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A B S T R A C T

We present a new paradigm, called functional multiple-point simulation, in which multiple-point geostatistical
simulation can be performed when functions or curves are observed at each location of a random field.
Multiple-point simulation is a non-parametric method used for conditional geostatistical simulation of complex
spatial patterns by inferring multiple-point statistics from a training image, rather than from a two-point
variogram or covariance model. When the observable at each spatial location is a functional random variable,
such multiple-point simulation must take into account not only the spatial correlation among locations but also
the similarity of functions or curves observed at each location. The data events to be compared in this case are
now functional, in the sense that they consist of spatial arrangements of functions. Consequently, we propose
four distances, inspired by the functional data analysis literature, for measuring similarities between functional
data events and use these to extend the direct sampling method to perform multiple-function geostatistical
simulation with functional fields. We coin the new method Functional Direct Sampling and carry out extensive
qualitative and quantitative performance comparison between the four proposed distances using simulation
techniques on two well-known applications of multiple-point simulation: simulating copies of a functional
random field and gap-filling of locations in a functional random field. We apply the proposed method to a
gap-filling task of simulated wind profiles spatial functions over the Arabian Peninsula.
1. Introduction

Spatially correlated functional data are functional data with a spa-
tial component, i.e., observations are curves 𝑋(𝐬𝑖, 𝑡); 𝑡 ∈ [0, 𝑇 ], observed
at spatial locations {𝐬𝑖}𝑛𝑖=1 ⊂ 𝐷, where 𝐷 is the study area. Such data
are ubiquitous since functional data are usually collected at a location,
with spatial dependence expressed in the spatial arrangement of the
functions in the study area. An example of spatial functional data (SFD)
is wind profiles data containing wind speed at different pressure levels
(or altitudes) for locations in the study area.

Statistical methods for analysing SFD in the literature include
methods for dimension reduction (Liu et al., 2017; Kuenzer et al.,
2021; Zhang and Li, 2022), mean estimation, hypothesis testing and
modelling (Gromenko et al., 2012; Gromenko and Kokoszka, 2013;
Arnone et al., 2019; Rachdi et al., 2021; Římalová et al., 2022; White
et al., 2021; Liang et al., 2022; Hörmann et al., 2022), and cluster-
ing (Giraldo et al., 2012a; Romano and Verde, 2012; Romano et al.,
2015; Abramowicz et al., 2017; Vandewalle et al., 2022). Attempts at
extending geostatistical methods to SFD include kriging and regression
methods for spatial prediction of curves (Nerini et al., 2010; Giraldo
et al., 2011; Menafoglio et al., 2013; Caballero et al., 2013; Ignaccolo
et al., 2014; Menafoglio et al., 2016; Aguilera-Morillo et al., 2017) and
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test for spatial autocorrelation (Giraldo et al., 2018). Recent surveys
of the latest developments in inferential and geostatistical methods for
spatial functional data include Menafoglio and Secchi (2017), Kokoszka
and Reimherr (2019), Martínez-Hernández and Genton (2020), and Li
et al. (2022, chap. 5). The compendium on geostatistical functional data
analysis (Mateu and Giraldo, 2021) is also a comprehensive collection
of the latest advances.

This work aims to extend multiple-point statistics (MPS) to SFD.
MPS is a non-parametric method used for conditional geostatistical
simulation of complex spatial structures (e.g., curve-linear geological
features) by inferring multiple-point statistics from a training image
(TI), rather than from a two-point variogram (Guardiano and Srivas-
tava, 1993). Typically, the TI is a representative conceptual model from
which spatial statistics are copied and used for simulation. MPS has
found extensive applications in geology (Oriani et al., 2016), remote
sensing (Vannametee et al., 2014), and imaging (Yin et al., 2017a,b;
Pham, 2012).

MPS was introduced by Guardiano and Srivastava (1993), when
they proposed the extended normal equations simulation (ENESIM) al-
gorithm. ENESIM aims to estimate the conditional probability
Prob(𝑍(𝒔) = 𝑐𝑘|𝑑𝑛) (that a random field 𝑍 takes on a class 𝑐𝑘 out
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of 𝐾 possible classes {𝑐𝑘|𝑘 = 1,… , 𝐾} at a location 𝒔, given the
surrounding data event 𝑑𝑛) directly from a TI. The estimation of
rob(𝑍(𝒔) = 𝑐𝑘|𝑑𝑛) requires computing statistics of multiple points in
he TI which can better reproduce complex features. This method had
ome drawbacks that limited its use including being computationally

intensive and limited to categorical variables. Other MPS methods like
snesim (Strebelle, 2002), filtersim (Zhang et al., 2006; Wu et al., 2008),
direct sampling (Mariethoz et al., 2010) and quick sampling (Gravey
and Mariethoz, 2020) were subsequently proposed.

We propose a new method for performing multiple-point geosta-
istical simulation with spatial functional data observed on a regular
rid. We assume each observation is a realization of a functional
andom variable observed at a grid point in a study area which is
artitioned into a finite number of regular grid points. Each simulated

‘point’’ at a location is a function conditioned on the data event
made up of neighbouring functions. The TI is an SFD from which
‘‘multiple-point’’ statistics are computed (in reality, we are consider-
ing ‘‘multiple-function’’ statistics). The proposed method is useful for
generating realizations of the unknown functional random field (FRF)
underlying the TI, as well as for gap-filling applications.

In Section 2, we provide some background on MPS. We elaborate
our proposal for functional MPS in Section 3 followed by some simula-
ion studies in Section 4. We apply the proposed method to simulated

wind profiles data over the Arabian Peninsula in Section 5 and conclude
the article in Section 6.

2. Multiple-point geostatistical simulation

2.1. Multiple-point statistics

This section contains a brief background on geostatistical simulation
sing MPS (see Mariethoz and Caers, 2014 for a thorough coverage).
PS aims to use a TI to generate realizations that are conditioned on

he features found in the TI. Usually, the TI shares some characteristics
ith the underlying phenomenon of interest although the TI itself is
ot the phenomenon (Guardiano and Srivastava, 1993). At each pixel

location 𝒔 in the TI, the pixel value, denoted by 𝑍(𝒔), can only take
on 𝐾 different classes, {𝑐𝑘|𝑘 = 1,… , 𝐾}, e.g., categorical outcomes. A
simulation grid (SG) is created, and a few conditioning data (usually
obtained by sampling a few pixel values from the TI) are assigned to
the SG. The simulation then proceeds to fill up the remaining locations
in the SG. For a location 𝒔 to be simulated, the data event 𝑑𝑛 around 𝒔
is a set containing the values of its 𝑛−nearest neighbours:

𝑑𝑛 = {𝑍(𝒔 + 𝒉𝛼)| 𝛼 = 1,… , 𝑛}, (1)

where 𝒉𝛼 is the lag vector 𝒔𝛼−𝒔 indicating the displacement of location
𝒔𝛼 from 𝒔. Let 𝑘(𝒔) ∶= 𝟏{if 𝑍(𝒔) = 𝑐𝑘} indicate the occurrence of class
𝑐𝑘 at 𝒔 and let  ∶= 𝟏{if 𝑍(𝒔 + 𝒉𝛼) = 𝑐𝑘𝛼 , ∀ 𝛼 = 1,… , 𝑛} indicate the
occurrence of the data event centred on 𝒔, where {𝑐𝑘𝛼 , |𝛼 = 1,… , 𝑛},
are the values of the neighbours of 𝒔. ENESIM then uses an estimate
(see Section S-I of the Supplementary Material) of the probability:
Prob(𝑘(𝒔) = 1| = 1) to simulate a value for 𝒔 from the 𝐾 classes,
which is then added to the grid and considered as part of the data event
for subsequent simulations of the other locations.

ENESIM’s support for only binary classes and its computational
urden limits its application. Strebelle (2002) proposed the snesim

algorithm which slightly reduces the computational burden, but it is
still limited to categorical variables with a small number of classes.

2.2. Direct sampling method

The direct sampling technique (Mariethoz et al., 2010), unlike
NESIM and snesim, can deal with RFs taking continuous values. The
ultiple-point statistics are expressed as the cumulative distribution

unction (CDF) 𝐹 (𝑧, 𝒔, 𝑑𝑛) = Prob(𝑍(𝒔) ≤ 𝑧|𝑑𝑛) and the idea is that it
is unnecessary to estimate 𝐹 (𝑧, 𝒔, 𝑑 ) by counting data events found in
𝑛

2 
the TI. Instead, values satisfying this CDF can be sampled from the TI
and pasted into the SG. For each location 𝒗, the data event 𝑑𝑛 around 𝒗
is compared to configurations of pixels (of the same size as 𝑑𝑛) in the TI
sing a distance metric. Once a pattern that matches (or is similar to)
𝑛 is found in the TI, the central pixel of that pattern is directly pasted

into the SG. The simulation process then moves on to the next location
to be simulated. We provide an outline of the algorithm in Algorithm 1.
Algorithm 1 Direct Sampling Algorithm
Input: Training Image TI, number of neighbours 𝑛, distance
acceptance threshold 𝛾 and a fraction 𝑓 of the TI, empty
Simulation Grid (SG)

1. Assign some conditioning data to the simulation grid (SG). The
first conditioning datum can be drawn from the TG and then the
simulation continues on from this datum;
2. Define a random or unilateral filling path through the SG;

for each location 𝒗 to be simulated along the SG path do
3. Find the 𝑛−nearest neighbours of 𝒗;
4. Compute the lag vectors 𝐿 = {𝒉1,𝒉2,… ,𝒉𝑛} = {𝒗𝛼 − 𝒗|𝛼 =

1,… , 𝑛}, and the neighbourhood set 𝑁(𝒗, 𝐿) = {𝒗 + 𝒉𝛼|𝛼 = 1,… , 𝑛};
5. Compute data event around 𝒗: 𝑑𝑛(𝒗, 𝐿) = {𝑍(𝒗 + 𝒉𝛼)|𝛼 =

1,… , 𝑛}.
6. Define the search window in the TI: {𝒖 ∈ 𝑇 𝐼 ∶ 𝑁(𝒖, 𝐿) ∈ 𝑇 𝐼}
for each location 𝒖 in the search window: do

7. Compute the data event 𝑑𝑛(𝒖, 𝐿);
8. Compute the distance 𝐷(𝑑𝑛(𝒖), 𝑑𝑛(𝒗)) between 𝑑𝑛(𝒖, 𝐿) and

𝑑𝑛(𝒗, 𝐿);
9. Store 𝒖 and 𝑍(𝒖) if distance 𝐷(𝑑𝑛(𝒖), 𝑑𝑛(𝒗)) is the lowest

distance obtained so far in the search window
10. If 𝐷(𝑑𝑛(𝒖), 𝑑𝑛(𝒗)) < 𝛾, or the number of possible locations 𝒖

already considered in the search window is more than the fraction 𝑓
of the TI, set 𝑍(𝒗) ∶= 𝑍(𝒖) and proceed to simulate the next location
in the SG.

end for
end for

Output: Filled Simulation Grid SG
The distance measure used for comparing the data events of the

location to be simulated (𝑑𝑛(𝒗, 𝐿)) and the candidate location (𝑑𝑛(𝒖, 𝐿))
epends on the nature of the variables considered. For categorical
andom fields, a distance measuring the proportion of mismatched
ixels is appropriate. Thus 𝐷(𝑑𝑛(𝒖), 𝑑𝑛(𝒗)) can be set to:

𝐷𝑎(𝑑𝑛(𝒖), 𝑑𝑛(𝒗)) = 1
𝑛

𝑛
∑

𝛼=1
𝜓𝛼 ∈ [0, 1], (2)

where 𝜓𝛼 is 𝜓𝛼 ∶= 𝟏{𝑍(𝒗𝛼) ≠ 𝑍(𝒖𝛼)}, for 𝑍(𝒗𝛼) ∈ 𝑑𝑛(𝒗, 𝐿) and
(𝒖𝛼) ∈ 𝑑𝑛(𝒖, 𝐿). A weighted version of 𝐷𝑎(𝑑𝑛(𝒖), 𝑑𝑛(𝒗)) which assigns
ore weight to pixels nearer to the centre of the data events can be

onsidered:

𝐷𝑎(𝑑𝑛(𝒖), 𝑑𝑛(𝒗)) =
∑𝑛
𝛼=1 𝜓𝛼‖𝒉𝛼‖

−𝛿

∑𝑛
𝛼=1 ‖𝒉𝛼‖−𝛿

∈ [0, 1], (3)

where 𝛿 ≥ 0 is a weighting factor. For continuous variables, a weighted
uclidean distance works:

𝐷𝑏(𝑑𝑛(𝒖), 𝑑𝑛(𝒗)) =
√

√

√

√

𝑛
∑

𝛼=1
𝜔𝛼{𝑍(𝒗𝛼) −𝑍(𝒖𝛼)}2 ∈ [0, 1], (4)

where

𝜔𝛼 =
‖𝒉𝛼‖−𝛿

𝑑2𝑚𝑎𝑥
∑𝑛
𝑗=1 ‖𝒉𝛼‖−𝛿

, 𝑑𝑚𝑎𝑥 = max
𝒖∈𝑇 𝐼 𝑍(𝒖) − min

𝒖∈𝑇 𝐼 𝑍(𝒖), 𝛿 ≥ 0. (5)

The distance measures 𝐷𝑎 and 𝐷𝑏 are all normalized to the inter-
val [0, 1]. This is helpful in selecting an acceptance threshold 𝛾 for
the simulation. Other distance measures were proposed to deal with
multivariate random fields and non-stationary random fields.
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3. Functional multiple-point simulation

3.1. Functional direct sampling algorithm

In this section, we outline our proposal for conducting multiple-
oint simulations on SFD. It is assumed that there is a ‘‘training image’’
hereafter referred to as the training grid TG), that is an SFD: 𝑋(𝐬𝑖, 𝑡),
bserved on a grid of regularly spaced locations {𝐬𝑖}𝑟𝑖=1 ⊂ 𝑅 ∈ R2,
he study area. Thus, each location in the TG is no longer a single
alue but a function. For simplicity, we assume that these functions
re observed in the space of square-integrable functions on the interval
0, 1], i.e., 𝑋(𝐬𝑖, 𝑡) ∈ 𝐿2[0, 1] (because we can define an inner product
nd norm on functions in this space).

The simulation grid (SG) is also assumed to be a regular grid, but
ot necessarily of the same size as the TG. Some initial conditioning
ata, which can also be an unconditional simulation from the TG (to
void inconsistencies), are randomly assigned to the SG. The goal is to
se MPS to fill up the locations of the SG with functions conditioned
n the data events. We outline in Algorithm 2, a new algorithm, which

we coin ‘‘Functional Direct Sampling’’ (FDS), to achieve this.

Algorithm 2 Functional Direct Sampling (FDS) Algorithm
Input: Training Grid TG, number of neighbours 𝑛, empty or
partially filled Simulation Grid (SG)

1. Assign conditioning data to the simulation grid (SG). The first con-
ditioning datum can be drawn from the TG and then the simulation
continues on from this datum;
2. Define a random or unilateral filling path through the SG;

for each location 𝒗 to be simulated along the SG path do
3. Find the 𝑛−nearest neighbours of 𝒗 with curves/functions

already assigned;
4. Compute the lag vectors 𝐿 = {𝒉1,𝒉2,… ,𝒉𝑛} = {𝒗𝛼 − 𝒗|𝛼 =

1,… , 𝑛}, and the neighbourhood set 𝑁(𝒗, 𝐿) = {𝒗 + 𝒉𝛼|𝛼 = 1,… , 𝑛};
5. Compute the "functional data event" around 𝒗: 𝑑𝑛(𝒗, 𝐿)(𝑡) =

{𝑍(𝒗 + 𝒉𝛼 , 𝑡)|𝛼 = 1,… , 𝑛}.
6. Define the search window in the TG: {𝒖 ∈ 𝑇 𝐺|𝑁(𝒖, 𝐿) ∈ 𝑇 𝐺}
for each location 𝒖 in the search window: do

7. Compute the data event 𝑑𝑛(𝒖, 𝐿)(𝑡);
8. Compute the distance 𝐷(𝑑𝑛(𝒖, 𝐿)(𝑡), 𝑑𝑛(𝒗, 𝐿)(𝑡)) between

𝑑𝑛(𝒖, 𝐿)(𝑡) and 𝑑𝑛(𝒗, 𝐿)(𝑡);
9. Store 𝒖 and 𝑍(𝒖, 𝑡) if 𝐷(𝑑𝑛(𝒖, 𝐿)(𝑡), 𝑑𝑛(𝒗, 𝐿)(𝑡)) is the lowest

distance obtained so far in the search window;
end for
10. Copy the function of 𝒖 with the lowest distance to loca-

tion 𝒗 in the SG, i.e., set 𝑍(𝒗, 𝑡) ∶= 𝑍(𝒖𝒎𝒊𝒏, 𝑡) where 𝒖𝒎𝒊𝒏 =
min𝒖∈𝑇 𝐺 𝐷(𝑑𝑛(𝒖, 𝐿)(𝑡), 𝑑𝑛(𝒗, 𝐿)(𝑡)).
end for

Output: Filled Simulation Grid SG

Since functional observations can vary in different ways (e.g., func-
ions can have different magnitudes but the same shape), we propose
istances that can be used for comparing functional data events.

3.2. Distances based on norms and seminorms

The space 𝐿2[0, 1] is endowed with ‖𝑓‖ =
√

⟨𝑓 , 𝑓 ⟩ = (

∫ [𝑓 (𝑡)]2d𝑡
)1∕2.

For functions 𝑓 , 𝑔 ∈ 𝐿2, the distance between 𝑓 and 𝑔 is: ‖𝑓−𝑔‖. We can
compare two data events 𝑑𝑛(𝒖, 𝐿)(𝑡) and 𝑑𝑛(𝒗, 𝐿)(𝑡) using the weighted
sum of the distance between their constituent functions:

𝐷1(𝑑𝑛(𝒖)(𝑡), 𝑑𝑛(𝒗)(𝑡)) =
( 𝑛
∑

𝜔𝛼‖𝑍(𝒖 + 𝒉𝛼 , 𝑡) −𝑍(𝒗 + 𝒉𝛼 , 𝑡)‖2
)1∕2

(6)

𝛼=1 a

3 
=

( 𝑛
∑

𝛼=1
𝜔𝛼 ∫

1

0

[

𝑍(𝒖 + 𝒉𝛼 , 𝑡) −𝑍(𝒗 + 𝒉𝛼 , 𝑡)
]2 d𝑡

)1∕2

,

(7)

where 𝜔𝛼 , 𝛼 = 1,… , 𝑛 are weights which can depend on 𝒉𝛼 . We can
also compare data events using the average normalized distance:

𝐷2(𝑑𝑛(𝒖)(𝑡), 𝑑𝑛(𝒗)(𝑡)) = 1
𝑛

𝑛
∑

𝛼=1

‖𝑍(𝒖 + 𝒉𝛼 , 𝑡) −𝑍(𝒗 + 𝒉𝛼 , 𝑡)‖
𝑑 𝑚𝑎𝑥 , (8)

where 𝑑 𝑚𝑎𝑥 = max𝒙,𝒚∈TG ‖𝑍(𝒙, 𝑡) −𝑍(𝒚, 𝑡)‖.
Distances based on seminorms (Ferraty and Vieu, 2006) of deriva-

tives of functions are useful for considering differences in velocity and
acceleration of functions data events:

𝐷(𝑞)
3 (𝑑𝑛(𝒖)(𝑡), 𝑑𝑛(𝒗)(𝑡)) =

( 𝑛
∑

𝛼=1
𝜔𝛼 ∫

1

0

[

𝑍(𝒖 + 𝒉𝛼 , 𝑡)(𝑞)

−𝑍(𝒗 + 𝒉𝛼 , 𝑡)(𝑞)
]2 d𝑡

)1∕2

, (9)

where 𝑞 ∈ {1, 2} and 𝑍(𝒖 + 𝒉𝛼 , 𝑡)(𝑞) indicate the 𝑞th derivative of the
unction 𝑍(𝒖 + 𝒉𝛼 , 𝑡).

3.3. Pseudo-distance based on FastMUOD indices

The fast massive unsupervised outlier detection (FastMUOD) in-
dices proposed in Ojo et al. (2021) compute for each curve, a shape,
amplitude, and magnitude index which measures the outlyingness of
that curve in terms of shape, amplitude and magnitude. We adapt
these indices to compare the shapes, amplitudes, and magnitudes of
corresponding functions in the data events. For 𝒗 ∈ SG and 𝒖 ∈ TG,
define the shape pseudo-distance between the data events of 𝒖 and 𝒗
as:

𝑆𝒖,𝒗 = 𝑆(𝑑𝑛(𝒖, 𝐿)(𝑡), 𝑑𝑛(𝒗, 𝐿)(𝑡)) ∶= 1
𝑛

𝑛
∑

𝛼=1
𝜌̂𝛼 , (10)

where 𝜌̂𝛼 = 1 − 𝜌̂(𝑍(𝒗+𝒉𝛼 , 𝑡), 𝑍(𝒖+𝒉𝛼 , 𝑡)) and 𝜌̂(𝑍(𝒗+𝒉𝛼 , 𝑡), 𝑍(𝒖+𝒉𝛼 , 𝑡))
is the estimated Pearson correlation coefficient between the observed
points of 𝑍(𝒗+ 𝒉𝛼 , 𝑡) and the observed points of 𝑍(𝒖+ 𝒉𝛼 , 𝑡). Here, 𝑆𝒖,𝒗
measures the average similarity in terms of shape (quantified by the
Pearson correlation) between 𝑑𝑛(𝒖, 𝐿)(𝑡) and 𝑑𝑛(𝒗, 𝐿)(𝑡). We define the
amplitude pseudo-distance between 𝑑𝑛(𝒖, 𝐿)(𝑡) and 𝑑𝑛(𝒗, 𝐿)(𝑡) as:

𝐴𝒖,𝒗 = 𝐴(𝑑𝑛(𝒖, 𝐿)(𝑡), 𝑑𝑛(𝒖, 𝐿)(𝑡)) ∶= 1
𝑛

𝑛
∑

𝛼=1
|𝛽𝛼 − 1|, (11)

where 𝛽𝛼 = Ĉov(𝑍(𝒗+𝒉𝛼 , 𝑡), 𝑍(𝒖+𝒉𝛼 , 𝑡))∕𝜎̂2𝑍(𝒗+𝒉𝛼 ,𝑡)
, Ĉov(𝑍(𝒗+𝒉𝛼 , 𝑡), 𝑍(𝒖+

𝛼 , 𝑡)) is the sample covariance between the observed points of 𝑍(𝒗 +
𝛼 , 𝑡) and 𝑍(𝒖 + 𝒉𝛼 , 𝑡), and 𝜎̂2𝑍(𝒗+𝒉𝛼 ,𝑡)

is the sample variance of the
bserved points of 𝑍(𝒗 + 𝒉𝛼 , 𝑡). The term 𝛽𝛼 is the estimated slope of
 linear regression between the observed points of 𝑍(𝒗 + 𝒉𝛼 , 𝑡) and
(𝒖+𝒉𝛼 , 𝑡). If 𝑍(𝒗+𝒉𝛼 , 𝑡) and 𝑍(𝒖+𝒉𝛼 , 𝑡) have the same amplitude, then
𝛼 will be close to 1, otherwise, 𝛽𝛼 will have a value different from 1.
hus, lower values of 𝐴𝒖,𝒗 indicate that the functions in 𝑑𝑛(𝒖, 𝐿)(𝑡) and
𝑛(𝒗, 𝐿)(𝑡) have similar amplitude on average. We note that the pseudo-
istance 𝐴𝒖,𝒗 also captures differences in phases between two functions,
hich is a desirable property as two functions with the same amplitude,
ut shifted in phase will have a high 𝐴𝒖,𝒗. Finally define the magnitude
seudo-distance between 𝑑𝑛(𝒖, 𝐿)(𝑡) and 𝑑𝑛(𝒗, 𝐿)(𝑡) as:

𝑀𝒖,𝒗 =𝑀(𝑑𝑛(𝒖, 𝐿)(𝑡), 𝑑𝑛(𝒗, 𝐿)(𝑡)) ∶= 1
𝑛

𝑛
∑

𝛼=1
|𝜈𝛼|, (12)

where 𝜈𝛼 = 𝑍̄(𝒖 + 𝒉𝛼 , 𝑡) − 𝛽𝛼𝑍̄(𝒗 + 𝒉𝛼 , 𝑡) and 𝑍̄(𝒖 + 𝒉𝛼 , 𝑡) is the mean of
he observed points of 𝑍(𝒖+ 𝒉𝛼 , 𝑡). Again, 𝜈𝛼 is the estimated intercept
f the linear regression between the observed points of 𝑍(𝒗+𝒉𝛼 , 𝑡) and
(𝒖 + 𝒉𝛼 , 𝑡). If 𝑍(𝒗 + 𝒉𝛼 , 𝑡) and 𝑍(𝒖 + 𝒉𝛼 , 𝑡) are similar in magnitude,

hen 𝜈𝛼 will be close to zero. Thus, a low value of 𝑀𝒖,𝒗 indicates that
he functions of 𝑑𝑛(𝒖, 𝐿)(𝑡) and 𝑑𝑛(𝒗, 𝐿)(𝑡) have similar magnitude on
verage.
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Finally, we define the FastMUOD pseudo-distance as the weighted
um of 𝑆𝒖,𝒗, 𝐴𝒖,𝒗, and 𝑀𝒖,𝒗 after normalization:

𝐷4(𝑑𝑛(𝒖, 𝐿)(𝑡), 𝑑𝑛(𝒗, 𝐿)(𝑡)) ∶= 𝜂1𝑆𝒖,𝒗 + 𝜂2𝐴′
𝒖,𝒗 + 𝜂3𝑀

′
𝒖,𝒗, (13)

where 𝐴′
𝒖,𝒗 = 𝐴𝒖,𝒗∕ max𝒖∈TI 𝐴𝒖,𝒗, and 𝑀 ′

𝒖,𝒗 = 𝑀𝒖,𝒗∕ max𝒖∈TI 𝑀𝒖,𝒗, and
3
𝑖=1 𝜂𝑖 = 1. The weights 𝜂𝑖 allow to place more emphasis on any of the

hape, amplitude and magnitude indices.

3.4. Differences between FDS and the classical direct sampling algorithm

The FDS algorithm outlined in Algorithm 2 slightly differs from
he classical direct sampling algorithm in that the distance threshold
and the fraction of TG 𝑓 are not considered. While this simplifies the

pplication of FDS (since there are less parameters to tune) and works
or small SG and TG, there are possible disadvantages to this setup.

First, FDS always select the best possible candidate in the TI, which
may lead to successive simulations being exactly the same (lack of
andomness). Always selecting the best candidate has also been shown
o produce simulations containing verbatim copies of parts of the TG,
lso called ‘‘patching’’ (Meerschman et al., 2013), especially in larger

grids where the TG does not show enough pattern repeatability. Second,
FDS scans all the candidate points in the search window, which might
be computationally intensive for large TGs.

The distance threshold 𝛾 and fraction of TG to scan 𝑓 can be
incorporated into FDS (by imposing the sampling condition using 𝛾 and
𝑓 after step 9 in Algorithm 2). To aid with selecting an appropriate
threshold 𝛾, the proposed distances can be scaled into [0, 1]. For exam-
le, distance 𝐷1 can be scaled into [0, 1] by dividing by the maximum

squared distance in the TG:

𝐷1(𝑑𝑛(𝒖)(𝑡), 𝑑𝑛(𝒗)(𝑡)) =
( 𝑛
∑

𝛼=1

𝜔𝛼
𝑑 𝑚𝑎𝑥2 ‖𝑍(𝒖 + 𝒉𝛼 , 𝑡) −𝑍(𝒗 + 𝒉𝛼 , 𝑡)‖2

)1∕2

,

(14)

where 𝑑 𝑚𝑎𝑥 = max𝒙,𝒚∈TG ‖𝑍(𝒙, 𝑡) − 𝑍(𝒚, 𝑡)‖. Similar to the classical
direct sampling algorithm, our simulation experiments show that values
of 𝛾 ≤ 0.1 and 𝑓 ≥ 0.5 tend to produce good results (Meerschman et al.,
2013). In Section 4.1.4, we show FDS simulations incorporating both 𝛾
and 𝑓 .

4. Simulation study

We evaluate the performance of FDS using some simulation experi-
ments, consisting of two application scenarios in which MPS is used:
simulating new copies of an existing functional random field (FRF),
using the random field as a training grid (TG); and filling gaps in an
xisting FRF using a TG.

4.1. Simulating copies of a functional random field

4.1.1. Simulation settings
To test the effectiveness of FDS using the four distances proposed

n Section 3, we simulate two FRFs in a rectangular grid consisting
f 51 × 51 locations with coordinates in [0, 1] × [0, 1]. To generate the
unction at each location 𝒔𝑖 ∈ [0, 1] × [0, 1], we use the model:

𝑋(𝒔𝑖, 𝑡) =
𝑀
∑

𝑚=1
𝜙𝑚(𝒔𝑖)𝜓𝑚(𝑡), (15)

where 𝜙𝑚, 𝑚 = 1,… , 𝑀 , are realizations of a Gaussian random field
sing a Matérn covariance with parameters: 𝜎 = 1, 𝜈 = 1.5, 𝛽 = 0.063.
he functions 𝜓𝑚 are the first 𝑀 B-spline basis functions, with 𝑀 =
0. Figure S5 in the Supplementary Material shows realizations of the
aussian random field used for the simulation of the two FRFs.

The first FRF simulated from Eq. (15) will serve as a TG used to
imulate new copies of the FRF using the distance measures. Note that
he aim of the simulation is not to reproduce the TG, but to create
 m
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new FRFs that have similar features/characteristics as the TG. The
initial conditioning data to assign to the (empty) SG are randomly
ampled from the second FRF simulated from Eq. (15). The number

of conditioning data assigned to the SG for each simulation is 20 and
the number of neighbours used in each simulation is 10.

To visualize the simulated FRFs, we compute the norm of each
function at each location in the SG. We then show the random field
of the norms of these functions. The first two panels of Fig. 1 show
the two FRFs simulated from Eq. (15). The second plot shows the
patial functional data (represented as a random field of the norms of
he functions) used as the TG, while the first plot shows the spatial
unctional data from which the initial conditioning data is sampled at
he beginning of each simulation.

4.1.2. Visual comparison of distances
The aim of the simulation study is then to compare the character-

istics of the simulated FRFs to the characteristics of the TG. Fig. 1
shows the (random field of norms of the) four simulated FRFs, one
RF for each distance, together with the RFs of the conditioning data
and the TG. The simulated RFs show an overall good reproduction of
the features of the TG, without creating an exact copy. There are few
artefacts in the simulated FRFs, especially for that of 𝐷3, with plenty of
(norms of) functions seemingly out of place in their currently assigned
locations, compared to their surrounding. This is because 𝐷3 compares
the data events of the training and simulation grid using the norms of
the first derivative of neighbouring functions (i.e., 𝑍(𝒖 + 𝒉𝛼 , 𝑡)(1) and
𝑍(𝒗 + 𝒉𝛼 , 𝑡)(1)) during the simulation process, while we are visualizing
and comparing the simulated RFs using norms of functions. Since 𝐷3
favours functions whose data event have similar total velocity over
functions whose data event have similar total norm (like in 𝐷1), and
two functions with similar derivatives may have different norms, it is
reasonable that the simulated RF based on 𝐷3 showed more artefacts in
Fig. 1. The simulated RFs for 𝐷1 and 𝐷2 show a very good reproduction
of the features of the TG with minimal artefacts while the simulated
RFs for 𝐷4 also show a good reproduction of the features of the
raining grid, albeit with more artefacts than those of 𝐷1 and 𝐷2. The
omparison shown in Fig. 1, based on norms of functions, is biased

in favour of 𝐷1 and 𝐷2 since both are based on comparing norms of
neighbouring functions in data events. If we compare the simulated
RFs using derivatives of norms of functions, shown in Figure S6 of the
upplementary Material, we see a different perspective on the perfor-

mance of the four distances. The simulated RFs by 𝐷3 now show fewer
artefacts compared to Fig. 1 while the simulated RF by 𝐷1 shows a bit
more artefact compared to its representation in Fig. 1. The simulated

F by distance 𝐷4 maintains roughly the same level of artefacts in both
Fig. 1 and S6 because 𝐷4 compares shape, amplitude and magnitude
f functions in the data events. Overall, distances 𝐷2 and 𝐷4 visually
how a balanced performance across different representations of the
imulated RFs. An overview of the functions in the FRFs whose norms
re shown in Fig. 1 are visualized using the functional boxplot of Sun

and Genton (2011) and presented in Fig. 2. They show an overall good
match between the simulated and original functional data albeit with
a slightly smaller variability (represented by the height of the magenta
boundary) for the simulated functions. In Figures S7, S8, and S9 of the
Supplementary Material, we show three random fields representing the
alues of the simulated functions at three different time points across
he domain 𝑡, one close to the beginning (𝑡 = 0.05), at the middle
𝑡 = 0.5), and close to the end (𝑡 = 0.95).

We repeated the simulation with the number of conditioning data
and neighbours set to 50 and 20, respectively. We observed similar
esults with distances 𝐷2 and 𝐷4 showing good performance out of the
our distances (Figure S10 in the Supplementary Material). Section S-II
f the Supplementary Material presents a quantitative comparison of
he distances using 100 repetitions, where we compared distribution
f the means, variances, and variograms of the FRFs of the 100 sim-
lations (for each distance) to those of the training grid. The results
how that the 100 simulations from distance 𝐷2 show the most similar
etrics to those of the TG.
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Fig. 1. Simulated functional random fields (shown as random fields of the norm of functions; 51 × 51 locations) used as the training grid (first row, second column) and
conditioning data (first row, first column), followed by FDS simulations using distances 𝐷1 to 𝐷4. The number of conditioning data is 20 and the number of neighbours is 10.

Fig. 2. The functional boxplots of the functions contained in each simulated FRF using distances 𝐷1 to 𝐷4 for FDS simulation. The number of conditioning data is 20 and the
number of neighbours is 10.
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Fig. 3. Simulated functional random fields (shown as random fields of the norm of functions; 251 × 251 locations) used as the training grid (first row, second column) and
conditioning data (first row, first column), followed by FDS simulations using distances 𝐷1 to 𝐷4. The number of conditioning data is 20 and the number of neighbours is 10.
Conditioning points indicated with black circles.
4.1.3. Larger grids and number of neighbours
We tested the four distances using the same simulation procedure

with larger training and simulation grids to assess their performance
with larger grids of size 251 × 251.

Fig. 3 shows a single simulation for each distance. Interestingly, all
the distances produced good simulations with less perceivable artefacts
overall. None of the FDS simulations is an exact verbatim copy of the
TG, although all the simulations produced contain verbatim copies of
parts of the TG. This is due to the lack of pattern repeatability in the
TG, leaving FDS with a limited choice of matching candidate functions
during the simulation.

To test the effect of number of neighbours, we repeated the simu-
lation with only distance 𝐷2, while varying the number of neighbours
(𝑛 = {20, 30, 40, 50}). Visual inspection of the simulations (see Figure
S29 of the Supplementary Material) does not show perceivable signifi-
cant improvement in simulation quality compared to that of 𝐷2 in Fig. 3
produced with 𝑛 = 10 neighbours.

4.1.4. Sampling using distance threshold and training grid scan fraction
In Section 3.4, we described how the distance threshold 𝛾 and

fraction of TG to scan 𝑓 can be incorporated into FDS. We tested the
effect of the scan fraction using distance 𝐷2 while varying 𝑓 between
0.5 and 1. Values of 𝑓 greater than 0.5 generally produce good results,
with little improvements seen as 𝑓 approaches 1 (see Figure S30 of the
Supplementary Material).

Likewise, sensitivity analysis for 𝛾 shows that values of 𝛾 ≤ 0.1
produce good simulations while 𝛾 ≤ 0.01 produce simulations that are
similar to using the best matching candidate. Fig. 4 shows a comparison
between simulations produced with distance threshold values 𝛾 ∈
{0.01, 0.1, 0.2} and scan fraction values 𝑓 ∈ {0.5, 0.8}, using distance
𝐷 . The simulations produced by 𝛾 = 0.2 contain a lot of noise and
2

6 
artefacts, compared to those produced by 𝛾 = 0.1 and 𝛾 = 0.01, while
simulations produced by 𝑓 = 0.5 and 𝑓 = 0.8 show similar quality.

In general we suggest to always incorporate sampling using the
distance threshold 𝛾 and TG scan fraction 𝑓 in FDS, starting with values
of 𝛾 ≤ 0.1 and 𝑓 ≥ 0.5.

4.1.5. Conditioning data weighting
The simulations shown in Figs. 3 and 4 show many conditioning

points misaligned with their surrounding pattern. To make FDS respect
the conditioning data more, higher weights can be assigned to condi-
tioning points while computing the distance between data events. This
ensures that the conditioning points significantly influence the choice of
patterns in their surroundings, while also helping reduce the generation
of simulations with verbatim copy of parts of the TG. However, higher
conditioning weights may introduce artefacts, which can be removed
with a suitable post-processing method (see Section 4.3). In Section S-
IV and Figure S4 of the Supplementary Material, we present results of
simulations generated with higher conditioning weights.

4.2. Filling missing data in a functional random field

A common application of MPS is its use in simulating missing
values, e.g., Oriani et al. (2016). We also test our proposal in this
scenario. The aim is to fill in missing functions in an FRF using a TG.
First we simulate the TG as described in Section 4.1.1. We then simulate
another FRF, which we call the test image, and remove some of its
functions in the lower left corner. Fig. 5 shows the RF (of the norm
of functions) of the TG and the test image with the missing functions.

Since there are existing functions in the FRF of the test image,
there is no need to assign any initial conditioning data. With the
number of neighbours set to 10, we conduct four repetitions for each
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Fig. 4. Simulated functional random fields (shown as random fields of the norm of functions; 251 × 251 locations) used as the training grid (first row, second column) and
conditioning data (first row, first column), followed by FDS simulations using distance 𝐷2 with distance threshold 𝛾 ∈ {0.01, 0.1, 0.2} and TG scan fraction 𝑓 ∈ {0.5, 0.8}. The number
of neighbours is 30. Location of conditioning points indicated with black circles.
distance. We show a single copy of these filled FRFs in Fig. 5. From
Fig. 5, all the filled copies show some discontinuity, especially in the
upper part of the missing area. Simulations from distances 𝐷2 and 𝐷4
showed the best results while those of distances 𝐷1 and 𝐷3 show more
artefacts. In addition, the plots with facet labels ‘‘D2_Inner_Outward’’
and ‘‘D4_Inner_Outward’’ of Fig. 5 show simulations from 𝐷2 and 𝐷4
but with a centre-outward filling order compared to using a random
order (as done for 𝐷1 to 𝐷4). Results from the centre-outward filling
order show more artefacts, suggesting that FDS performs better with a
randomly ordered filling process.

As the use of multiple-point simulation for predicting missing func-
tions in an FRF is new in the literature, it is difficult to find a method
to directly compare our proposal with. The most suitable method
that we found for comparison is the ordinary kriging for functional
data (OKFD) (Giraldo et al., 2011), implemented in the geofd R pack-
age (Giraldo et al., 2012b). However, the two methods are not directly
comparable because our proposal requires the use of a dedicated TG
while OKFD is based on an empirical variogram. The facet ‘‘OKFD’’
of Fig. 5 shows the norms of the predicted functions using OKFD.
Although the norms of the predicted functions by OKFD show more
continuity at the edges, they were unable to reproduce and capture the
intricate features of the test image. This shows an advantage of using
a TG with similar features for spatial functional prediction compared
to using OKFD. Although a dedicated TG was used for FDS in this
example, the non-missing part of the test image could as well have
been used, eliminating the need for a TG. Figures S18 and S19 in the
Supplementary Material show the same results as in Fig. 5, but with the
number of neighbours set to 5 and 20, respectively. Also, Figure S17
in the Supplementary Material shows a functional boxplot visualizing
the spread of the functions whose norms are represented in the RFs in
Fig. 5. It is also useful to visualize the values of the simulated functions
at some specific points of the domain to better assess their similarity to
the neighbouring functions in the SG. Figures S20, S21, and S22 show
three random fields representing the values of the simulated functions
7 
(and the non-missing part of the SG) at three different time points
across the domain 𝑡 (𝑡 = 0.05, 𝑡 = 0.5 and 𝑡 = 0.95), respectively.

FDS generates a single simulation while OKFD produces an esti-
mation, which are results of different nature. To compare results of
similar nature, we repeated the simulation 100 times and computed the
functional mean of each filled location (over the 100 repetitions). Each
of these means correspond to an expected function at each location and
they are more comparable to the functions estimated by OKFD. Fig. 6
compares these functional means to the result of OKFD. We observe
that the norms in the RFs of FDS have more variance compared to that
of OKFD (where most of the estimated functions have small norms).
Furthermore, the results of FDS are more similar to the non-missing
part of the simulation grid, especially when distance 𝐷4 is used.

In Section S-III of the Supplementary Material, we present a quanti-
tative comparison, between the original test image and the filled FRFs
(generated by the 100 repetitions of FDS) using mean, variance, and
empirical variogram. The results show that FDS using the proposed
distances is better at capturing intricate variations in the original
test image, as indicated by the proximity of the distributions to the
means, variances, and variograms of the FDS simulations to those of
the original test image (Figure S3 of the Supplementary Material).

4.3. Post-processing

It is fairly common that a matching data event cannot be found in
the TG during simulation. Such cases lead to the selection of a function
that does not sufficiently match their neighbours in the simulation grid,
leading to artefacts and reduced pattern reproduction. In such cases,
post processing methods can be applied to re-simulate inconsistent
locations.

Post processing methods can easily be applied on simulations from
FDS to improve pattern reproduction and reduce artefact. For instance,
the syn processing method (Mariethoz et al., 2010) or real-time post-
processing method (Strebelle and Suzuki, 2007) can be adapted for use
in FDS. We note that all simulations presented in this study did not use
postprocessing.
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Fig. 5. Simulated functional random fields (shown as random fields of the norm of functions; 51 × 51 locations) of the test image with missing parts (top centre), using the
training image (top left) and distances 𝐷1 to 𝐷4 in FDS simulation. Facet OKFD shows spatial prediction with Ordinary Kriging for Functional Data. Distances 𝐷2 and 𝐷4 were
used in FDS for D2_Inner_Outward and D4_Inner_Outward (bottom left and centre), but with a centre-outward filling order.
5. Applications to wind profiles data

We apply the proposed method to wind profiles data over the
Arabian Peninsula obtained from a year-long simulation of the Weather
Research and Forecasting (WRF) model (Skamarock et al., 2008); (see
run 4 from Giani et al. (2020)). The grid consists of 549 × 499 = 273, 951
locations, each with a wind profile of average (yearly) wind speed at
40 vertical layers ranging from 9–11 m above sea level at layer 1 to
16–21 km above sea level at layer 40. By considering the wind speeds
at each location as a function of the vertical layers (height), we then ob-
tain an SFD where each location has a wind speed function. Figure S25
shows the norm of these functions observed over the Arabian Peninsula.
Moreover, the left plot of Figure S15 shows these wind speed functions
from 50 randomly selected locations in the covered grid while the right
plot of Figure S16 shows the same for the first 50 locations in the grid.
8 
These two plots show that functions from nearby locations are similar in
magnitude and shape, compared to functions from locations far apart.

For this application, we focus on the south-western part of Saudi
Arabia which has the highest wind speed function norms in the country
due to a contiguous mountain range lying along the south-western coast
of the Red Sea (top-left panel of Fig. 7). We assume that some of the
wind profiles functions along the southwestern coast are missing. These
missing locations correspond to a part of the strip in the southwestern
corner with lower wind speed norms, surrounded by areas of higher
wind speed. This missing region is indicated inside the white boundary
shown in the top-left panel of Fig. 7. For training, we use the locations
in an area with similar characteristics in the southernmost part of the
country, which corresponds to the area inside the black boundary in
some panels of Fig. 7. The aim is to use FDS, to simulate wind profile
functions for the missing locations, using functions obtained from the
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Fig. 6. Random fields of norm of functional means (over 100 FDS simulation repetitions; 51 × 51 locations) for each missing location using the training image (top left) and
distances 𝐷1 to 𝐷4. Facet OKFD shows spatial prediction with Ordinary Kriging for Functional Data.
training area; with the number of neighbours set to 20. The remaining
existing functions in the study area (locations outside the white and
black rectangular boundaries) are used as the initial conditioning data
for the FDS reconstruction. In panels D1 to D4 of Fig. 7, we show for
each distance, the reconstructed area using FDS. The reconstructions for
𝐷1, 𝐷2, and 𝐷4 were able to reasonably capture the variations inside
the missing area while successfully reconstructing the strip of low wind
speed norms, which continued almost seamlessly with the neighbouring
region. However, the reconstructions do show some discontinuity in
the top right corner of the reconstructed area, with very high norm
functions placed in an area surrounded by lower norms. This disconti-
nuity in the top right corner is less pronounced in the reconstruction for
distance 𝐷2, compared to those of distances 𝐷1 and 𝐷4, and it is due to
the presence of a region with very high wind speed profiles to the right
of the southernmost tip of the Saudi Arabian boundary in the training
area. This region in the training area is bordered to the north-west
by an area of relatively lower windspeed. This is especially obvious
in the reproductions by distances 𝐷1 and 𝐷2 where the right area of
their reproductions contains wind profile functions selected from this
region and the area with low wind speed profile bordering it to the
north-west. Imposing more number of neighbours does not seem to help
with the observed discontinuity as shown in Figures S26 and S27. This
observation demonstrates a key fact about MPS in general: the spatial
predictions are as good as the TG from which they were taken.

The reconstruction from 𝐷3 is poor with the resulting simulation
unable to reconstruct the continuous strip of low wind speed norms in
the missing area. This is because 𝐷3 compares data events based on the
first derivative of their constituent functions, disregarding other poten-
tially important features, like the magnitude. Figure S28 shows the FDS
9 
reconstruction using inner-outward filling order. These reconstructions
are worse compared to using a random filling order like in Fig. 7, in
line with observations from the simulation experiments.

OKFD showed very good performance on this problem, with the
missing area filled with spatial predictions that reasonably reproduce
the strip of low wind speed norms while smoothing out the edges of
this missing area with functions gradually increasing in norm (top-
centre plot of Fig. 7). This is not surprising because the spatial pattern
of functions contained in the missing area is simple, compared to
those used in our gap-filling simulation tests in Section 4.2. Fig. 8
shows the functional boxplots of the functions represented with norms
in the missing area of Fig. 7. The functional boxplot plot shows a
clear difference in the overall trend of the functions simulated by FDS
and the spatial predictions from OKFD. Distances, 𝐷1, 𝐷2 and 𝐷4 on
the average selected functions similar in magnitude and shape to the
original functions in the missing area while the functions predicted by
OKFD are smoother with less variation. We note again, that OKFD is
not directly comparable to our proposal, as it is based on kriging, rather
than on the use of a training grid.

Table 1 shows the median time taken by distances 𝐷1 to 𝐷4 to
obtain the simulated FRFs shown in Fig. 7. The median was taken over
5 repetitions using the tictoc R package (Izrailev, 2023). Distance 𝐷4
is the slowest (requiring a median of 31 min to fill the 946 locations
contained in the missing area) as it is based on an average of three
indices used in comparing the data events. Distances 𝐷1 to 𝐷3 show
similar performance, requiring on average about 4 to 6 min to complete
the gap filling process. OKFD took about 111.3 min to complete the
process. It is worthy of note that while FDS is restricted to only the
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Fig. 7. Top-left: Norms of wind speed functions of study area of the Arabian Peninsula considered; assumed missing area in white rectangle and training area in black rectangle.
Top-centre: Norms of wind speed functions with the missing area filled with spatial predictions from OKFD. Panels D1 to D4: Simulation results of the reconstruction of missing
locations using the distances 𝐷1 to 𝐷4; a single repetition is shown for each distance. The number of neighbours used is set to 20.
Fig. 8. Functional boxplots of the wind speed functions contained in the filled gap of the study area of the Arabian Peninsula by OKFD and FDS with distances 𝐷1 to 𝐷4.
TG (shown in the black rectangle in the panels of Fig. 7) in the filling
process, the whole study area (except the missing area) was parsed to
OKFD. Thus, its computational time is not directly comparable to those
10 
obtained by FDS. The test was run on a desktop computer with a 12-
core Intel Core i7-8700 processor with 32 GB RAM running a Fedora
operating system.
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Table 1
Computational time in minutes for gap filling of wind profiles data.

Method Median time (Minutes)

FDS with distance 𝐷1 4.6
FDS with distance 𝐷2 4.7
FDS with distance 𝐷3 5.5
FDS with distance 𝐷4 31.0
Spatial prediction with OKFD 111.3

6. Discussion

Multiple-point simulation has proven itself useful in various fields,
nd we extended its use to SFD in this work. We leveraged some
ools for functional data to propose four different distances, useful for
omparing a ‘‘functional data event’’. We then used these distances in
he proposed FDS algorithm.

We tested the proposed distances using two simulation scenarios,
ne simulating an SFD, conditioned on the spatial features of another

SFD (the TG). The second scenario attempted to fill gaps of missing
data using another grid with similar characteristics as a TG. Distance
𝐷2 showed the best results in both simulation scenarios with distances
𝐷1 and 𝐷4 also showing promising results. Distance 𝐷3 performed
poorly on most of the simulation tasks because it compares data events
ased on the derivatives of their constituent functions. However, 𝐷3
ay be useful in specialized cases where functions with similar ve-

ocity/acceleration are considered during simulation. We demonstrated
he proposed method on simulated wind profiles obtained from WRF in
 gap-filling task. Like in the simulation, distance 𝐷2 showed the best
esult. In general, we recommend using the distance 𝐷2 given its good
erformance across the different scenarios tested.

The proposed method creates an interesting merge between func-
ional data analysis and multiple-point simulation, and provides a
ay to simulate functions with a spatial location, accounting for the

spatial correlation and similarity of neighbouring functions. An al-
ernative method to our proposal is ordinary kriging for functional
ata (OKFD) which tends to have worse performance when the spatial
attern is more complex and nuanced, as seen in the simulation results.
pace–time covariance modelling could also be an alternative but its
erformance in the scenarios tested in this work is expected to be
orse than that of OKFD because it does not consider the time points
s a domain over which functions are defined. Our proposal has a
imilar advantage over multivariate multi-point simulation, in addition
o being able to deal with very high dimensional data. Our proposal
s also capable of measuring other types of similarities (e.g., shape
nd amplitude) between functions in a data event, thereby offering an
dditional case for its application.

Further areas of research include a detailed study on the use and
ffect of interesting features of MPS, like weighting, use of invariant
istances, etc. It is also interesting to extend the FDS to multivariate
unctional data, in which case a vector of functions is observed at each
ocation. Various similarity and distance measures already defined in
he functional data analysis literature (Dai and Genton, 2018; Ojo et al.,

2023) are good starting points towards such an extension.
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