive cut-off, along with the approach in Horváth et al.
(2020). Figure4 shows the power curves as a function of the
departure from normality, measured by the exponent p. Each
curve is computed as an average across all choices of depen-
dence parameters β ∈ Btest assuming that they are known
(See Panel (a)) or estimated (See Panel (b)).

It is readily apparent that the neural network classi-
fier achieves the highest power for all choices of p ∈
{1.1, 1.2, . . . , 2.0}. Also, our adaptive cut-off method has
higher power as the non-normal distribution’s tails become
heavier (with larger p). Here, neural networks perform only
slightly better than linear combinations. The use of only six
inputs can be one reason for the slight improvement in this
case. It is expected that the accuracy of neural networks
would be enhanced if a larger number of inputs are employed.

3.3.3 Time comparison

All experimentswere run on a desktopwith a 12thGeneration
Intel(R) Core(TM) i5-12400 2.50 GHz processor and RAM
8.0GBofmemory.We checked the runtime of the threemeth-
ods we used. In the case of the neural network and the linear
classifier, the runtime includes the time required to compute
the six test statistics used as inputs and the time for learning
Wi , i = 1, . . . , L . In the case ofHorváth et al. (2020), the run-
time includes the duration needed to obtain the test statistic
which asymptotically follows a χ2-distribution with degree
of freedom 2. For the 200,000 testing data points, the algo-
rithmofHorváth et al. (2020) takes the longest time, 39.2min,
while our neural network and linear classifier take 18.5min

and 15.6min, respectively. The algorithm of Horváth et al.
(2020) is the slowest because it necessarily uses many for
loops to compute the kernel estimators.

3.3.4 Sensitivity analysis

We perform a sensitivity analysis with respect to the choice
of depth L , width (n1, . . . , nL), and dropout rate of the neural
network. First, we consider the same drop-out rate of 0.3 but
different number of layers and nodes: 1) three hidden layers
with (n1, n2, n3) = (256, 128, 64); 2) twohidden layerswith
(n1, n2) = (32, 16); and 3) one hidden layer with n1 = 128.
Second, we use the same number of layers and nodes as in
Sect. 3.3 but different drop-out rates, 0.6 or 0.1. Hence, we
have a total of six distinct network structures, including the
original one, and the results are summarized in Table 1.

We also recompute the Type I error and power in Fig. 3-
(a) and Fig. 4-(a) for all models. The results, shown in Fig. 5,
show how all six networks display a very similar pattern.

3.4 Varying smoothness parameters

In this subsection, we present the simulation results of vary-
ing the smoothness parameter ν in the Matérn covariance in
(4) for zero mean Gaussian data with the signed power trans-
formation, f (z; p) = |z|psign(z), for non-Gaussian data. As
in the previous subsection, we generate data on a unit square
and use the values of p in the setsPtrain = {1.2, 1.4, 1.6, 1.8}
and Ptest = {1.1, 1.2, . . . , 2.0} for the training data and the
testing data, respectively. The purpose of this subsection is
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Table 1 Summary of different network architectures: Model 1 is the original network we used in Sect. 3.3.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

# of layers 2 3 2 1 2 2

# of nodes (256, 128) (256, 128, 64) (32, 16) (128) (256, 128) (256, 128)

Drop-out 0.3 0.3 0.3 0.3 0.6 0.1

The drop-out rate in Models 2, 3, and 4 is identical to that of the original model, however, they differ in their network structures. Models 5 and 6
have modified drop-out rates with the same structure as the original one

Fig. 5 Panel a Type I errors for various architectures of neural
networks—Model 1 (red), Model 2 (blue), Model 3 (green), Model
4 (yellow), Model 5 (orange), andModel 6 (brown)—assuming that the
parameters β ∈ Btest are known where |Btest| = 50; Panel b Overall

powers for various architectures of neural networks computed as an
average over all values of β ∈ Btest. For both panels, the other two
parameters of the Matérn covariance function are fixed to σ 2 = 1 and
ν = 0.5 and the black dashed horizontal lines represent y = 0.05

to examine the impact of changes in the smoothness param-
eter. Therefore, we fix the range parameter at a moderate
value. Results for other values of β are provided in Figure
S.5 of the supplement. With a fixed β = 0.1, we denote the
sets of νs for the training data and testing data by Vtrain and
Vtest, respectively. In Vtrain = {ν1, . . . , νnν;train}, we choose
nν;train = 30 equally spaced values of ν including the mini-
mum 0.1 and the maximum νmax = 3.65, while nν;test = 50
equally spaced values are chosen in Vtest including the same
endpoints, 0.1 and νmax, to demonstrate the capability of
interpolation. Here, the value of νmax is chosen to achieve
the corresponding effective range of 0.7. Hence, we con-
sider the interval from 0.1 to νmax as sufficiently covering
the required smoothness levels, allowing us to concentrate
solely on interpolation and omit extrapolation.

The linear and neural network classifiers are trained using
the data generated with ν ∈ Vtrain. We point out that as the
value of ν increases, the data exhibit greater dependence due
to the higher effective range and view the adaptive cut-offs
as a function of ν such that we estimate the cut-off functions
using the same kernel smoothing method in (5):

q̂α(ν) =
∑nν;train

g=1 Kh(ν − νg)qα(νg)
∑nν;train

g=1 Kh(ν − νg)
.

The resulting Type I errors and powers for the neural net-
work, the linear classifier and the method in Horváth et al.
(2020) are shown in Fig. 6. Our adaptive cut-off methods
achieve approximately nominal 5% Type I error rates for
almost all ν values (see the panel (a) of Fig. 6). In terms of
powers, as shown in the panel (b) of Fig. 6, the neural network
classifier has the highest performance. For more practical
applications, one could extend the adaptive cut-off approach
to bivariate functions of β and ν.

3.5 Other models

Besides the Matérn covariance model and signed power
transformation, other options can be considered. In Section
A of the supplement, we provide the results for several other
combinations: three covariance models (Matérn, squared
exponential, and spherical covariance) and two non-normal
distributions (signed power transformation and multivariate
t-distribution). For every option, our adaptive cut-off meth-
ods successfully control Type I errors and show increasing
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Fig. 6 Panel a Type I errors for neural network (red), linear classi-
fier (blue), and Horváth et al. (2020)’s method (green) when the other
two parameters of a Matérn covariance function are fixed, σ 2 = 1 and
β = 0.1; Panel b Averaged powers across all choices of ν ∈ Vtest for

neural network (red), linear classifier (blue), and Horváth et al. (2020)’s
method (green) given a value of exponent p (i.e., non-normality parame-
ter) on the x-axis when the other two parameters of aMatérn covariance
function are fixed, σ 2 = 1 and β = 0.1

powers as the deviation from normality grows across scenar-
ios of weak to strong dependence.

4 Testing normality for global climate data

4.1 Motivation

Climate change is bound to affect both natural and human
systems, with varying outcomes depending on the region,
economic sector, and time.Themagnitude and rangeof future
climate does not only rely on the dynamics of the Earth’s sys-
tem but also on scenarios of socio-economic developments
(IPCC 2022). Computer models or simulators are the stan-
dard tool to understand and quantify future changes in the
climate, aswell as their social, political and economic effects.
The high complexity, spatial and temporal resolution ofmod-
ern climate models make it impossible to explore future
climate for a fully exhaustive range of scenarios, as every
simulation puts a considerable strain on the computational
and storage resources of an institution’s cyberinfrastructures
(Huang et al. 2023). As such, sensitivity analysis is limited to
a selected set representative of physical parametrizations and
scenarios, and uncertainty quantification can be performed
partially at best. Statistical surrogates, or emulators (Sacks
et al. 1989; Kennedy and O’Hagan 2001) are then routinely
trained on a small set of available simulations, and then used
toprovide a considerably faster (yet approximate) assessment
of the behavior of (some variables at some spatio-temporal
resolutions of) a climate model (Castruccio and Stein 2013;
Castruccio et al. 2014; Castruccio and Genton 2016). A use-
ful simplifying assumption for climate emulation is that of
Gaussianity, which at some level of spatial and/or temporal
aggregation is more or less explicitly assumed to be valid
owing to the central limit theorem. The presence of spatial

and temporal dependence within the data, however, makes it
challenging to formally assess this assumption. Testing for
normality in this framework is therefore of high relevance
as it would provide indications as to which modeling strat-
egy would be more appropriate: a Gaussian process emulator
(Sacks et al. 1989) or more complex trans-Gaussian (Jeong
et al. 2019; Tagle et al. 2020) or latent Gaussian models
(Zhang et al. 2024). In this application, we make use of our
adaptive cut-off method to assess normality of a widely used
collection of climate simulations under different levels of
aggregation.

4.2 CMIP6 data

We focus on the data from the Coupled Model Intercom-
parison Project Phase 6 (CMIP6, Eyring et al. (2016)), the
reference collection of simulations (ensemble) of the Inter-
govenmental Panel on Climate Change Assessment Report
6 (Juckes et al. 2020) and in particular on the MIROC-ES2L
model (Hajima et al. 2020) given its complete record of
simulations.We consider onmonthly near surface air temper-
ature data (at 2ms above the ground level, in Celsius) under
SSP245, an intermediate scenario in terms of global mean
temperature increase and degree of global socio-economic
collaboration throughout the 21st century (Van Vuuren et al.
2014). The data set comprises T = 12 × 86 = 1032 time
points (all months in 2015–2100) on a regular 2.79◦ × 2.81◦
latitude and longitude grid, for a total of M = 64 × 128 =
8192 locations. We denote the temperature as Yt (si ) at loca-
tion i = 1, . . . , M and time point t = 1, . . . , T . Before
assessing normality, we provide a model for the trend and
the temporal dependence, which need to be removed before
applying our proposed methodology.
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4.3 Modeling trend and temporal dependence

We consider the following additive spatio-temporal autore-
gressive moving average (ARMA)-like model:

Yt (si ) = μr(t)(si ) + εt (si ), (6a)

εt (si ) =
p∑

j=1

ψ j;iεt− j (si ) +
q∑

k=0

θk;iηt−k(si ). (6b)

where θ0;i = 1, μr(t)(si ) is the monthly trend with indices
r(t) ∈ {0, . . . , 11} representing the remainder when t is
divided by 12 and ηt (si ) is a zero-mean residual uncorre-
lated in time. Further, we assume that Var{εt (si )} = σ 2

r(t)(si )
for t = 1, . . . , T , i.e., there is a month-specific variance.
For each location independently, both mean and variance are
estimated in a non-parametric fashionwith amovingwindow
estimator:

μ̂r(t)(si ) = 1

|Ar(t)|
∑

t∈Ar(t)

Yt (si ),

σ̂ 2
r(t)(si ) = 1

|Ar(t)|
∑

t∈Ar(t)

{
Yt (si ) − μ̂r(t)(si )

}2
,

where Ar(t) = {t : t mod 12 = r(t)}. The average R2 across
all locations is 0.80 with standard deviation 0.21 and 89%
values of R2 are greater than 0.5, which is better than har-
monic regression (performed in the supplementarymaterial).
We then remove the trend and variance by computing the
standardized residuals as:

ε̂t (si ) = Yt (si ) − μ̂r(t)(si )

σ̂ 2
r(t)(si )

.

Finally, for each location, we perform inference on the
ARMAmodel (6b) on ε̂t (si ) using theRpackageforecast
(Hyndman and Khandakar 2008), with the orders p and q
selected via Bayesian information criterion (BIC). Once the
model orders are identified, the model parameters ψ j;i and
θk;i are estimated by maximum likelihood inference and we
use them to compute the residuals η̂t (si ) as estimates of our
target quantity ηt (si ).

Intuitively, the normality assumption for the air tem-
perature data would be violated due to the occurrence of
exceptional temperatures at certain locations, resulting in
heavier tail probabilities compared to aGaussian distribution.
Hence, it might not be preferable to employ the normality
assumption for modeling the original temperature data. In
this regard, we are interested in assessing the impact of spa-
tial aggregation on the normality of η̂t (si ). To simplify the
notation, we will abuse the notation and use the same expres-
sion for the residuals at different levels of spatial aggregation.

4.4 Data aggregation

The emulator residuals η̂t (si ) are likely not normal at the
native grid resolution, as it is expected that some locations
will have unusual temperatures with heavier-than-normal
tails. However, some degree of spatial aggregation should
result in more normal residuals, and we aim at formally test-
ing this assumptionwith our proposed approach.Wepartition
the pixels (locations) into smaller squares and compute the
mean of the estimated residuals, η̂t (si ), within each square.
We choose the square of sizes 2×2, 4×4, 8×8, and 16×16
such that the corresponding aggregated data have the number
of locations M = 2048, 512, 128, 32, respectively. Figure7
shows the map of the estimated residuals in January 2015 at
all four different levels of aggregation.

4.5 Calibration of classifiers

First of all, we simulate the data from a Gaussian distribu-
tion using the Matérn covariance in (4) with ν ∈ Ntrain =
{0.5, 1.0, 1.5, 2.0, 2.5, 3.0} covering rough to smooth spa-
tial processes, σ 2 = 1, and β ∈ Btrain = {0, . . . , βmax},
thereby covering independence to strong dependence and
nβ;train = |Btrain| = 30 as in Sect. 3. The range parame-
ter bound βmax depends on the choice of ν and the spatial
domain. Since in the case of a unit squarewe had the effective
range of 0.7 corresponding to the strong dependence, for the
domain here, we rescale it using the following ratio: effective
range/maximum distance = 0.7/

√
2, where the maximum

distance and the effective range are 12742km and 6307km,
respectively, in chordal distance for all levels of aggregation.
The different values of βmax across different choices of the
smoothness parameter ν are shown in Table S2 of the sup-
plementary materials. Here, we emphasize that we train six
pairs of neural networks and linear classifiers for each value
of ν and every testing data point will be assigned to one of
the six based on the estimated value of ν.

For non-normal data, the same transformation as in Sect. 3
is used with p ∈ Ptrain = {1.2, 1.4, 1.6, 1.8}. We draw
nsample = 200 sample points for each setup such that we have
nν;train × nβ;train × n p;train × nsample = 144, 000 non-normal
data points and the same amount of normal data points where
nν;train = |Ntrain| = 6.Calibration is performedwith the sim-
ulated normal and non-normal data and the resulting cut-off
functions for each value of ν ∈ Ntrain are obtained using
non-parametric kernel regression as illustrated in Fig. 8.

For the structure of neural networks, the number of hid-
den layers is L = 2 with n1 = 256 and n2 = 128
nodes and we use m = 5 inputs among those we used in
Sect. 3. We do not use the Shapiro–Wilk test because the
number of locations at the original resolution, M = 8192,
exceeded the maximum allowed by the R implementation
of the test (see the discussion on the methods about reli-
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Fig. 7 Standardized emulator residuals η̂t (si ) in January 2015 for different levels of spatial aggregation. aOriginal grid resolution; b 4 observations
in each square of size 2 × 2; c 64 observations in each square of size 8 × 8; d 256 observations in each square of size 16 × 16

ability of the test for large M in Sect. 2.1). To determine
suitable neural network and linear classifiers and correspond-
ing cut-off values for each time point t = 1, . . . , T , we
estimate the Matérn parameters (σ 2, β, ν) simultaneously
given the location information with chordal distances and
the spatial residuals

(
η̂t (s1), . . . , η̂t (sM )

)� using the pack-
age ExaGeoStat (Abdulah et al. 2018) which relies on
BOBYQA optimization (Powell 2009). Then, each testing
data vector is allocated to a trained neural network and a lin-
ear classifier according to the closest approximation of the
estimated smoothness parameter. For example, if the esti-
mated smoothness parameter for a data vector is ν̂ = 0.8, we
use the neural network and linear classifier calibrated with
ν = 1, if ν̂ = 0.3, we use the neural network and linear
classifier calibrated with ν = 0.5.

4.6 Test results

For the different levels of data aggregation, we perform the
calibration as detailed in Sect. 4.5 and compute the rejec-
tion rates across all time points (T = 1032). Here, the
hypotheses H0 and H1 can be specified in terms of the values
and set notations in Sect. 4.5. Formally, for each time point
t ∈ {1, 2, . . . , T }, ν ∈ Ntrain, β ∈ Btrain, we have:

H0 : p = 1, H1 : p ∈ {1.2, 1.4, 1.6, 1.8},

The results are shown in Table 2. As expected by the central
limit theorem, as the spatial aggregation increases, both the
neural network and the linear test highlight that the residuals
become more normally distributed. Indeed, at native resolu-
tion the normality tests are rejected formore than 95%of time
points for both classifiers, while higher levels of aggrega-
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Fig. 8 Application (native grid resolution): non-parametric Gaussian
kernel regressions as defined in (5) with a bandwidth h = 0.3 for neural
network (red) and linear (blue) classifiers. On the x-axis are the range
parameter β of the Matérn covariance (4), while on the y-axis the pre-

dicted cut-off and corresponding pointwise 95% confidence interval are
represented by solid lines and bands, respectively. Since the residuals
are normalized,we setσ 2 = 1,whilewe have the smoothness parameter
equal to a ν = 0.5 and b in ν = 1.0

Table 2 Rejection rates for the
estimated residuals of the
emulator (6a) for the neural
network and linear normality
testing approach.

Rejection rate All locations (M = 8192) M = 2048 M = 512 M = 128 M = 32

NN 0.994 0.967 0.845 0.532 0.227

Linear 0.958 0.924 0.735 0.511 0.191

The results are shown across the different level of spatial aggregation

tion decrease the rejection rates down to approximately 20%.
The neural network model is overall less favorable towards
the normality assumption, and the discrepancy between the
two approaches is slightly higher when the degree of spatial
aggregation is moderate (M = 512). As we expected, the
rejection rate is very high with the original resolution of the
temperature data, and interestingly, the rejection rate is still
high with the moderate level of aggregation, therefore flag-
ging the normality assumption as generally inappropriate.
This can likely be attributed to a large number of time points
(T = 1032), which result in high power of a normality test
against any alternative distribution.

5 Discussion and conclusion

We proposed a new test for dependent data to test Gaus-
sianity by merging the test statistic of individual normality
tests (which may or may not assume dependence) via neural
networks. By means of a simulation study, we have shown
how the proposed approach results in higher power than indi-
vidual tests as well as a linear aggregation of the tests. Our
application for temperature data highlighted how increasing
the level of spatial aggregation results in more normal data,
as could be expected from the central limit theorem.

The proposed approach has been applied to normality test
for dependence data, but its extent is far more general. In
fact, other marginal distributions can be tested: a generalized
extreme value distribution can be assessed for maxima at
different levels of temporal aggregation, or skew-normality
for high resolution weather data. Such approach could also
be generalized to multivariate data to test marginal univariate
properties.

While the proposed approach represents a significant step
forward in assessingGaussianity under dependence, it comes
with several caveats that a practitioner must be aware of.
Firstly, the method must assume a given structure of spatial
dependence, so the reliability of the results are inextricably
linked with the assumptions associated with it, most notice-
ably isotropy and stationarity. While these assumptions may
be hard to defend for the original data, the focus on residuals
would at least partially justify the spatial structure. Addi-
tionally, the proposed method depends on a prespecified type
of alternative hypothesis, in this case a non-Gaussian power
transformation, and this may ormay not be a good alternative
hypothesis depending on the application.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-024-10551-
0.
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