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ABSTRACT
In many phenomena, data are collected on a large scale and at di!erent frequencies. In this context,
functional data analysis (FDA) has become an important statistical methodology for analyzing and modeling
such data. The approach of FDA is to assume that data are continuous functions and that each continuous
function is considered as a single observation. Thus, FDA deals with large-scale and complex data. However,
visualization and exploratory data analysis, which are very important in practice, can be challenging due to
the complexity of the continuous functions. Here we introduce a type of record concept for functional data,
and we propose some nonparametric tools based on the record concept for functional data observed over
time (functional time series). We study the properties of the trajectory of the number of record curves under
di!erent scenarios. Also, we propose a unit root test based on the number of records. The trajectory of the
number of records over time and the unit root test can be used for visualization and exploratory data analysis.
We illustrate the advantages of our proposal through a Monte Carlo simulation study. We also illustrate our
method on two di!erent datasets: Daily wind speed curves at Yanbu, Saudi Arabia and annual mortality rates
in France. Overall, we can identify the type of functional time series being studied based on the number of
record curves observed. Supplementary materials for this article are available online.
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1. Introduction

Due to modern technologies, data can now be collected on a
large scale and in an automatic fashion for many phenomena,
resulting in high-dimensional and high-frequency data that can
be considered as continuous functions or surfaces (images). For
example, in economy, !nance, climatology, medicine, biology,
and engineering, data can be collected with characteristics that
vary along a continuum (time or space). Functional Data Anal-
ysis (FDA) deals with this type of data, where each continuous
function can represent daily or monthly pro!les, and these
pro!les are considered as a single point observation (see, e.g.,
Ramsay and Silverman 2005). Here, we assume that our data are
a functional time series observation, that is, a sequence of curves
observed over time.

An important part of data analysis is visualization and
exploratory data analysis. This helps to decide whether to trans-
form the data or what class of models to use. In general, visual-
ization and exploratory data analysis provide data characteristics
that are not apparent from statistical models. In the context of
functional data, some of these tools are functional bagplots and
functional highest density region plots (Hyndman and Shang
2010), the functional boxplot (Sun and Genton 2011), and
magnitude-shape plots (Dai and Genton 2018). Although these
tools are useful, they do not provide characteristics that vary
over time.

Here, we propose some additional tools using the concept
of records. The main advantage of the record concept is that it
is invariant under monotonic transformations of the data. This
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allows us to cover a large class of functional time series data,
including some nonlinear functional time series. In addition,
records are useful to de!ne and study extreme curves. With
that motivation, we propose a new type of record concept for
functional data, and then we obtain nonparametric tools based
on this proposal.

The record theory has been studied extensively for a sequence
{W1, . . . , Wn} of identically distributed univariate random vari-
ables for both independent and dependent data (Sparre Ander-
sen 1954; Feller 1971; Ballerini and Resnick 1987; Lindgren and
Rootzén 1987; Burridge and Guerre 1996; Ahsanullah and Nev-
zorov 2015). It studies the events that exceed (cross) all previous
observations, that is, Wn > max{W1, . . . , Wn−1}. The two most
studied quantities of records are the probability for a record at
time n and the number of records observed up to time n. It is
well known that the expected number of records for stationary
time series grows at rate log n (Lindgren and Rootzén 1987). On
the other hand, if the time series is a random walk process, the
growth rate is n1/2 (Sparre Andersen 1954; Feller 1971; Burridge
and Guerre 1996). Moreover, if the time series has a linear
trend component, then the number of records grows at rate n
(Ballerini and Resnick 1987). Extensions of the study of records
to multivariate data can be found in the literature (see Goldie
and Resnick 1989, 1995; Gnedin 1998; Wergen, Majumdar, and
Schehr 2012; Dombry and Zott 2018; Falk, Khorrami Chokami,
and Padoan 2018).

A challenge in extending record de!nition to functional data
space is that there is no natural way to de!ne an order in this
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space. This can make the de!nition of minimum and maximum
curves a tricky problem. Here, we propose extending the de!ni-
tion of records by using a level-crossing concept for functional
data based on depth notions. A function will be de!ned as a new
record if it is more “extreme” than the previous record curve,
in other words, if the curve exceeds the previous record curve.
Then, we study the behavior of the number of functional records
under stationarity and under stochastic trend components. By
visualizing the growth rates of the number of functional records,
we can infer whether the functional time series is stationary or
not, and we can infer the di"erent types of trends. For a more
formal test, we propose a unit root test based on the number of
record curves.

To say that a function exceeds another function, we use
the concept of depth. Depth has been used to evaluate the
centrality (or extremality) of a curve. Several notions of depth
(called functional depth) have been proposed for functional
data, including integrated depth (Fraiman and Muniz 2001),
band depth and modi!ed band depth (López-Pintado and Romo
2009), half-region depth based on hypographs and epigraphs
(López-Pintado and Romo 2011), spatial depth (Chakraborty
and Chaudhuri 2014) and extremal depth (Narisetty and Nair
2016). Other functional depth de!nitions can be found in Nieto-
Reyes and Battey (2016), Gijbels and Nagy (2017), and Huang
and Sun (2019). Depth has been used in di"erent statisti-
cal problems, for example, detecting outliers, obtaining robust
estimators, and de!ning functional boxplots (Rousseeuw and
Hubert 1999; Fraiman and Muniz 2001; Sun and Genton 2011;
Sguera, Galeano, and Lillo 2014; Martínez-Hernández, Genton,
and González-Farías 2019). The order induced by the func-
tional depth can be viewed as order statistics. Here, we use the
functional depth concept to de!ne exceedance or level-crossing.
If a curve exceeds the previous function (based on the func-
tional depth), then we say that the function crosses the previous
function.

The nonparametric tools introduced in this article are applied
to two applications of functional time series: wind speed curves
in Saudi Arabia and mortality rates in France. Let Xi(s) be the
daily curves of wind speed at 80m [m/s] where i = 1, . . . , n
represents the day, and s ∈ [0, 24) represents hours within a
day. The study of wind speed curves is important for renewable
energy generation. By using record curves, we can describe
the dynamics of the record daily wind speed. It is relevant
to know when and how o#en a record curve is observed to
predict the e$ciency of wind turbines and to prevent disrup-
tion and possible damage to a wind farm. Moreover, with the
information of record curves, we can classify the underlying
functional process and then obtain a better predictor. Next, let
Xi(s) denote the mortality rate in year i, at age s. It is important
to know (besides prediction) how these rates behave over the
years, taking into account all ages. By studying the functional
records, we analyze whether the new functional records over
the years correspond to the natural randomness of the process
or if there is an indication of a decreasing trend. In general,
the number of functional records provides information about
the stationarity or nonstationarity properties of the functional
time series.

The main contributions presented in this article are (a) the
establishment of a de!nition of upper and lower records for

functional time series; (b) the study of the growth rate of the
number of functional records over time, under stationarity or
nonstationarity assumptions; and (c) the introduction of a unit
root test for an integrated of order one functional process as an
application of the functional record. The contributions (b) and
(c) provide tools for visualization and exploratory data analysis.
Overall, this article provides robust nonparametric tools based
on records for functional time series.

The remainder of our article is organized as follows. In
Section 2, we introduce mathematical concepts for functional
data, functional time series, and functional depth. In Section 3,
we provide the de!nition of records for functional data. In
Section 4, we study the properties of the number of functional
records, both for stationary and nonstationary functional time
series. In Section 5, we propose a unit root test as an application
of the study of functional records. In that section, we conduct a
simulation study to evaluate the performance of the proposed
test. In Section 6, we illustrate our proposal on two di"erent
datasets: the daily curves of wind speed at Yanbu, Saudi Arabia,
and the annual mortality rates for males in France. Section 7
presents some discussions. Proofs and additional simulation
results are provided in the supplementary materials.

2. Preliminaries

2.1. Functional Time Series

Throughout this article, we assume that our data are a collection
of n functional observations {x1(s), . . . , xn(s)} with s ∈ T .
Without loss of generality, we assume T = [0, 1]. Let Xi be
a functional random variable de!ned on a function space F ;
Xi : ! → F , where ! is the sample space and F the function
space (e.g., F = L2([0, 1]) or F = C([0, 1])). We assume that
{xi} is a realization of the functional random variables {Xi}. If
X is a functional random variable with distribution P, we write
X ∼ P, and it is said to be symmetrically distributed (P is
centrally symmetric) about z ∈ F if and only if X−z = −(X−z)
in distribution.

Let µi := E(Xi) be the mean function, and let CXi−h,Xi
be the covariance operator at lag h. If µi and CXi−h,Xi are well
de!ned and exist, the sequence of functional random variables
{Xi, −∞ < i < ∞} is said to be stationary if (i) E(Xi) = µ for
all i and (ii) CXi+h,Xj+h(z) = CXi,Xj(z), z ∈ F for all i, j, and h.
One of the most popular models for functional time series is the
functional autoregressive model of order p, FAR(p) (Horváth,
Hu%ková, and Kokoszka 2010; Kokoszka and Reimherr 2013;
Aue, Norinho, and Hörmann 2015). For p = 1, we have that
Xi(s) = "(Xi−1)(s) + εi(s), where " : F → F is a bounded
operator, and {εi} is a functional white noise. If the “norm” of "

is smaller than one, then the FAR(1) model is stationary. A more
general de!nition is the functional linear process, {Xi, i ∈ Z}
with innovations {εi}, de!ned as

Xi(s) =
∞∑

j=0
"j(εi−j)(s), s ∈ [0, 1].

Under some conditions on the sum of the norms of "j, {Xi}
converges in probability (see Bosq 2000). The FAR(p) processes
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can be seen as a particular case of a functional linear process.
We refer to Ramsay and Silverman (2005) and Bosq (2000) for a
deeper understanding of functional random variables.

2.2. Depth for Functional Data

Depth is used to evaluate the centrality or extremality of a
curve with respect to a distribution function. Several notions of
functional depth have been proposed. The modi!ed band depth
(MBD) is one of the most popular functional depths and has
motivated the development of extensions, modi!cations, and
generalizations of functional depth de!nitions. Let x ∈ F and
let x1:n = {x1, . . . , xn} be a sample of X ∼ P. The MBD of x
with respect to the sample x1:n computes the proportion of time
that the curve x is in a band constructed by two curves from x1:n.
Then, the depth value is obtained by averaging the proportion of
time over all possible bands. That is,

MBD(x; x1:n) =
(n

2

)−1 ∑

1≤i1<i2≤n
λ

[
{s ∈ [0, 1] | min(xi1(s), xi2(s))

≤ x(s) ≤ max(xi1(s), xi2(s))}
]

, (1)

where λ is the Lebesgue measure on [0, 1]. Then, xi ≺ x (read as
x is more extreme than xi) if MBD(xi; x1:n) > MBD(x; x1:n). The
corresponding population version is denoted by MBD(x; P). The
de!nition (1) is for a band obtained with two di"erent curves.
However, the band can be obtained by more than two curves
(see López-Pintado and Romo 2009, for more details).

Another functional depth is the extremal depth (ED). The
ED of x ∈ F with respect to x1:n computes the pointwise
extremeness of the curve x. Namely, let Dx(s; x1:n) := 1 −
| ∑n

i=1[1{xi(s) < x(s)} − 1{xi(s) > x(s)}]|/n be the pointwise
depth of x, taking values in Dx ⊂ {0, 1/n, . . . , 1}. Let D be the
union of Dx over all functions x. Let Gx(r) =

∫ 1
0 1{Dx(s, x1:n) ≤

r}ds, for each r ∈ D, be the corresponding cumulative distri-
bution function. Now, consider two functions x and xi and let
0 ≤ d1 < d2 < · · · < dM ≤ 1 be the ordered elements of
their combined depth levels, Dx and Dxi . Then, xi ≺ x (again,
read as x is more extreme than xi1) if Gx(d1) > Gxi(d1). If
Gx(d1) = Gxi(d1), then the comparison is based on d2 and
repeated until the tie is broken. If Gx(dj) = Gxi(dj), for all
j = 1, . . . , M, then the two functions are equivalent in terms
of depth, denoted as x ∼ xi. Finally, the ED of x is de!ned as

ED(x; x1:n) = 1 − #{i : x ) xi}
n , (2)

where “)” denotes either x ≺ xi or x ∼ xi. The corresponding
population version is denoted by ED(x; P). See Narisetty and
Nair (2016) for more details.

In this article, we will use depths (1) and (2) to illustrate and
de!ne a level-crossing concept for functional data. Instead of
using the notation MBD or ED, we will use fD(x, x1:n) to refer
to any of these two for the functional depth of x with respect to
the sample x1:n, and fD(x, P) to denote the population version.

1notice that the notation in Narisetty and Nair (2016) is xi * x to say that
x is more extreme than xi . Here, we have changed it to have a consistent
notation with the MBD.

3. De!nition of Functional Records

In this section, we present the concept of record for functional
data. We !rst describe what a record is in the case of univariate
scalar time series.

3.1. Classical Records

Let {W1, . . . , Wn} be a sequence of continuous random variables
in R (observe that Wi = Wj with probability zero for i += j).
Loosely speaking, an upper record at time n means that the
value of Wn exceeds all values of {W1, . . . Wn−1}. Records can
be formally de!ned in di"erent ways. One de!nition involves
an order in R. That is, let W(1), . . . , W(n) be the corresponding
order statistics for the n random variables, then Wn is an upper
record if Wn = W(n) (and a lower record if Wn = W(1))
with probability one (Ahsanullah and Nevzorov 2015). However,
there is no natural way to de!ne an order in a functional space,
and this makes it challenging to extend this de!nition of record
to functional data. Another de!nition is comparing Wn with the
previous record. Let Mn−1 and mn−1 represent the upper and
lower record at time n − 1, respectively. Then, Wn will be a
new upper (lower) record if Mn−1 < Wn (Wn < mn−1) with
probability one. That is, the value of Wn exceeds or crosses the
value of Mn−1 (or mn−1). Given the value of Mn−1, the latter
de!nition only involves comparing two quantities. Here, we will
use this idea for functional data. We will say that a function at
time n is a new record if it exceeds the previous record function.

3.2. Functional Records

Suppose we observe a functional time series x1:n = {x1, . . . , xn},
where n ≥ 3. By de!nition, x1 and x2 are functional records
(one upper and the other lower functional record). Let yu

n−1 and
yl

n−1 represent the upper and lower functional records at time
n − 1, respectively. To de!ne the functional record at time n, we
compare xn with the previous two records, yu

n−1 and yl
n−1. That

is, xn is de!ned as a functional record at time n if xn exceeds yu
n−1

or yl
n−1. Next, we explain what exceeding a function means.

We say that xn exceeds yu
n−1 or yl

n−1 if xn is more extreme than
yu

n−1 or yl
n−1 in terms of the depth notion. That is, we use the

functional depth de!ned in Section 2.2 to de!ne extremeness.
Let Tu

n := ‖xn − yu
n−1‖F and Tl

n := ‖xn − yl
n−1‖F , with ‖ ·‖F a

norm in F . We say that xn is a candidate for an upper record
if Tu

n < Tl
n and a candidate for a lower record if Tu

n > Tl
n.

This allows us to know if xn will exceed yu
n−1 or yl

n−1. Now, we
describe how to compare functions. Let fD(xn; {xn, yu

n−1, yl
n−1}),

fD(yu
n−1; {xn, yu

n−1, yl
n−1}), and fD(yl

n−1; {xn, yu
n−1, yl

n−1}) be the
corresponding depths values of xn, yu

n−1, and yl
n−1, respectively.

As mentioned in Section 2.2, we say that yu
n−1 ≺ xn if

fD(xn; {xn, yu
n−1, yl

n−1}) < fD(yu
n−1; {xn, yu

n−1, yl
n−1}).

De!nition 1. Let x1:n = {x1, . . . , xn} be an observed
functional time series, n ≥ 3. If Tu

n < Tl
n and

fD(xn; {xn, yu
n−1, yl

n−1}) < fD(yu
n−1; {xn, yu

n−1, yl
n−1}), then xn is

de!ned as an upper functional record at time n. If Tu
n > Tl

n and
fD(xn; {xn, yu

n−1, yl
n−1}) < fD(yl

n−1; {xn, yu
n−1, yl

n−1}), then xn is
de!ned as a lower functional record at time n. Finally, xn is called
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Figure 1. Functional records at i = 2, 3, 4, 5. In each !gure, the previous upper functional record is indicated by the dashed curve, and the previous lower functional record
is indicated by the dotted curve. At i = 3, x3 does not exceed the previous record curves. At i = 4, x4 exceeds the previous lower record curve. And at i = 5, x5 exceeds the
previous upper record curve.

a functional record if it is either a lower or upper functional
record.

Notice that we could have yl
n−1 ≺ xn or yu

n−1 ≺ xn, and Tu
n =

Tl
n. To avoid this problem, we assume the following.

Assumption 1. For each n ≥ 3, P(Tu
n = Tl

n) = 0.

Assumption 1 will always be satis!ed in regular conditions
of functional time series. Figure 1 shows a naive scenario to
illustrate the functional record de!nition over time i = 2, 3, 4, 5
for a functional time series with sample size n = 5. At time i = 2,
x1 is de!ned as a lower record and x2 as an upper record. At
i = 3, x3 is compared with the previous record functions yu

2 and
yl

2. In this case, x3 does not exceed any of the previous record
functions. At i = 4, x4 exceeds the previous lower record yl

3, so
x4 is de!ned as the new lower record at time i = 4. Finally, at
time i = 5, x5 exceeds the previous upper record yu

4 , and it is
then de!ned as the new upper record. So, at time i = 5, x5 is the
last upper record, and x4 is the last lower record.

4. Properties of Functional Record Number

Let X = {Xi}n
i=1 be a sequence of functional random variables.

By de!nition, X1 and X2 are set to be functional records. Without
loss of generality, let X1 be a lower functional record and X2 be
an upper functional record. For j = 1, . . . , i − 1, let Yu

j and Yl
j

be the sequence of functional random variables representing the
upper and lower functional records, respectively, at time j, such
that Yu

1 = Yu
2 = X2 and Yl

1 = Yl
2 = X1. Then, Xi is de!ned as

an upper functional record at time i if fD(Xi; {Xi, Yu
i−1, Yl

i−1}) <

fD(Yu
i−1; {Xi, Yu

i−1, Yl
i−1}) given that Xi is a candidate for upper

record. Similarly, Xi is de!ned as a lower functional record at
time i if fD(Xi; {Xi, Yu

i−1, Yl
i−1}) < fD(Yl

i−1; {Xi, Yu
i−1, Yl

i−1}),
given that Xi is a candidate for lower record.

In this section, we study the number of functional
records observed over time, i = 3, 4, . . .. Let Ru

i =
1{Xi is an upper functional record} be the indicator of Xi
being an upper functional record at time i, and let Nu

i be the
counting process representing the number of upper functional
records up to time i, that is,

Nu
i =

i∑

j=1
Ru

j . (3)

We de!ne the upper functional record times as Lu(1) = 2, and
for k = 2, 3, . . . , Lu(k) = min{i : i > Lu(k − 1) and Ru

i = 1}.
Notice that the de!nition of Lu(k) is such that the events {Nu

i ≥
k} and {Lu(k) ≤ i} are equivalent. In the same way, we de!ne
the corresponding variables for the lower functional records. Let
Rl

i, Nl
i , and Ll(k) denote the respective variables for the lower

functional records.
Notice that, from De!nition 1, we have that a lower

functional record is an upper functional record of the pro-
cess {−Xi}. Therefore, we focus on the upper functional
records. Also, with the de!nition of functional record, ties
of depth values are allowed, but if Xi is an upper functional
record at time i, then fD(Xi; {Xi, Yu

i−1, Yl
i−1}) can only tie with

fD(Yl
i−1; {Xi, Yu

i−1, Yl
i−1}). Similarly, if Xi is a lower functional

record at time i then fD(Xi; {Xi, Yu
i−1, Yl

i−1}) can only tie with
fD(Yu

i−1; {Xi, Yu
i−1, Yl

i−1}).
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Figure 2. Plots of 100 trajectories of Nu
i by using MBD as the functional depth (results are the same when using ED) with i = 2, . . . , 1000. Each trajectory of Nu

i is obtained
from {Xi}n

i=1 where n = 1000, and {Xi} is an independent functional sequence (a) and a stationary functional sequence (b). The solid curve represents the log i function,
the dashed curve represents the pointwise mean of the trajectories, and the dotted curves represent the pointwise 5% and 95% quantiles of the trajectories.

In the univariate case, it is known that if the time series is an
iid sequence or a stationary time series satisfying the Berman
condition, then Nu

i grows at rate log i (Lindgren and Rootzén
1987). On the other hand, if the time series is a random walk
process, then the growth rate of Nu

i is i1/2 (Sparre Andersen
1954; Feller 1971; Burridge and Guerre 1996). Here, we show
similar results for functional records according to De!nition 1.

We observe that if {Xi, i ≥ 1} is an independent and identi-
cally distributed sequence of functional random variables, then
P(Ru

i = 1) = 1/i for any ranking de!nition. Indeed, the
probability of Xi being a record is the probability of Xi taking
a speci!c place among {1, . . . , i}. Then, Nu

i = O(log i) with
probability one. Let Ch := CXi,Xi+h be the covariance operator
at lag h of a stationarity functional time series {Xi}. Let ‖ · ‖HS
denote the Hilbert-Schmidt norm.

Proposition 1. Let {X1, . . . Xn} be a stationary functional time
series such that log(h)‖Ch‖HS → 0 as h → ∞. Then,

lim
n→∞

Nu
n

log n = O(1),

with probability one.

Proof. See the supplementary materials.

The condition on the covariance operator in Proposition 1
is not restrictive for functional time series, and it holds if the
functional time series is L2-m-approximable (Hörmann and
Kokoszka 2010). Hörmann and Kokoszka (2010) showed that
this approximation is valid for linear and nonlinear functional
time series. In particular, the FAR(1) model with a coe$cient
operator that has a norm less than one is L2-m-approximable.

As an illustration of the result in Proposition 1, we simulate
functional data from two scenarios: independent functional data
and stationary functional data. In the !rst scenario, we simulate
Xi = εi, i = 1, . . . , n = 1000 as an independent sequence,
where, for each i, εi is a Brownian motion in [0, 1]. In the
second scenario, we simulate stationary functional time series
from Xi(s) = c1

∫ 1
0 β(u, s)Xi−1(u)du + εi(s), where β(u, s) =

exp{−(u2 + s2)/2}, εi is de!ned as in the !rst scenario, and c1 is

such that
{∫ 1

0
∫ 1

0 c2
1β(u, s)2duds

}1/2
= 0.5. Figure 2(a) and (b)

show the 100 trajectories of {Nu
i ; i = 2, . . . , n}, using MBD (the

results are the same if fD is ED). In each plot, we also present the
pointwise mean (dashed curve) and the pointwise 5% and 95%
quantiles (dotted curves) of the 100 trajectories. We observe that
Nu

i has the same growth rate in all cases, that is, O(log i).
Now, we state the result for the sequence of random variables

Nu
n under a nonstationary functional process.

Proposition 2. Let {X1, . . . , Xn} be a sequence of functional time
series following the model Xi = Xi−1 + εi, with {εi} an iid
sequence of functional random variables. Also, let ε0 have a
symmetric distribution with zero mean. Then

Nu
n√
n

d−→ G1, (4)

when n → ∞, where G1 is a random variable with probability
density function g1(u) = 1√

π
exp (−u2/4) for u ≥ 0.

Proof. See the supplementary materials.

In Section 5, we extend Proposition 2 to stationary innova-
tions {εi}. As an illustration of the result in Proposition 2, we
simulate a functional random walk, with Brownian motion in
[0, 1], as a functional white noise, and for di"erent sample sizes
n = 100, and n = 2000. We simulate 100 replicates of each
case, and then obtain 100 replicates of values of Nu

n (the results
are the same for both fDs). Figure 3 shows histograms of Nu

n/
√

n
where the solid blue curve represents the asymptotic distribution
from Proposition 2. We observe that the asymptotic distribution
provides a better description of the empirical distribution when
the sample size increases. However, with a sample size n = 100,
this approximation is already reasonably good.

5. Application to Functional Unit Root Test

Records have been used in di"erent problems, in particular, to
test for a unit root (see Burridge and Guerre 1996; Aparicio,
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Figure 3. Histogram of values of Nu
n/

√
n with n = 100, 2000, and the asymptotic distribution (solid blue curve) from Proposition 2.

Escribano, and Sipols 2006). In this section, we propose a unit
root test for functional time series that uses the normalized
counting process n−1/2Nn := n−1/2(Nu

n +Nl
n). One advantage of

using records to test for a unit root is that it is a nonparametric
test; it is also robust against structural breaks, and it does not
involve the estimation of any coe$cient operators, which could
be a di$cult task and, therefore, face computational issues.
Moreover, a unit root test based on records will be invariant
under monotonic transformations of the data, since functional
depths are invariant. Thus, we can use records to test a unit root
in a general class of I(1) functional processes.

5.1. Functional Unit Root Test

Loosely speaking, an I(1) functional process has two compo-
nents: a functional random walk component and a stationarity
functional process component. Speci!cally, we consider the fol-
lowing I(1) functional process

Xi(s) = µ(s) +
i∑

j=1
εj(s) + ηi(s), (5)

where {εi} is a sequence of iid functional random variables, and
{ηi} is a stationary functional time series. A simple example
of an I(1) functional process is the functional random walk
Xi(s) = Xi−1(s)+εi(s), which can be written as Xi(s) = X0(s)+∑i

j=1 εj(s). Intuitively, the trajectory of the functional random
walk component in (5) leads the trajectory of the I(1) functional
process. Thus, the number of records for the I(1) functional
process is expected to be similar to that of a functional random
walk. We formalize this result in the following proposition.

Proposition 3. Let {Xi} be an I(1) functional process as de!ned
in (5) with {εi} having symmetrical distribution and zero mean.
Then, the corresponding normalized random variable Nu

n/
√

n
has the same asymptotic distribution as the corresponding one
for a functional random walk in Proposition 2.

Proof. See the supplementary materials.

Next, we de!ne a record-based (RB) unit root test, which we
refer to as RB-fURT in the tables below. We consider the testing

of the null hypothesis of an I(1) functional process versus the
functional process being stationary. In other terms,

H0 :{Xi} is an I(1) functional process versus
H1 :{Xi} is a stationary process,

where the corresponding innovations {εi} are assumed to be
symmetrically distributed. For sample size n, the test statistic Tn
for the RB-functional unit root test is the number of upper and
lower records normalized with

√
n, that is, Tn = n−1/2Nn =

n−1/2(Nu
n + Nl

n).

Corollary 1. Let {Xi}n
i=1 be a realization of a functional time

series. We have that

1. under the null hypothesis, Tn
d−→ G2, where G2 is a

random variable with probability density function g2(u) =√
2
π u2 exp (−u2/2), u ≥ 0, and

2. under the alternative hypothesis, Tn
p−→ 0.

Proof. See the supplementary materials.

From Corollary 1, we use the le# tail of the asymptotic
distribution of the test statistic Tn to test for a functional unit
root, that is, given the signi!cance level (, reject H0 if Tn is
smaller than the quantile q( of order ( of g2(u).

In the following sections, we present a Monte Carlo simu-
lation study to evaluate the performance of the test for a !nite
sample size. Furthermore, we conduct a comparison of our
results with the functional unit root tests that already exist in
the literature.

5.2. Simulation Design and Existing Methods

In this section, we study the performance of our proposed
unit root test based on functional records under the null and
alternative hypothesis.

In the literature, we can !nd methods to test for a functional
unit root. In Kokoszka and Young (2016), a KPSS test was pro-
posed to test unit root for functional time series. The KPSS test
assumes that the null hypothesis is Xi(s) = µ(s) + i)(s) + ηi(s),
where µ is the mean, iζ is a “linear” trend, and ηi is a stationary
functional time series. The alternative hypothesis is Xi(s) =
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µ(s) + i)(s) + ∑i
j=1 εj(s) + ηi(s). Then, a proper test statistic

is de!ned (see the corresponding paper for more details). We
compare our method with this KPSS test and assume there is
no linear trend component, that is, ) ≡ 0. Another method
can be found in Chen and Pun (2021a). In that paper, the null
hypothesis is de!ned as Xi(s) = µ(s)+∑i

j=1 ηi(s), and the alter-
native hypothesis is either trend stationary or weakly dependent
stationary. Here, we use this method with the weakly depen-
dent stationary as an alternative. In our results, this method is
denoted as fURT (see Chen and Pun (2021a) for more details).
Another paper that deals with functional unit root is Horváth,
Kokoszka, and Rice (2014). However, the test is the same as the
KPSS test when ) ≡ 0. Thus, we compare our method with two
tests, KPSS and fURT.

We simulate di"erent functional time series, {Xi(s)}n
i=1, at 50

points2 equispaced on [0, 1] with di"erent sample sizes n =
200, 300, 500, and 1000. Each scenario is replicated 100 times.
Let {εi(s)} be a sequence of iid functional random variables. We
consider the following models:
1. Xi(s) = Xi−1(s) + εi(s);
2. Xi(s) = ∑i

j=1 εj(s) + ηi(s), where ηi is a stationary FAR(1)

process as in Model 4;
3. Xi(s) = εi(s);
4. Xi(s) = "1(Xi−1)(s) + εi(s), where "1(z) = c1

∫ 1
0 exp{(u2 +

s2)/2}z(u)du and c1 is such that ‖"1‖HS = 0.5;
5. Xi(s) = µ1(s)1{i≤k} + µ2(s)1{i>k} + ηi(s), where ηi(s) is a

stationary FAR(1) process as in Model 4, µ1(s) = 0, µ2(s) =
2 and k = n/2; and

6. Xi(s) = ("11{i>k} + "21{i≤k})(Xi−1)(s) + εi(s), where "1 is
as in Model 4 and "2(z) = c2

∫ 1
0 exp{−(u2 + s2)/2}z(u)du

where c2 is such that ‖"2‖HS = 0.7, and k = n/2.
Models 1 and 2 are functional time series with a unit root
component, that is, {Xi} is an I(1) functional process, whereas, in
Models 3–6, {Xi} is not an I(1) functional process. Particularly,
in Models 3 and 4, {Xi} is stationary. We consider the functional
white noise to be the Brownian motion (Bm), εi(s) = Wi(s), s ∈
[0, 1], the Brownian bridge (Bb), εi(s) = Wi(s) − sWi(1), s ∈
[0, 1], and εi(s) as a stochastic Gaussian process (Gp(0, γ )) with
zero mean and covariance function γ (s, u) = 0.2 exp{−0.3|s −
u|} in [0, 1].

5.3. Empirical Size and Power of the Test

For each simulation, we compute our test statistic Tn using MBD
and ED as the functional depths (the results are the same for both
fDs), and then we compare it with the quantile q0.05 obtained
from the asymptotic distribution in Corollary 1 (our method
is denoted as RB-fURT). Similarly, for the KPSS and fURT
methods, we compare the corresponding test statistics with the
corresponding 0.05 quantiles. Table 1 presents the proportion
of rejections when the functional time series is under the null
hypothesis of our model. First, we describe the results of our
method. We observe that for Model 1 with white noise Bm and
depth MBD, the proportion of rejection is 0.023 when n =
200, and it increases to 0.038 when n = 1000. We observe

2The results remain consistent if the number of points varies from 10 to 500.
See the supplementary materials.

Table 1. Empirical size of our method.

Model 1 Model 2

n 200 300 500 1000 200 300 500 1000

RB − fURT
εi
Bm 0.023 0.033 0.017 0.038 0.080 0.060 0.037 0.050
Bb 0.001 0.003 0.002 0.009 0.057 0.040 0.010 0.007
Gp(0, γ ) 0.020 0.040 0.027 0.025 0.103 0.123 0.070 0.067

fURT
εi
Bm 0.113 0.113 0.107 0.143 0.547 0.517 0.563 0.527
Bb 0.183 0.180 0.193 0.177 0.723 0.757 0.720 0.720
Gp(0, γ ) 0.107 0.107 0.087 0.110 0.407 0.393 0.417 0.410

KPSS
εi
Bm 0.006 0.00 0.000 0.000 0.007 0.000 0.000 0.000
Bb 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Gp(0, γ ) 0.037 0.017 0.000 0.000 0.037 0.013 0.000 0.000

NOTE: Proportion of rejections under the null hypothesis. For our method RB-fURT,
the functional records are obtained using MBD and ED (results are the same for
both fDs). We simulate functional time series from Models 1 and 2 with di"erent
functional white noises, Brownian motion (Bm), Brownian bridge (Bb), and Gaus-
sian process with zero mean and covariance function γ (Gp(0, γ )). The sample
sizes considered are n = 200, 300, 500, and 1000. Each scenario is replicated 100
times. The nominal level is 5%.

similar results when the white noise is Bb and Gp(0, γ ). This
suggests a slow convergence rate to the le# tail of the asymptotic
distribution. For Model 2, the results and conclusion are similar
to Model 1, except for the functional white noise Bm; in this case,
the proportion of rejection is 0.05 when sample size is n = 1000.

Now, we describe the results for the fURT and KPSS methods.
We found that the proportion of rejection remains consistent
for the fURT method across di"erent sample sizes and white
noises in each model. In Model 1, this proportion ranged from
0.1 to 0.19. In Model 2, the results are not good, with a rejection
proportion around 0.39 when white noise is Gp(0, γ ), 0.52 for
Bm, and 0.72 for Bb. Therefore, fURT performs poorly on Model
2. Finally, for the KPSS method, we observe that the proportion
of rejection is zero for almost all scenarios. This means that KPSS
performs well in both models (zero values are expected since this
is a di"erent null hypothesis).

Our next step is to study the power of our proposed test.
Table 2 presents the proportion of rejections under the alter-
native of our method. Note that Model 3 represents a station-
ary, independent sequence of functional data, whereas Model
4 represents stationary, dependent functional data. Similar to
our previous analysis, we begin by describing the results of our
method. In Model 3, the proportion of rejections is bigger than
0.93 for small sample sizes, independently of the selection of the
white noise εi. In Model 4, the proportion of rejections is bigger
than 0.96 for sample sizes bigger than n = 300. In general,
the test shows a high power, even for the smaller sample size,
n = 200.

Regarding the fURT method, we observe that the rejection
rate is one in Models 3 and 4 (which indicates a good per-
formance). However, fURT presented a high size (especially in
Model 2). Thus, this rejection rate is not very trustworthy. For
the KPSS method, we observe a good performance in Models
3 and 4 (for the KPSS method, the proportion of rejection is
expected to be around 0.95).
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Table 2. Empirical power of our method.

Model 3 Model 4

n 200 300 500 1000 200 300 500 1000

RB-fURT
εi
Bm 0.97 0.99 1.00 1.00 0.92 0.98 0.99 1.00
Bb 0.93 0.95 0.98 1.00 0.89 0.96 0.99 1.00
Gp(0, γ ) 0.95 0.99 1.00 1.00 0.95 1.00 1.00 1.00

fURT
εi
Bm 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Bb 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Gp(0, γ ) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

KPSS
εi
Bm 0.96 0.96 0.94 0.95 0.96 0.95 0.95 0.94
Bb 0.93 0.94 0.95 0.97 0.94 0.94 0.93 0.94
Gp(0, γ ) 0.96 0.96 0.96 0.94 0.94 0.96 0.95 0.93

NOTE: Proportion of rejections under the alternative hypothesis. For our method
RB-fURT, the functional records are obtained using MBD and ED (results are the
same for both fDs). Functional time series are simulated from Models 3 and 4
with di"erent functional white noises, Brownian motion (Bm), Brownian bridge
(Bb), and Gaussian process with zero mean and covariance function γ (Gp(0, γ )).
The sample sizes considered are n = 200, 300, 500, and 1000. Each scenario is
replicated 100 times.

Figure 4. Rejection rate of our method when varying operator norms of the coe#-
cient operator in Model 4 (results are the same for both ED and MBD).

To conclude, from Tables 1 and 2, our RB-functional unit root
test shows a good performance in Models 1–4. Similarly, the
KPSS test demonstrates good performance in all four models.
However, the fURT test has a weak performance in Models 1
and 2.

Additionally, we investigate the power curve of our method
for Model 4 by varying the operator norm ‖"1‖HS =
0.5, 0.525, . . . , 0.975, 1. Figure 4 shows the rejection rate at level
( = 0.05 with n = 500 for each di"erent operator norm. We
observe that the test has good power, correctly rejecting the null
hypothesis when operator norms are smaller than 0.9.

5.4. Robustness Against Structural Changes

One of the advantages of using functional records in the hypoth-
esis test is the robustness to di"erent nonstationary models.
Models 5 and 6 represent unstable time series, with a change in
the mean and a change in the coe$cient operator, respectively.

Table 3. Proportion of rejections against models with structural changes.

Model 5 Model 6

n 200 300 500 1000 200 300 500 1000

RB-fURT
εi
Bm 0.49 0.74 0.91 1.00 0.80 0.95 0.98 1.00
Bb 0.45 0.62 0.83 1.00 0.79 0.92 0.97 0.99
Gp(0, γ ) 0.65 0.88 0.99 1.00 0.88 0.98 1.00 1.00

fURT
εi
Bm 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Bb 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Gp(0, γ ) 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

KPSS
εi
Bm 0.00 0.00 0.00 0.00 0.92 0.95 0.93 0.97
Bb 0.00 0.00 0.00 0.00 0.92 0.95 0.94 0.95
Gp(0, γ ) 0.00 0.00 0.00 0.00 0.96 0.93 0.96 0.96

NOTE: For our method RB-fURT, the functional records are obtained using MBD
and ED (results are the same for both fDs). Functional time series are simulated
from Models 5 and 6 with di"erent functional white noises, Brownian motion
(Bm), Brownian bridge (Bb), and Gaussian process with zero mean and covariance
function γ (Gp(0, γ )). The sample sizes considered are n = 200, 300, 500, and
1000. Each scenario is replicated 100 times.

However, Models 5 and 6 are not I(1) functional processes, so
we expect to reject H0. The counting processes Ni for Models 5
and 6 should grow at the same rate as that in the stationary case:
Ni = O(log i). Table 3 shows the corresponding proportion of
rejections for these models.

First, we describe the results of our method. For Model 5,
we observe a low proportion of rejections when the sample
size is small. In this scenario, for a reasonable power, the test
requires a sample size bigger than 300. For Model 6, the results
are di"erent. For n = 200, we observe that the proportions of
rejection of the null hypothesis are bigger than 0.79 for all white
noises. Overall, we obtain a proportion of rejections around 0.93
when n ≥ 300. In general, the RB-functional unit root test is
robust against structural changes, although a bigger sample size
is needed when changes occur in the mean.

The fURT method seems to be robust in principle as well. The
proportion of rejection is one for all cases of structural changes,
even for small sample sizes. However, due to the high size of this
hypothesis test, one needs to be careful with any conclusion on
power.

Regarding the KPSS test, we observe poor performance for
Model 5 with zero proportions of rejection. On the other hand,
the performance of KPSS is better in Model 6. We obtain a
proportion of rejection of around 0.95 for all types of white
noise (0.95 is the proportion expected to be observed). Thus,
KPSS seems to be robust to changes in the coe$cients but not
to changes in the mean.

A#er our simulation study, we conclude that our method
outperforms both the fURT and KPSS methods. The fURT test
struggles with data obtained from Models 1 and 2, while the
KPSS method struggles with data obtained from Model 5. The
main bene!t of our method is that it is a nonparametric test, so it
does not require any parameter estimation. Furthermore, since
fD has invariance properties, our method is invariant under
monotonic transformations of the data. Thus, our method is
expected to be robust against more complex scenarios, including
those considered in Models 5 and 6.
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Figure 5. Run time in seconds of di"erent hypothesis testing. Left: all tests. Right: Same as the left !gure but excluding the KPSS test. We simulate functional time series
with sample size varying from n = 100 to n = 10,000. Each function is evaluated at 100 points equispaced on [0, 1]. ED and MBD represent our proposed unit root test by
using functional depths ED and MBD.

5.5. Computational Cost

We end this section by showing the run times of our RB-fURT
method and the fURT and KPSS methods. Our proposal is
mostly concerned with a de!nition of functional records and
their use in a functional unit root test and as an exploratory
analysis tool. Thus, we do not provide an in-depth study of the
computational cost.

The run time was measured using a standard laptop with
an Intel Core i5 − 1135G7 CPU with 2.40 GHz × 8 Core
and 15.3 Gb of RAM. We simulate functional time series,
{Xi(s)}n

i=1 using Model 1 with di"erent sample sizes, n =
100, 200, 300, 500, 1000, 5000, 10,000. Each Xi is evaluated at 100
points equispaced on [0, 1], and then we perform the test. Here,
we considered the functional depths MBD and ED to obtain
the functional records. Figure 5 presents the run times, where
our method is denoted as MBD and ED to emphasize the depth
used in the RB-fURT method. We observe that, with sample size
n = 500, the run times are 2 sec, 2 sec, 4 sec, and 19 sec for MBD,
ED, fURT, and KPSS methods, respectively. When the sample
size increases to n = 10,000, the run time of our method with
depth MBD is around 10 sec and 20 sec with ED, for fURT is
around 1 min, and for KPSS is around 61 min. Here, we see that
the computational time of our method is small compared with
the competitors.

In this section, we have used the packages fda (Ramsay,
Graves, and Hooker 2020) and fdaoutlier (Ojo, Lillo, and Fer-
nandez Anta 2021) for MBD and ED functional depths, respec-
tively. To conduct the fURT test, we have used the package
STFTS (Chen and Pun 2021b), and for the KPSS test, we have
used an R code provided by the corresponding author.

6. Data Applications

In this section, we apply the di"erent tools described in this
article to two di"erent datasets. First, we consider daily curves of
the hourly wind speed taken at Yanbu, Saudi Arabia. Our second

example involves the annual mortality rates in France (from
the R package demography, Hyndman et al. 2019), from 1816
to 2006. The functional depths used to obtain the functional
records are MBD and ED. The results are the same. Thus, we
present the results without specifying the functional depth used.

6.1. Wind Speed in Saudi Arabia

The dataset consists of n = 755 daily curves of wind speed at
Yanbu, Saudi Arabia, from August 30, 2014 to September 22,
2016. Each point of the curve represents wind speed at 80m
[m/s]. The study of the behavior of wind speed is important
for renewable energy generation. Particularly, by knowing when
and how o#en a record curve of wind speed is observed, we can
describe the dynamics of the extreme wind speed curves. An
accurate characterization of the extreme daily curves is crucial
to predict the e$ciencies of wind turbines and energy storage in
the presence of an extreme event.

We exclude the !rst two curves, which are functional records
by de!nition. We found that the functional records for 2014
are: Sept. 2, 5, 26, and Oct. 5, 8, 10. The record curves for 2015
are: Jan. 20, Feb. 2, 15, Apr. 24, and Nov. 22. The record curve
for 2016 is Sept. 5. We plot the results in Figure 6. Curves
not classi!ed as records are indicated in gray. The lower func-
tional records are indicated by the blue curves, and the upper
functional records are indicated by the red curves. We indicate
the corresponding year using di"erent line types: 2014-dotted
curves, 2015-dashed curves, and 2016-solid curves. We observe
that all lower records are in 2014, whereas upper records are
in 2015 and 2016. Thus, curves showing the lowest speeds are
in Autumn, when the temperature starts to decrease slowly.
Most of the upper functional records were observed in Spring
and Summer (except the last one observed in September 2016).
Summer in Saudi Arabia brings sandstorms driven by Summer
South winds. Therefore, it seems reasonable to observe these
extreme curves.
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Figure 6. Functional records of daily wind speed at Yanbu, Saudi Arabia, from August 30, 2014 to September 22, 2016. Left: The Functional records. Dotted lines (blue)
indicate lower records and solid and dashed lines (red) indicate upper records. Right: Trajectory of the number of functional records Ni , i = 2, . . . , 755.

Figure 7. Functional records of log mortality rates in France from 1816 to 2006, for zero to 100 years of age. Left: The functional records. Solid curves indicate lower records
and dashed curves indicate upper records. Right: The trajectory of the number of functional records over time, Ni .

We can now infer the class of the underlying functional
process. On the right side of Figure 6, we present the trajectory
of the corresponding Ni process. We apply our RB-functional
unit root test to the wind speed dataset. The test statistic value is
Tn = 0.43. The corresponding 5% quantile is q0.05 = 0.59. Thus,
the Tn value is smaller than q0.05. The corresponding p-value is
0.0209. Thus, we have signi!cant evidence against the stochastic
trend and conclude that the functional wind data do not have
a unit root component. Therefore, the daily curves of the wind
speed can be modeled with a stationary functional time series
model.

6.2. Mortality Rates in France

This dataset consists of n = 191 curves of annual mortality
rates in France, from 1816 to 2006, for zero to 110-years old
individuals. However, we consider only up to 100 years of age
in order to avoid highly noisy measurements. Each point of
the curve Xi(s) represents the total mortality rate, in year i, at
age s. Our interest is to study the behavior of the rates, over
the years, taking into account all ages. By studying records,
we analyze whether the new functional records over the years
correspond to the natural randomness of the process, or if they
indicate a decreasing trend. The data have been analyzed before
by Hyndman and Ullah (2007) using a functional approach.
They proposed to forecast the age-speci!c mortality rate by

modeling the coe$cients obtained by projecting the functional
data to the corresponding robust functional principal compo-
nents. They !tted an ARIMA model to the coe$cients, but they
did not report the estimated parameters. Evidence of a univariate
unit root can be found if we !t the ARIMA model to the !rst
coe$cients, for the !rst eigenfunction. We, therefore, investigate
if there is evidence of a functional unit root. In our analysis, we
use the smoothed curves, as described in Hyndman and Ullah
(2007).

Again, we exclude the !rst two curves, which are functional
records by de!nition. We !nd that the years classi!ed as records
are: 1821, 1832, 1845, 1871, 1872, 1877, 1881, 1884, 1887,
1888, 1889, 1897, 1913, 1920, 1921, 1923, 1924, 1927, 1930,
1932–1934, 1936, 1937, 1939, 1946–1948, 1955, 1958, 1959,
1961, 1966, 1975, 1977, 1980, 1985–1987, 1990–2004, and 2006.
That is 55 functional records in total.

Figure 7 shows the functional records. We indicate the upper
and lower records with di"erent line types: upper functional
records with a red dashed curve, and lower functional records
with a blue solid curve. We observe only two upper records
corresponding to the years 1832 and 1871. The rest of the
records correspond to lower functional records. In particular,
we observe that, a#er the last functional upper records in 1871,
a new functional record represents a lower mortality rate for
almost all ages. This suggests the presence of a functional trend.

Finally, we apply our RB-functional unit root test to the
dataset. On the right side of Figure 7, we show the trajectory of
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the corresponding Ni process. The test statistic value is Tn = 4.1.
The corresponding 5% quantile from the asymptotic distribu-
tion under the null hypothesis is q0.05 = 0.59. Therefore, we do
not have any evidence against the I(1) functional process. Thus,
to model this dataset, we must consider the existence of both
a stochastic trend and a functional deterministic trend. This
is consistent with the !ndings by Hyndman and Ullah (2007)
that take into consideration the ARIMA models for the basis
coe$cients. However, our approach is more general, as we do
not consider any speci!c model.

7. Discussion

In this article, we provided some statistical tools for functional
time series analysis and visualization. These tools are based on a
record de!nition for functional data. We used a depth notion to
say when a function crosses another function. We showed that
the counting process corresponding to the number of functional
records grows at rate log n, for stationary functional time series,
and that it grows at rate n1/2, for nonstationary functional time
series. A simulation study showed that the asymptotic distribu-
tion of the number of records has a good approximation when
the functional data are a functional random walk, even for small
sample sizes.

As a particular application of the extended functional record,
we proposed a functional unit root test for I(1) functional
processes. Using a Monte Carlo simulation study, we showed
that the test performance is good for stationary and nonstation-
ary functional processes. Our test is robust against structural
changes for a moderate sample size. The unit root test based
on functional records does not assume any model. In the data
application, we found that the de!nition of functional records
provides relevant and consistent information about extreme
curves. In addition, it allows us to infer the underlying process.

The functional record introduced in this article equates to
the maximum and minimum values when observations are
real numbers. However, in certain cases, our functional record
de!nition may not be e"ective in identifying extreme curves.
For instance, a functional data could be an extreme curve, but
if it does not exceed the previous “maximum” (“minimum”)
curve, it will not be de!ned as a record curve. In scenarios like
temperature curves, it may be more useful to detect abnormal
curves rather than record curves. One potential solution to the
problem of detecting abnormal curves is to consider ordering
the functional data and then use the quantile concept. Fur-
thermore, one could de!ne a threshold curve and study the
curves that exceed this threshold curve. These latter ideas are
commonly used in extreme value theory and will be further
explored in future works.

The link https://github.com/I-MH/Functional-Records corre-
sponds to the R code in GitHub repositories to estimate the
functional records.
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README.txt: A text !le describing all supplementary materials, including
all R scripts.
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