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Abstract
With the advance of technology, functional data are being recorded more frequently,
whether over one-dimensional or multi-dimensional domains. Due to the high dimen-
sionality and complex features of functional data, exploratory data analysis (EDA)
faces significant challenges. Tomeet the demands of practical applications, researchers
have developedvariousEDA tools, includingvisualization tools, outlier detection tech-
niques, and clustering methods that can handle diverse types of functional data. This
paper offers a comprehensive overview of recent procedures for exploratory functional
data analysis (EFDA). It begins by introducing fundamental statistical concepts, such
as mean and covariance functions, as well as robust statistics such as the median and
quantiles inmultivariate functional data. Then, the paper reviews popular visualization
methods for functional data, such as the rainbow plot, and various versions of the func-
tional boxplot, each designed to accommodate different features of functional data. In
addition to visualization tools, the paper also reviews outlier detection methods, which
are commonly integrated with visualization methods to identify anomalous patterns
within the data. Finally, the paper focuses on functional data clustering techniques
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which provide another set of practical tools for EFDA. The paper concludes with a
brief discussion of future directions for EFDA. All the reviewed methods have been
implemented in an R package named EFDA.

Keywords Clustering · Data visualization · Exploratory data analysis · Functional
boxplot · Multivariate functional data · Outlier detection

Mathematics Subject Classification 62R10 · 62A09

1 Introduction

Exploratory data analysis (EDA) (Tukey 1977) serves as the primary step in data
analysis, exploring basic observed features in a dataset and providing guidelines and
diagnostics for statistical modeling. Tukey (1977) contrasts EDA with confirmatory
data analysis (CDA) (Tukey 1980), an area of data analysis that is mostly concerned
with the techniques of statistical hypothesis testing, confidence intervals, and estima-
tion, to name a few. Overall, EDA can be categorized into data visualization and data
mining. The data visualization tools include, but are not limited to, the scatter plot,
the histogram, the boxplot (Tukey 1977), and the quantile-quantile plot, whereas data
clustering and smoothing are examples of data mining techniques.

When the observations change from univariate/multivariate data to univari-
ate/multivariate functions of an index, such as the time, wavelength, or location index,
we call them univariate/multivariate functional data (Ramsay and Dalzell 1991, Ram-
say and Silverman 2005). Common real-life examples of univariate functional data
include, for instance, raw cell-cycle gene expression curves (Zhao et al. 2004), data
from a longitudinal study of the relative diameter and relative height of trees (López-
Pintado and Romo 2009), children growth curves (Ramsay and Silverman 2005),
petroleum level curves in an oil refinery (Ramsay et al. 2009), daily temperature
curves (Qu et al. 2021), annual total precipitation data at 11,918 weather stations from
the USA (Sun and Genton 2011, Sun and Genton 2012b), and the directional spectra
of sea waves (Euán and Sun 2019, Wu et al. 2023), whereas real-life examples of mul-
tivariate functional data include longitudinal hip and knee angle curves for children
(Ramsay and Silverman 2005), daily temperature curves derived from data collected
by sensors located at different altitudes (Berrendero et al. 2011), coordinates of hand-
writing data (López-Pintado et al. 2014), hurricane trajectories (Yao et al. 2005, Harris
et al. 2021), bivariate daily wind-speed components, namelyU andV velocity, mapped
in Saudi Arabia (Qu et al. 2021), individual growth velocity curves for different body
parts (Carroll et al. 2021), and the joint curves of stunted growth and prevalence of
low-birth weight in 77 countries (Qu and Genton 2022).

Mathematically, functional data are considered as realizations of a stochastic pro-
cess taking values in a Hilbert space. Each realization of the above process is assumed
to be independent and to have a continuous sample path. Practically, we can never
observe a function entirely over the whole domain, but it can be recorded at certain
fixed or random, dense or sparse discrete points, which are either the same or different
for each observation. The records can be taken either with or without randommeasure-

123

https://github.com/ZhuoQu/EFDA


Exploratory Functional Data Analysis 461

−20 −10 0 10 20 30 40

0
50

0
15

00
25

00
(a) Observed CD4 Cell Counts

Months since Seroconversion

C
D

4 
C

el
l C

ou
nt

s

0

20

40

60

250 275 300 325 350
Longitude

La
tit

ud
e

0

0.2

0.4

0.6

0.8

1
Time

(b) North Atlantic Cyclone Tracks

2 4 6 8 10 12

−3
0

−2
0

−1
0

0
10

20

(c) Monthly Temperature Curves in Canada

Months

Te
m

pe
ra

tu
re

 (°
C

)

2 4 6 8 10 12

0
2

4
6

8
10

12

(c) Monthly Precipitation Curves in Canada

Months

Pr
ec

ip
ita

tio
n 

(m
m

)

Fig. 1 Various types of functional data: (a) observed CD4 counts for 366 samples during months−18 to 42
post seroconversion, (b) 1873 North Atlantic cyclone tracks recorded from 1851 to 2021, and (c) rainbow
plots of monthly temperature and precipitation curves at 35 different locations in Canada averaged over the
period from 1960 to 1994. The orderings are based on the modified simplicial band depth (López-Pintado
et al. 2014) of Canadian temperature

ment errors. To demonstrate the application of exploratory data analysis methods in
diverse scenarios, we will use the following three representative datasets: 1) univariate
sparse CD4 cell count data from the R package refund (Crainiceanu et al. 2013, see
Fig. 1 (a)); 2) bivariate sparse hurricane trajectory data (downloaded online) see Fig. 1
(b); and 3) bivariate dense Canadian daily temperature and precipitation curves from
the R package fda (Ramsay et al. 2023, see Fig. 1 (c).

Functional data can be regarded as a natural extension of a vector from finite
dimension to infinite dimension. However, with the continuing development of data
collection techniques, functional observations present themselves more frequently.
Hence, functional data analysis (FDA) (Ramsay et al. 2009) includes both an intrinsic
and an applied interest. The intrinsically infinite dimension of functional data poses
challenges for the existing visualization tools as well as for the exploratory analysis
procedures applied to the data. During the past two decades, much effort has been
made to find effective inference methods for functional data, such as estimating mean
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and covariance functions (Yao et al. 2005, Wang et al. 2016, Happ and Greven 2018).
A series of methods and tools have been developed, along with the proliferation of
statistical models and inference techniques for functional data (Ramsay and Silverman
2005, Horváth and Kokoszka 2012, Wang et al. 2016).

Despite the importance of EDA for real-data applications, there is no systematic
review of EDA for functional data. The goal of this paper is to provide a comprehensive
review of recent EDAmethods for functional data to which we refer as EFDA.We first
review the novel dataminingmethodology and visualization tools specifically used for
FDA as an initial step prior to diving into modeling and statistical inference analysis.
As compared to a case study in exploratory functional data analysis (Sangalli et al.
2009), we introduce EFDAwith novel visualization tools andmethods of clustering. In
addition, we use the univariate sparse CD4 data, the bivariate irregular North Atlantic
cyclone track data, and the bivariate dense Canadian weather data to illustrate different
methods. In contrast to the review of Wang et al. (2016), which concerns the general
analysis of univariate functional data, we cover the EDA of p-dimensional (p ∈ Z+)
functional data, where the measurement index per sample can vary. Hence, univariate
functional data correspond to the special case of p = 1, and samples with dense grid
points correspond to the special case of identical measurement indexes. In contrast
to the visualization review by Genton and Sun (2020), we delve into more recent
visualization tools that encompass a broader range of functional data. Additionally,
we provide a comprehensive overview of clustering methods for EFDA, showcasing
their integration with visualization tools.

The rest of the paper is organized as follows. Section2 summarizes descrip-
tive statistics for functional data. Section3 reviews current tools for visualizing the
observed functional data intuitively. Section4 displays visualization tools featuring the
descriptive statistics of functional observations. Section5 presents several methods for
functional data clustering of dense and sparse functional data, separately. Section6
concludes the paper with a summary and discussion. An R package named EFDA has
been developed to facilitate practical exploratory functional data analysis.

2 Notations and functional descriptive statistics

In this section, we focus on themathematical definitions and basic descriptive statistics
of functional data, with an emphasis on the case in which the dataset is contaminated
by abnormal observations (outliers).

2.1 Notations

Let Y be a functional random vector (Hsing and Eubank 2015) with each com-
ponent taking values in an infinite-dimensional space. Without loss of generality,
we allow each marginal random vector in a p-variate stochastic process Y(t) to
be defined at different indexes, that is, Y(t) = (Y (1)(t (1)), . . . ,Y (p)(t (p)))� with
t� := (t (1), . . . , t (p)) ∈ T := T1 × · · · × Tp ⊂ R

p. Note that t is a p-dimensional
vector, with its element t ( j) being a random design point and independent of all
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other random variables. Each element Y ( j)(t ( j)) ( j = 1, . . . , p) is defined on the
domain T j , where the T j s are compact sets in R with finite Lebesgue measures.
In brief, Y ( j)(t ( j)): T j → R is assumed to be square-integrable in T j , denoted as
L2(T j ). Then, we consider the p-dimensional functional data Y = {Y(t)}t∈T as
sample paths of the stochastic process Y(t), and we have Y ∈ H, where the space
H := L2(T1) × · · · × L2(Tp). Let Y1, . . . ,Y N be a set of independent realizations

of Y . Suppose the j-th component in the b-th sample, Y ( j)
b , is observed at L( j)

b time

points, t ( j)b,u , where b = 1, . . . , N , and u = 1, . . . , L( j)
b . When p = 1, we return to

univariate functional data, and Y ∈ H, where the space H := L2(T ) and T ⊂ R.

2.2 Moment-based descriptive statistics

Define μ(t) := E{Y(t)} as the population mean function μ evaluated at point
t . Then, the sample mean of the j th component of Y at t ( j)l is μ̂( j)(t ( j)l ) =
∑N

b=1
∑L

( j)
b

u=1 Y ( j)
b (t ( j)b,u)I(t

( j)
b,u=t ( j)l )

∑N
b=1

∑L
( j)
b

u=1 I(t ( j)b,u=t ( j)l )

for j = 1, . . . , p and l = 1, . . . , L , where L is the total

number of evaluated time points and I(·) is the indicator function. When functional
data all have common and finite grid points, the number of observations at each grid
point is equal to the number of functional samples. However, when functional data
are observed on irregular grids, the number of observations at each grid point varies
and is imbalanced. It may be practical to count the number of observations in bins
rather than at each grid point. To obtain the whole curve, one can simply apply smooth
interpolation or nonparametric smoothing methods, e.g., kernel smoothing (Wand and
Jones 1995), local polynomial smoothing (Fan andGijbels 1996), principal component
analysis (Yao et al. 2005), or spline smoothing (Wang 2011).

For s, t ∈ T , we define the matrix of covariances �(s, t) := cov{Y(s),Y(t)} with
elements �i j (s(i), t ( j)) := cov{Y (i)(s(i)),Y ( j)(t ( j))} for s(i) ∈ Ti , t ( j) ∈ T j ,i, j =
1, . . . , p. Likewise, the pointwise covariance function can be estimated as

�̂i j (t
(i)
k , t ( j)l )

=
∑N

b=1
∑L(i)

b
u=1

∑L( j)
b

v=1{Y (i)
b (t (i)b,u) − μ̂(i)(t (i)k )}{Y ( j)

b (t ( j)b,v ) − μ̂( j)(t ( j)l )}I(t (i)b,u = t (i)k , t ( j)b,v = t ( j)l )

∑N
b=1

∑L(i)
b

u=1

∑L( j)
b

v=1 I(t
(i)
b,u = t (i)k , t ( j)b,v = t ( j)l )

,

and the whole surface of the covariance function can be obtained by smoothing the
three-dimensional (3D) scatterplot. Common reconstruction methods for sparse func-
tional data include multivariate functional principal component analysis (MFPCA)
(Happ and Greven 2018) and tensor-product splines (Cai and Yuan 2010, Xiao et al.
2018, Li et al. 2020). Practically, these records are often assumed to be contami-
nated by measurement errors, and we refer the readers to Wang et al. (2016) for a
comprehensive review of the estimation of mean and covariance functions in such a
scenario.
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2.3 Robust methods

Functional data can be contaminated by abnormal observations, also known as outliers,
in a similar manner to univariate or multivariate data. Outliers may severely bias
the aforementioned moment-based estimators and, consequently, lead to incorrect
inference results. Hence, it is desirable to develop methods that can reduce/eliminate
the influence of outliers and summarize functional data robustly.

For univariate data, order-statistics and ranks induced naturally by the order of
scalars on the real line are commonly used to design robust analysis methods, whereas
for functional data, such a natural ranking is not available. During the past two decades,
the idea of data depth, initially proposed to rank multivariate data, has been general-
ized to functional data. Specifically, a functional depth, taking values in [0, 1], maps
functional data to scalars. It evaluates functional data by assigning larger depth values
to central functions and smaller depth values to the more outward ones. Consequently,
these scalars provide a ranking criterion for functional data from the center outward.

Commonly implemented depth notions for dense univariate functional data include,
but are not limited to, band depth (BD) and modified band depth (MBD) (López-
Pintado and Romo 2009, Sun et al. 2012), half-region depth and modified half-region
depth (HRD andMHRD) (López-Pintado and Romo 2011), extremal depth (Narisetty
and Nair 2016), functional tangential angle pseudo-depth (FUNTA) (Kuhnt and
Rehage 2016) and its robustified version, order extended integrated depth (Nagy
et al. 2017), spatial depth (Serfling and Wijesuriya 2017), total variation depth (TVD)
(Huang and Sun 2019a), and elastic depths (Harris et al. 2021). For dense multivariate
functional data, available depth notions include combinations of univariate functional
depth measures (Ieva and Paganoni 2013), simplicial band depth (SBD) and modified
simplicial band depth (MSBD) (López-Pintado et al. 2014), multivariate functional
halfspace depth (MFHD) (Claeskens et al. 2014), and multivariate FUNTA pseudo-
depth and its robustified version (Kuhnt and Rehage 2016).

For sparse univariate functional data, López-Pintado andWei (2011) first proposed
a model-based consistent procedure for estimating the depths based on the estimated
curves on regular grids. Then, Sguera and López-Pintado (2021) proposed a new depth
that enables the curve estimation uncertainty to be incorporated into the depth analysis.
Those two depth notions have been extended to sparse multivariate functional data by
Qu and Genton (2022), who also compared their ranking performances with simula-
tions. Elías et al. (2023) proposed an integrated functional depth for partially observed
functional data, but this depth does not work if the data are not on a common domain
or all samples show missing values. In a recent study, Qu et al. (2022) introduced a
novel framework for multivariate functional depths, specifically designed for sparse
multivariate functional data and eliminating the need for curve estimation. This new
depth concept, termed “global depth,” distinguishes itself fromprevious approaches by
handling sparse functional data directly. The authors have demonstrated how the pro-
cedures for MFHD and multivariate extremal depth (an extension of extremal depth)
can be adapted to their global depth framework.

Functional depths provide a natural basis for defining the median, extremes, and
quantiles of functional data. Fraiman andMuniz (2001) defined the functional median
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as the deepest observation, i.e., the sample with the largest depth value, denoted as
M = argmaxY D(Y , FY ), where D(Y , FY ) is the depth of a random function Y with
respect to its distribution FY .

The functional version of the α-trimmed mean, μα , is defined as the average of the
deepest 1 − α proportion,

μα = E[Y · I(D(Y , FY ) ∈ [β,∞))]
E[I(D(Y , FY ) ∈ [β,∞))] ,

where β is such that E(I[D(Y , FY ) ∈ [β,∞))] = 1− α. The empirical definitions of
these two statistics can be expressed as

M̂N = arg max
i=1,...,N

D(Y i , F̂Y ) and μ̂α,N =
∑N

i=1 Y i · I(D(Y i , F̂Y ) ∈ [β,∞))
∑N

i=1 I(D(Y i , F̂Y ) ∈ [β,∞))
,

where F̂Y denotes the empirical distribution function.
Likewise, the α-trimmed covariance function can be defined as

�i, j;α(s(i), t ( j))

= E[{Y (i)(s(i)) − μ
(i)
α (s(i))}{Y ( j)(t ( j)) − μ

( j)
α (t ( j))}I(D(Y , FY ) ∈ [β,∞))]

E[I(D(Y , FY ) ∈ [β,∞))]
for s(i) ∈ Ti and t ( j) ∈ T j and i, j = 1, . . . , p, and its empirical version can be
derived by substituting the statistics with their respective estimators.

For univariate functional data, e.g., the j th component of multivariate functional
data ( j = 1, . . . , p), another concept related to data ranking is the 1−α central region,
which contains 100(1− α)% of the deepest data (López-Pintado and Romo 2009). In
Sun and Genton (2011), the 50% central region is visualized as the central box in the
functional boxplot. Moreover, Narisetty and Nair (2016) defined the central region as

C( j)
1−α = {Y ( j) ∈ L2(T j ) : Y ( j)

L (t ( j)) ≤ Y ( j)(t ( j)) ≤ Y ( j)
U (t ( j)), ∀t ( j) ∈ T j },

j = 1, . . . , p,

where Y ( j)
L and Y ( j)

U are lower and upper α-envelope functions, Y ( j)
L = inf{Y ( j) ∈

L2(T j ) : D(Y ( j), FY ( j) ) > α} and Y ( j)
U = sup{Y ( j) ∈ L2(T j ) : D(Y ( j), FY ( j) ) > α},

respectively. It was shown that compared to other depth notions, the extremal depth-
based central region achieves the nominal coverage probability. A similar concept of
global envelope was developed byMyllymäki et al. (2017) for testing spatial processes
and extensively discussed in Myllymäki and Mrkvička (2019).

3 Direct visualization of functional observations

Visualization (Friedman et al. 2002) has long been a component of great importance
to EDA, and many visualization tools are widely used as routine steps in the analysis
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procedure. For instance, the histogram of a univariate dataset shows a rough sense of
the density of its underlying distribution, the scatter plot of a bivariate dataset presents
the locations of the data points on a two-dimensional plane to provide some idea
of the relation between the two variables, and a heatmap depicts the magnitude of an
observation as color in two dimensions. Similar demands in FDAmotivate researchers
to develop new graphical tools.

Here, we highlight several reasonably simple tools that have proved useful in the
literature (Hyndman and Shang 2010, Hubert et al. 2015, Wrobel and Goldsmith
2016).Wewill consider the Canadian weather dataset from Fig. 1 (c) as one illustrative
example. This dataset includes monthly recorded temperature and precipitation curves
for 35 stations in Canada over the period from 1960 to 1994.

3.1 Spaghetti plot and rainbow plot

A spaghetti plot (Allen 2019) is a simple visualization that assigns a distinct color
to each observation, making it easy to track movement for data with small sample
sizes. However, such a plot may look messy when used to visualize big functional
datasets. The rainbow plot, proposed by Hyndman and Shang (2010), can be regarded
as an improvement of the spaghetti plot. As a visualization of all the curves, it adds
a data ordering feature and colors the observations based on the ordering, using
the rainbow palette. The order can reflect time, data depth, data density, or another
index.

In Fig. 1 (c), the Canadian temperature curves are ordered with the MSBD from
the median to the extremes, and the curves are labeled from red to purple in the
rainbow palette. We can see that the red group represents the median tendency of
the temperature and precipitation over the course of a year, whereas the purple group
includes data from some stations with high temperatures and high precipitation during
winter and some stations with low temperatures and low precipitation all year round.

3.2 Heatmap

A heatmap (Hubert et al. 2015) represents different values by using a system of
color-coding. In FDA, an n × m heatmap is suitable for showing a functional dataset
consisting of n curves recorded on m common design points.

We visualize the data with a heatmap in Fig. 2. For instance, each cell in Fig. 2 (a)
represents the average temperature at one station in a specific month, each row repre-
sents the monthly average temperature curve for a station, and each column represents
the average temperature at 35 stations in a particular month. Some abnormal infor-
mation can be easily detected through the heatmap. Figure2 (a) shows that Victoria
and Vancouver have persistent high temperatures between April and October, whereas
temperatures in Resolute and Iqaluit remain below 10 degrees Celsius almost all year
round. Pr. Rupert has monthly precipitation up to 6mm, except between April and
August, whereas the other stations have monthly precipitation of less than 6mm. We
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(a) Heatmap of Canada Temperature Curves
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(b) Heatmap of Canada Precipitation Curves

Fig. 2 Heatmap of 35 Canadian monthly average temperature (a) and precipitation (b) curves over the
period from 1960 to 1994

refer the readers to Shang and Hyndman (2017) and Parkinson et al. (2020) for more
examples.

3.3 Interactive plots

Several packages have been developed to generate interactive visualization for func-
tional data. An interactive plot retains the advantages of both visual and numerical
illustration of data, i.e., it is intuitive as well as accurate. The interaction can be
achieved in many ways, e.g., by showing the associated records at the locations indi-
cated by the cursor, zooming in or out, or interacting between different plots. Wrobel
et al. (2016) proposed using the refund.shiny package (2022) that creates interactive
graphics for FDA. The refund.shiny package relies on the shiny package (Chang et al.
2015) to generate such an interactive user interface. Figure3 illustrates the observed
scores for the functional principal components and the corresponding fitted values for
each station in the Canadian temperature data. Another commonly used tool is the
plotly package 2018), which produces interactive plots with two or three dimensions
in combination with a web portal.

3.4 Animations

An animation (or video) is another powerful tool for enhancing still figures that can
visualize the dynamic evolution of data.Genton et al. (2015) proposed the term visuani-
mation for referring to visualization through animations, and they explored the utility
of animation in various perspectives of statistics. Castruccio et al. (2019) illustrated
predicted global temperature data, which can be regarded as functional data, varying
spatially and temporally via a 3D virtual-reality movie, and they developed a mobile
application that enables users to watch the movie interactively.
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Fig. 3 An illustration of an interactive functional principal component (FPC) plot generated by the
refund.shiny package. The left panel shows the observed score scatterplot for selected FPCs of Cana-
dian temperature data, and the right panel shows fitted curves, where the three in orange were selected in
the left panel and the others are in light blue (color figure online)

4 Visualization with functional summary statistics

Many visualization tools for classical data have been developed to feature descriptive
statistics. For instance, the boxplot (Tukey 1977) of a univariate dataset illustrates the
structure of the data by showing their descriptive statistics, e.g., the median, quar-
tiles, extreme values, and possible outliers. The bagplot (Rousseeuw et al. 1999) of a
bivariate dataset presents the deepest data point, the deepest 50% of the data points,
and possible outliers under the ranks given by the halfspace depth (Tukey 1975). In
FDA, functional data can be transformed to values of depth or outlyingness (Dai and
Genton 2019) from the center outwards (see Subsection 2.3) for visualization and
outlier detection. Hence, we will introduce visualization tools that contain functional
summary statistics of raw data.

4.1 Visualization based on ranking information

Hyndman and Shang (2010) first proposed several visualization tools for smoothed
functional data, such as the rainbow plot, functional bagplot, and functional highest
density region (HDR) boxplot available in the R package rainbow (Shang and Hyn-
dman 2019). The rainbow plot is a simple visualization of all the data with the only
added feature being a rainbow color palette based on an ordering of data. The rain-
bow plot allows for exploration across metrics like depth, density, or chronological
order. The functional bagplot is based on the bivariate bagplot of Rousseeuw et al.
(1999). It first applies the bivariate bagplot to the first two robust functional principal
component scores as an auxiliary tool to rank the observations and detect outliers.
Then, it displays the median curve, the 50% inner region, and the 99% fence. Curves
that are partially outside these regions are identified as outliers. The functional HDR
boxplot is a mapping of the bivariate HDR boxplot (Hyndman 1996) of the first two
robust functional principal component scores to the functional curves. In contrast to
the functional bagplot, this method displays curves with high HDRs. Specifically, it
focuses on curves whose first two functional principal component scores correspond
to the 50% inner and 95% outer bivariate HDRs. Additionally, it identifies outliers as
points that are excluded from the 95% outer HDR.
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The functional boxplot, as proposed by Sun and Genton (2011), is a data visualiza-
tion technique used to summarize the distribution and features of a set of functional
data. It uses the functional depth and highlights the central quantiles and possible
outliers. Analogous to the classical boxplot, there are four descriptive statistics in
the functional boxplot (see Fig. 4): the envelope of the 50% central region, the median
curve, the outliers, and themaximumnon-outlying envelope.An observation is flagged
as an outlier if its measurement at any grid point is outside a constant factor times the
range at the central region. The constant factor is set to be 1.5 under the assumption
that observations at each index are independent and identically distributed and that
they follow a normal distribution. The functional boxplot is generalized to other types
of boxplots to suit functional data with additional characteristics. We can categorize
various functional boxplots as follows: those tailored for independent and dense grid
data, those designed for spatiotemporal data, those handling missing data, and those
catering to more general observations.

In the first category, the enhanced functional boxplot (Sun and Genton 2011), the
double-fence functional boxplot (Serfling and Wijesuriya 2017), and the two-stage
functional boxplot (Dai and Genton 2018a) were proposed to underline more features.
For instance, the enhanced functional boxplot provides 25% and 75% central regions
on the basis of the functional boxplot and the two-stage functional boxplot; the double-
fence functional boxplot includes an additional fence of 0.5 interquartile regions,
enhancing its ability to identify specific shape and location outliers. Comparatively, the
two-stage functional boxplot initially employs directional outlyingness, as proposed
by Dai and Genton (2019), to detect outliers using the robust Mahalanobis distance
of functions with Rousseeuw (1985)’s minimum covariance determinant estimators.
Outliers with distances larger than the cutoff value, determined from the findings
in Hardin and Rocke (2005), are then colored in green. Subsequently, the remaining
curves undergo processing through a functional boxplot. Figure4 illustrates these tools
on the CD4 functional data.

In the second category, the adjusted functional boxplot (Sun andGenton 2012a) and
surface boxplot (Genton et al. 2014) were proposed for use with spatiotemporal data.
The spatiotemporal data can be viewed as a temporal curve at each spatial location or
as a spatial surface at each time. In the former case, correlations need to be considered
across locations. Hence, Sun and Genton (2012a) proposed the adjusted functional
boxplot, which flexibly selects the constant factor to control the probability of cor-
rectly detecting no outliers. In the aforementioned work, Genton et al. (2014) extended
the concept of MBD to modified volume depth specifically for image data. This exten-
sion enabled them to introduce a surface boxplot, which facilitates the visualization
of images based on the modified volume depth. Similarly, the same four descriptive
statistics can also be established by using the modified volume depth. López-Pintado
and Wrobel (2017) proposed multivariate volume depth (MVD) to rank images from
the center outwards. Furthermore, Huang and Sun (2019b) and Huang et al. (2023)
adapted the functional boxplot method to visualize test functions of covariance prop-
erties for univariate and multivariate spatiotemporal random fields. This was further
extended by Jiménez-Varón et al. (2023) to the visualization of copula symmetry.

In the third category, the sparse functional boxplot and the intensity sparse
functional boxplot (Qu and Genton 2022) were proposed for visualization. Data
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(a) Functional Bagplot: Fitted CD4 Cell Counts
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(b) Functional HDR Boxplot: Fitted CD4 Cell Counts
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(c) Functional Boxplot: Fitted CD4 Cell Counts
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(d) Two−Stage Functional Boxplot: Fitted CD4 Cell Counts
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Fig. 4 Comparisons of the functional bagplot, the functional HDR boxplot, and the functional boxplots of
the fitted CD4 cell counts from bootstrapMFPCA (Qu and Genton 2022): (a) the functional bagplot, (b) the
functional high-density region (HDR) boxplot, (c) the functional boxplot, and (d) the two-stage functional
boxplot

reconstruction is required with MFPCA (Happ and Greven 2018). In addition to the
descriptive statistics in the functional boxplot, the sparse functional boxplot displays
the smooth sparseness proportion within the 50% central region, and the intensity
sparse functional boxplot displays the intensity of the smooth sparseness within the
50% central region. Usually, the directional outlyingness (Dai and Genton 2019) and
sparse functional boxplots are combined to form the sparse two-stage functional box-
plot and the intensity sparse two-stage functional boxplot for visualization and outlier
detection (see Fig. 5). In the sparse functional boxplot and its two-stage forms in
Fig. 5 (a)-(b), the gray shading denotes the proportion of missing data within the cen-
tral region, while the magenta shading indicates the observed data proportion within
the same region. In the intensity sparse functional boxplot and its two-stage forms
in Fig. 5 (c)-(d), the central region reflects the intensity of sparseness, with magenta
representing the least sparseness intensity and white indicating the highest sparseness
intensity. Outliers are visualized with the observed portion shown in red or green
(detected from the functional boxplot or directional outlyingness, respectively) and
the missing portion in gray.

Furthermore, sparse functional boxplots have been extended to the simplified sparse
functional boxplot (Qu et al. 2022) and the simplified intensity sparse functional
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(a) Sparse Functional Boxplot: Fitted CD4 Cell Counts
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(b) Sparse Two−Stage Functional Boxplot: Fitted CD4 Cell Counts

Months since Seroconversion

To
ta

l C
D

4 
C

el
l C

ou
nt

s

−20 −10 0 10 20 30 40

0
50

0
10

00
15

00
20

00

(c) Intensity Sparse Functional Boxplot: Fitted CD4 Cell Counts
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(d) Intensity Sparse Two−Stage Functional Boxplot: Fitted CD4 Cell Counts
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Fig. 5 Functional boxplot and its variations when missing values exist, taking the instance of the fitted
CD4 cell counts from bootstrap MFPCA (Qu and Genton 2022). The left column includes (a) the sparse
functional boxplot and (c) the intensity sparse functional boxplot. The right column includes (b) the sparse
two-stage functional boxplot and (d) the intensity sparse two-stage functional boxplot

boxplot without data reconstruction. The simplified visualization tools are based on
the global multivariate functional depths (Qu et al. 2022), which are applied to the
sparse multivariate functional data directly without data reconstruction.

The fourth category includes other natural extensions of the functional boxplot for
data expressed as sets, curves, paths, or trajectories. Whitaker et al. (2013) defined the
set band depth and introduced a contour boxplot for visualization and exploration of
ensembles of contours or level sets of functions.Mirzargar et al. (2014) generalized the
band depth for curves and proposed the curve boxplot. Hong et al. (2014) introduced
a weighted functional boxplot for use when observations become shapes and images.
Raj et al. (2017) proposed the graph-simplex band depth and developed a visualization
tool called path boxplot. Yao et al. (2020) developed a trajectory functional boxplot
(see Fig. 6) for visualization and exploratory analysis of trajectories that showvariation
in longitude and latitude through time.

The functional boxplot has some shortcomings, such as the loss of functional inter-
pretation in the envelopes of the 50% central region and the non-outlying region and
its inapplicability to functional observations under hidden temporal warping variabil-
ity. Therefore, Xie et al. (2017) decomposed observation variation in functional data
into three main components: amplitude, phase, and vertical translation based on curve
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registration (Srivastava et al. 2011). They constructed a different visualization for
each element based on the median, two quartiles, and extreme observations. They also
proposed identifying outliers based on those three components and visualizing the
amplitude or phase outliers through the phase-versus-amplitude distance plot.

4.2 Visualization based on decomposition

Another set of visualizations, specifically for outlier detection, is usually based on
ranking criteria such as statistical depth or outlyingness.Due to the intrinsically infinite
dimension, outliers contaminating functional data reveal various patterns. Regarding
the amount of outlying proportion, they are divided as persistent or isolated outliers
(Hubert et al. 2015); regardingwhether they jumpout of the normal rangeof oscillation,
they are classified asmagnitude or shape outliers (Dai et al. 2020). The outlier detection
visualization tools that we introduce here can be separated into those specifically
for univariate functional data and those for multivariate functional data (univariate
functional data are usually special cases).

For univariate functional data, Arribas-Gil and Romo (2014) proposed using out-
liergrams to visualize and detect shape outliers in functional data by exploiting the
relation between MBD and the modified epigraph index (MEI, López-Pintado and
Romo 2011). Through a novel decomposition of the total variation depth, proposed
by Huang and Sun (2019a), we can easily detect shape outliers via the boxplot of
the modified shape similarity (MSS). Thereafter, the magnitude outliers can be seen
among the remaining observations with the functional boxplots. Jiménez-Varón et al.
(2024) proposed using pointwise depth to visualize magnitude and shape outliers, and
the correlation between pairwise depths for shape outlier detection.

Formultivariate functional data, Hubert et al. (2015) discussed amplitude and shape
outliers and proposed various functional outlier maps based on the notion of outly-
ingness and depth in multivariate functional data, e.g., adjusted outlyingness (AO)
and skew-adjusted projection depth (SPD). Furthermore, they exploited the relation
between AO and SPD. They constructed the centrality–stability plot in which the
amplitude outliers lie in the upper-right region and the shape outliers lie in the right
region. Rousseeuw et al. (2018) proposed a robust notion of outlyingness, directional
outlyingness (DO), and this can be applied in the univariate or multivariate setting.
Based on the DO in the univariate setting, they defined the average of outlyingness
as the functional directional outlyingness (FO) and measured the variability of its
DO (VO). Then, they developed a graphical tool called the functional outlier map
(FOM), which is a scatterplot of (FO, VO). Shift outliers, local outliers, and global
outliers can be detected and displayed in different domains in FO. Based on the rela-
tion between mean directional outlyingness (MO) and VO, Dai and Genton (2018b)
proposed a new graphical tool, themagnitude-shape (MS) plot, to illustrate the central-
ity of curves comprehensively. They also generalized the outliergram to the bivariate
outliergram for outlier detection in bivariate functional data, according to a quadratic
relation between FO and MO. However, the bivariate outliergram is limited to bivari-
ate functional data and is less effective than the MS plot at measuring the centrality
of curves. Yao et al. (2020) introduced wiggliness of directional outlyingness (WO)
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to detect outliers and constructed the WO-MSBD plot which can distinguish shape
outliers and magnitude outliers. The depth boxplot, introduced by Harris et al. (2021),
is constructed on the elastic depths directly and serves as a half-boxplot. Its purpose
is to identify potential amplitude and phase outliers. Ojo et al. (2023) proposed the
magnitude–shape–amplitude (MSA) plot based on fast massive unsupervised outlier
detection (FastMUOD, Ojo et al. 2022).

Plots visualizing the original curves provide more intuitive illustration of the data
in the functional space, while plots visualizing the descriptive statistics provide more
concise information within a low-dimensional space. In practice, one should combine
the two types of visualization tools to get a more comprehensive understanding of the
structure of the dataset of interest.

5 Functional clustering

In the terminology of machine learning, functional data clustering is an unsupervised
learning process, partitioning similar observations into subgroups. The range of appli-
cations for functional data clustering is vast. For example, Abramowicz et al. (2017)
applied a functional clustering method to study sediment data and to infer past envi-
ronmental and climate changes. Athanasiadis andMrkvička (2019) analyzed financial
time series by using functional clustering methods to identify different insurance pen-
etration (IP) rate profiles in European markets. In general, the resulting clusters show
high potential for data visualization and interpretation.

When dealing with functional data, similarities might take into account the charac-
teristics of the curves, such as their shapes, magnitudes, or derivatives (Hitchcock and
Greenwood 2015). Broadly, we can classify the existing functional clustering meth-
ods as follows (Jacques and Preda 2014): 1) raw data methods; 2) filtering methods;
3) adaptive methods; and 4) distance-based methods. Raw data methods represent a
naive approach and might result in high-dimensional vectorial clustering (Bouveyron
and Brunet-Saumard 2014). Filtering methods and adaptive methods use the basis
expansion approach for functional data with a common basis for all of the data or a
common basis per group, respectively. The fundamental difference between filtering
and adaptive methods (Cheam and Fredette 2020) lies in how the latter treats basis
expansion coefficients and FPCA scores as random variables rather than parameters.
Moreover, adaptive methods operate under the assumption that these random variables
follow cluster-specific probability distributions. Some examples of clustering meth-
ods that use B-splines, Fourier basis, or functional principal component analysis have
been described in detail by Abraham et al. (2003), Serban and Wasserman (2005),
Chiou and Li (2007) and Shang (2014). Lastly, distance-based methods quantify the
similarity between clusters by computing distances for functional observations. Here,
we focus on distance-based methods. For a useful review of filtering and adaptive
methods, we refer the reader to the articles by Jacques and Preda (2014) and Wang
et al. (2016).

There are two main parts in a distance-based clustering method: the similarity
measure and the clustering algorithm. We need to define a similarity or dissimi-
larity measure between curves that will be highly related to the interpretation of
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the clusters. Usually, these measures are defined between two curves, {Y i ,Y k},
where Y i = (Y (1)

i , . . . ,Y (p)
i )� and Y k = (Y (1)

k , . . . ,Y (p)
k )� are p-variate func-

tional data, and we need a clustering algorithm to compute similarities across clusters,
C1 = {Y1

1, . . . ,Y
1
n1} and C2 = {Y2

1, . . . ,Y
2
n2}. Often, the similarity measure can be

defined using a distance between functions, d(Y i ,Y k). Natural choices for the distance
are the L1, L2, or L∞ distances, where

dl(Y i ,Y k) =
⎛

⎝ 1

p

p∑

j=1

∫

T j

(|Y ( j)
i (t) − Y ( j)

k (t)|)ldt
⎞

⎠

1/l

for l = 1, 2, andd∞(Y i ,Y k) = max j=1,...,p

(
1
p

∫
T j

|Y ( j)
i (t) − Y ( j)

k (t)|dt
)
. The above

distances are sensitive to both local and global changes in shape, allowing them to
effectively capture the similarity between curves bymeasuring the extent of alignment
between corresponding curves or by quantifying the maximum deviation along any
component. If we consider the L1, L2, or L∞ distance, then the resulting clusters are
built of functions with similar shapes and magnitudes. If there is no interest in the
similarity of magnitude, then the functions can be normalized and the total variation
(TV) distance used (Alvarez-Esteban et al. 2016):

dTV (Y i ,Y k) = 1 − 1

p

p∑

j=1

∫

T j

min{Y ( j)
i (t),Y ( j)

k (t)}dt

= 1

2p

p∑

j=1

∫

T j

|Y ( j)
i (t) − Y ( j)

k (t)|dt .

These distances might be further enhanced by including information about the deriva-
tive curves and defining a similarity measure as a weighted combination of the
distances as discussed by Jacques and Preda (2014).

Here, we assume that the curves Y ′
i s are all independent. However, if the user is

interested in clustering dependent curves, then a similarity measure can be proposed
that uses the Spearman correlation or the rank correlation between functions (Heckman
andZamar 2000). If these curves are linked to a time series trajectory, then a coherence-
based distance might be useful too (Euán et al. 2019). In this setting, the correlation
of the resulting clusters is high within each group but low across clusters. Chen et al.
(2021) introduced two novel robust rank-based dissimilarity measures: one based
on the distance between functional medians and the other based on the size of the
central region during merging. Dai et al. (2021) induced the dissimilarity matrix from
functional ordering. The idea is to construct the set of functional differences, apply
any functional depth (or ranking) notions to the above set, and define the similarity as
one minus the depth.

However, those methods assume that functions are observed at a fixed set of points,
and no sparseness exists. Elastic time distance was proposed by Qu et al. (2025) to
address this issue. It is applicable to (multivariate) functional data with either iden-

123



Exploratory Functional Data Analysis 475

tical or different time measurements per subject. The core idea is to build standard
grid points ([t1, t2, . . . , tT ], where tm ∈ T ⊂ R for m = 1, . . . , T ) and to interpo-
late measurements at standard grid points with the available observations. Assume
curves Y i and Y k are p-variate multivariate functional data and that Ỹ i and Ỹ k are
their interpolated observations based on procedures described by Qu et al. (2025),
then

dET D(Y i ,Y k) = max
m=1,...,T

√
√
√
√

p∑

j=1

{Ỹ ( j)
i (tm) − Ỹ ( j)

k (tm)}2, tm ∈ T .

Once the similarity measure is chosen, we use a clustering algorithm that selects
the groups of functions that are more similar in an “optimal” manner, i.e., members
within each group are highly similar, but members across groups are highly dissimilar.
The algorithmsmost commonly used for this purpose are the k-means and hierarchical
clustering algorithms. Ferraty et al. (2006) introduced examples of hierarchical clus-
tering using the L2 distance between the functions and their second derivatives. Ieva
et al. (2013) applied a k-means to identify clusters of electrocardiograph traces with a
weighted distance between the curves and their first derivatives. Recently, Euán et al.
(2018) proposed the hierarchical merger clustering algorithm. Its main contribution
to classical hierarchical algorithms is the use of a representative member for each
cluster. Euán et al. (2018) proposed using the TV distance in a hierarchical merger
algorithm to cluster spectral density functions from ocean wave time series. Euán
and Sun (2019) extended this method to general 2D directional spectra functions.
Moreover, Qu et al. (2025) proposed the robust two-layer partition (RTLP) clustering
algorithm and combined it with the elastic time distance to cluster multivariate func-
tional curves. They also compared RTLP clustering with other algorithms, including
the distance-based methods DBSCAN, k-means, and k-medians, and the model-based
funHDDC algorithm (Schmutz et al. 2020).

Some real data applications might need a more robust clustering algorithm, espe-
cially if the data have a high noise level. Although some of the methods described
previously in this section might separate possible outliers as single clusters, this
is not true for all methods. In the presence of potential outliers, Cuesta-Albertos
and Fraiman (2007) proposed a trimmed k-means clustering that results in a robust
cluster procedure for functional data. Also, Rivera-García et al. (2019) applied the
trimming technique to introduce a robust model-based clustering method for func-
tional data. When data are misaligned, applying clustering methods directly might
result in non-reasonable clustering structures. Sangalli et al. (2010) proposed an
algorithm that considers the case in which curves are misaligned. De Micheaux
et al. (2021), based on the curve depth, employed the original clustering algorithm
(Jörnsten 2004) with slight modifications for unparameterized curves. The robust
two-layer partition clustering, introduced by Qu et al. (2025), uses both a two-layer
partition algorithm and a modified silhouette index. This approach is effective at dis-
tinguishing clusters and identifying potential outliers in terms of their magnitude and
shape.
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Fig. 6 North Atlantic cyclone track clusters visualized with our version of the trajectory functional boxplot
(Yao et al. 2020). (a) and (b) are from k-medoids clustering, (c) and (d) are from hierarchical clustering, and
(e) and (f) are from robust two-layer partition clustering. Black and red represent the median and outliers,
respectively, and purple, magenta, and pink indicate the first, second, and third quartile curves, respectively

In general, a good strategy is to select the clustering method based on the research
goal. We illustrate this by using the bivariate hurricane trajectory data for the North
Atlantic, see Fig. 1 (b). Because the trajectory data have various observations per
subject, we apply the elastic time distance mentioned in Qu et al. (2025) and consider
the following different clusteringmethods based on the interpolated data: 1) k-medoids
clustering (Park and Jun 2009), see Fig. 6 (a)-(b); 2) hierarchical clustering with the
average as the linkage function, see Fig. 6 (c)-(d); and 3) robust two-layer partition
clustering, see Fig. 6 (e)-(f). Each clusteringmethod generates two clusters, but outliers
are introduced only by the robust two-layer partition clustering.
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6 Discussion

Wehave presented an overview ofmethods and tools to perform exploratory functional
data analysis (EFDA) and broadened its scope from analyzing only fully observed
univariate functional data to encompassing irregular multivariate functional data. By
using functional depths and distances, EFDAoffers awide array of tools for visualizing
and clustering both dense and sparse multivariate functional data, and for detecting
outliers.

Functional depths play a pivotal role in establishing functional rankings, forming
the foundation for generating functional boxplots and identifying outliers. According
to the method of obtaining depth values, these functional depths can be categorized
into three types. The first type is referred to as the integral depth that takes as values
the average pointwise depths or sample-wise distances, e.g., (modified) band depth
(López-Pintado and Romo 2009), (modified) simplicial band depth (López-Pintado
et al. 2014), and L∞ depth (Long and Huang 2015). The second type is infimal depth
which takes the minimum instead of the average of the above quantities, and examples
include random projection depth (Cuevas et al. 2007) and the depths described by
Mosler (2013). These two types first map each functional observation to a scalar and
then ranks them according to the resultant scalars. In contrast, the third type of depths
first gets global ranking of the observations and calculates the depth according to the
ranking result. Typical examples of this type include global envelop depth (Myllymäki
et al. 2017) and extremal depth (Narisetty and Nair 2016).

Applying functional depths to sparse functional data is more complex because of
the irregular coordinate grids. One approach to address this issue involves estimating
curves and their confidence bands or, alternatively, applying global functional depth to
sparse functional data directly as proposed by Qu et al. (2022). The original functional
boxplot serves to identify central tendencies and outliers. However, it has limitations
with regard to detecting certain shape outliers, and it may not be directly applicable
to functional data with missing values. To address these limitations, variations of
functional boxplots and other visualization tools have been proposed, enabling the
detection of shape outliers and facilitating the application to sparse functional data.

Moreover, functional distances play a crucial role in functional clustering. Examples
of such distances include the L p distance, the total variation distance, and the elastic
time distance. By leveraging functional distances, a wide range of classical clustering
algorithms, as well as novel ones, can be applied to functional data. To handle common
noise present in real-world data, robust two-layer partition clustering techniques can
effectively separate potential outliers from the clusters.

Although this review has extended its domain from classical functional data to
sparse multivariate functional data, a wider area of functional data can be considered,
and this may pose new challenges in visualization, robust statistics, and clustering.
New-generation functional data can include: functional snippets (Lin andWang 2022,
see longitudinal measurements of spinal bone mineral density for healthy subjects
with at least 2 measurements); functional time series data, e.g., functional ACF and
PACF plots (Mestre et al. 2021), calendar-based graphics (Wang et al. 2020), surface
time series (Martínez-Hernández andGenton 2023), and functional records (Martínez-
Hernández and Genton 2025); interval-valued functional data (Nasirzadeh et al. 2022,
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see the simultaneous systolic and diastolic blood pressure of patients at different visit
times); longitudinal functional data from a clinical trial (see the medical imaging
data of patients at different time points during a clinical study in the papers by Adeli
et al. 2019 and Zhu et al. 2021); spatial functional data (Delicado et al. 2010; see the
longitudinal climate data from arrays of monitors in the nearby area, and the review by
Martínez-Hernández and Genton 2020), and wearable health data (Smets et al. 2018).
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Myllymäki M, Mrkvička T (2019). GET: Global envelopes in R. arXiv preprint arXiv:1911.06583
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