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Abstract

In recent decades, statisticians have been increasingly encountering spatial data that exhibit non-Gaussian behaviors such as
asymmetry and heavy-tailedness. As a result, the assumptions of symmetry and fixed tail weight in Gaussian processes have
become restrictive and may fail to capture the intrinsic properties of the data. To address the limitations of the Gaussian models,
a variety of skewed models has been proposed, of which the popularity has grown rapidly. These skewed models introduce
parameters that govern skewness and tail weight. Among various proposals in the literature, unified skewed distributions,
such as the Unified Skew-Normal (SUN), have received considerable attention. In this work, we revisit a more concise
and intepretable re-parameterization of the SUN distribution and apply the distribution to random fields by constructing
a generalized unified skew-normal (GSUN) spatial process. We demonstrate that the GSUN is a valid spatial process by
showing its vanishing correlation at large distances and provide the corresponding spatial interpolation method. In addition,
we develop an inference mechanism for the GSUN process using the concept of neural Bayes estimators with deep graphical
attention networks (GATs) and encoder transformer. We show the superiority of our proposed estimator over conventional
CNN-based architectures in terms of stability and accuracy by means of a simulation study. In addition, we demonstrate that
the GSUN process offers enhanced flexibility compared to another model proposed in the literature through an application
to Pb-contaminated soil data. Furthermore, we show that the GSUN process is different from the conventional Gaussian
processes and Tukey g-and-h processes, through the probability integral transform (PIT).

Keywords Encoder transformer - Graphical attention network - Neural Bayes estimator - Non-Gaussian process - Unified
skew-normal distribution

1 Introduction

In the past decade, there has been a growing interest in
applying the Skew-Normal (SN) distribution to model a spa-
tial field due to the skewness parameter that can capture
asymmetric data. In particular, Kim and Mallick (2004) con-
structed a Bayesian predictor based on the SN distribution.
In addition, Dominguez-Molina et al. (2003), Allard and
Naveau (2007), and Rimstad and Omre (2014) proposed
to use the Closed Skew-Normal (CSN), a generalization
of the SN distribution, to model skewed geostatistical data
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with various methods such as MCMC and the method of
moments presented for parameter estimation. Moreover,
Mirquez-Urbina and Gonzdlez-Farfas (2022) proposed a
flexible special case of the CSN for spatial modeling and
prediction. Despite these fruitful studies, Arellano-Valle
and Azzalini (2006) mentioned the non-identifiability and
over-parameterization issue within the CSN distribution.
Moreover, Genton and Zhang (2012) conducted a compre-
hensive study on the non-identifiability problem of the SN
spatial process and extended the conclusion to elliptically
contoured random fields. Furthermore, Minozzo and Fer-
racuti (2012) demonstrated that SN-type spatial processes
do not satisfy the requirement of vanishing correlations at
large distances. A possible remedy was developed by Zhang
and El-Shaarawi (2010), where a stationary process was con-
structed with SN as marginal distributions.

To allow the spatial model to capture asymmetry and
heavy tails, Tagle et al. (2019) applied the multivariate Skew-
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t (ST) distribution to model daily wind data. Moreover,
Bevilacqua et al. (2021) developed a ST process model that
addresses the regression and dependence analysis of asym-
metric and heavy-tailed spatial data. In addition, Alodat
and Al-Rawwash (2014) , Alodat and Shakhatreh (2020),
and Benavoli et al. (2020) have also tackled the regres-
sion problem of asymmetric data by proposing an extended
skew-Gaussian process for regression and a Gaussian process
regression with skewed errors.

In addition to SN or ST spatial models, practitioners also
sought to construct spatial models using the Unified Skew-
Normal (SUN) distribution. To this end, a comprehensive
summary of the existence of the SN and SUN family-based
random fields can be found in Mahmoudian (2018). A partic-
ularly noteworthy SUN-based spatial process is the Unified
Skew Gaussian-Log-Gaussian (SUGLG) process proposed
in Zareifard and Khaledi (2013) with a Stochastic Approx-
imation Expectation Maximization (SAEM) algorithm for
parameter inference. The SUGLG process is a more com-
plicated model than the Gaussian process and can be used
to model the asymmetric property of the spatial data, and
the SAEM algorithm was proposed to avoid the intractable
computation of the integrals involved in the log-likelihood
function. In addition, correlations vanish at large distances
in the SUGLG process because it is a convolution of a Gaus-
sian process (dominant) and a form of truncated Gaussian
process (latent), where both processes follow such a prop-
erty. Although the SUGLG can address numerous challenges
existing in the SN and ST processes, the SAEM is likely to
be unstable and time-consuming with large spatial dimen-
sions. The simulation study and the real data application
conducted in Zareifard and Khaledi (2013) were limited to
sample sizes of about 100. Moreover, the SUGLG model is
restricted to a simplified sub-model of the SUN discussed
in Wang et al. (2023b), which imposes the same depen-
dence structure on the covariance of the observed and latent
processes and the skewness matrix. Hence, in this work,
we generalize the SUGLG and propose the Generalized
Unified Skew-Normal (GSUN) process by involving a sep-
arate dependence structure also in the latent dimensions and
designing a principled diagonal structure on the skewness
matrix to improve its statistical interpretability and main-
tain vanishing correlations at large distances of the process.
The skewness parameter accounts for information from both
the observed and latent processes instead of the observed
alone. Furthermore, we adopt a re-parameterization of the
SUN distribution; the new parameterization is numerically
more stable and geometrically more intuitive compared with
the original parameterization proposed in Arellano-Valle and
Azzalini (2006).

Sainsbury-Dale et al. (2025) demonstrated that a Graph
Neural Network (GNN) can accurately approximate Bayes
estimators, a function that maps the realizations of spatial
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processes to the point estimates of the corresponding param-
eters, which is amortized and efficient in inference. The idea
of using neural networks to map realizations to the point
estimates of the parameters is defined as the neural Bayes esti-
mator (Sainsbury-Dale et al. 2024). Furthermore, Lenzi et al.
(2023), Richards et al. (2024), and Walchessen et al. (2024)
have applied variants of the neural Bayes estimators to infer
complex processes and distributions, for which likelihood
functions are intractable or computationally intensive. A
comprehensive review of neural Bayes estimators and amor-
tized parameter inference can be found in Zammit-Mangion
et al. (2025). Following this direction, we combine a deep
Graph Attention Network (GAT) (Velickovi¢ et al. 2018)
with a multi-layer encoder transformer architecture (Vaswani
2017) to construct the neural Bayes estimator for the GSUN
model, which is adapted to regularly and irregularly spaced
grids. Moreover, we develop a simulation-based uncertainty
quantification method for the parameter estimates.

This paper is organized as follows. Section 2 revisits the
SUN distribution and the more concise re-parameterization,
laying the ground for the proposition of the GSUN model.
Section 3 formally introduces the GSUN spatial process
including its definition, validity, and spatial interpolation.
Section 4 gives a comprehensive introduction to the neural
Bayes estimator. Section 5 presents the network architec-
ture and data representation methods adopted in this work.
Section 6 conducts a series of comparative and evaluative
simulation studies of the GSUN process to demonstrate its
efficiency. Section 7 applies the GSUN model to a dataset of
Pb-contaminated soils and draws a comparison between the
GSUN and SUGLG model. Section 8 concludes and outlines
the contributions of this work.

2 Revisiting the SUN Distribution

In this section, we briefly revisit the Unified Skew-Normal
(SUN) distribution proposed in Arellano-Valle and Azzalini
(2006) and introduce a more efficient parameterization doc-
umented in Arellano-Valle and Genton (2026).

2.1 The SUN Distribution

As previously mentioned, to address the non-identifiability
issue existing in the CSN distribution, Arellano-Valle and
Azzalini (2006) proposed a unified framework involving
many skewed models as sub-cases by enforcing Q" below
to be a correlation matrix. The SUN distribution arises from
the selection mechanism described in Arellano-Valle and
Azzalini (2006), starting from a joint multivariate Gaussian
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random vector
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where T is the latent correlation matrix, A represents the
skewness matrix, and € = @~ ! Qw ! defines the correlation
matrix, with @ = diag(Sl)l/ 2. Then a random vector Z =
(U1/Ug + T > 0), where T € R is a truncation parameter,
is a non-shifted SUN random vector. With a location shift
parameter § € RY, Y = & 4+ @ Z is a fully parameterized
SUN random vector. The probability density function (pdf)
of Yis
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In this work, we denote the SUN random vector with pdf
defined in (1) as SUN 4. (&, R, A, T, I'). Numerous inter-
esting and practical properties, such as moments of the SUN,
were studied by Arellano-Valle and Azzalini (2006), Gupta
et al. (2013), Arellano-Valle and Azzalini (2022), and Wang
et al. (2023b).

2.2 Re-parameterization of the SUN Distribution

In Section 2.1, we have denoted a SUN random vector
by Y ~ SUNy.(€, 2, A, ,T), which is the original
parameterization proposed in Arellano-Valle and Azzalini
(2006). Although such a parameterization has many intrigu-
ing advantages, the covariance matrix 2 induces numerical
instability in simulating realizations. This numerical insta-
bility can be observed from the rsun function provided in
the sn R-package (Azzalini 2023), which simulates repli-
cates of the SUN random vector using exactly this particular
parameterization and stochastic representation. The simula-
tions often run into problems with rather large values of the
entries in A, causing £* to be singular and hence to fail in
Cholesky factorization, a crucial step to produce the samples.
Alternatively, Y can also be represented with the convolution
mechanism proposed in Arellano-Valle and Azzalini (2006).
In this sense, the introduction of two intermediate matrices
By and B obscures the directions of the skewness of the ran-
dom vector. In other words, A introduces the skewness but
does not indicate the direction, making A less interpretable.
Meanwhile, this parameterization complicates simulations of
random samples from the convolution mechanism.

To address these disadvantages, Arellano-Valle and Gen-
ton (2026) provided a simple way to construct a random
vector with SUN distribution. In detail, they let @A = HI

and @ = W + HTH'. Then, they re-parameterized the defi-
nition of unified skew-normal distribution in Arellano-Valle
and Azzalini (2022) using the convolution mechanism pro-
posed in Arellano-Valle and Azzalini (2006) and denoted it
as SUN ¢ (E, W, H, 7, I'). Here is a formal definition:

Definition 1 A d-dimensional random vector Y has a uni-
fied skew-normal distribution, denoted as Y ~ SUN 4
&,V H, T, T'), with location parameter & € R”, dispersion
matrix ¥ € RI*4 shape/skewness parameters H € Rdxm
latent truncation parameter T € R™, and positive definite
latent correlation matrix T € R”™*" if Y = E+HU+W,
where U = (Wo|Wo + 7 > 0), with Wy ~ N, (0, T) and
W ~ Ny (0, ¥) having independent, multivariate, Gaussian
distributions.

The new parameterization leads to the same distribution
as with the original, see Section S.1 in the Supplementary
Materials for a detailed proof. Moreover, the new parame-
terization is numerically stable and eliminates the issues of
Cholesky factorization in the original parameterization. In
addition, the new skewness parameter H provides a direct
representation of the direction of the skewed mass. The con-
volution representation Y = & + HU + W can be understood
as a symmetric normal random vector W plus a truncated
normal random vector U, with H determining the asymme-
try introduced by U and controlling the direction.

Lastly, the re-parameterization also allows for a more
straightforward computation of the mean and variance.
Because Y = & + HU + W, then E(Y) = & + HE(U) and
var(Y) = Hvar(U)H T 4+ W¥. Note that the mean and variance
of multivariate truncated normal random vectors can be com-
puted numerically with the R-package tmvtnorm (Wilhelm
and Manjunath 2023).

3 The GSUN Spatial Model

In this section, we study the GSUN spatial model by first
defining the GSUN spatial process and then deriving the krig-
ing formula for spatial interpolation.

3.1 GSUN Spatial Processes

Zhang and El-Shaarawi (2010) discussed how the SN spatial
model faces a non-ergodic issue, which is crucial for a valid
and reasonable spatial process. The non-ergodic issue can
also be generalized to the ST spatial model. The problem that
causes SN and ST to be non-ergodic is that all locations in the
study region share an identical univariate truncated normal
or truncated ¢ random variable. As a result, the covariance
or correlation between two locations persists even if they are
significantly distant from each other.
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To address these limitations, we propose a more flexible
construction of the SUN spatial model that simultaneously
satisfies the requirement of vanishing correlations at large
distances and accounts for a latent spatial process of skew-
ness. Specifically, we define a GSUN spatial process as

Z(s) = W(s) + h(s)W(s),

where W (s) and W (s) 4 (U(s) | U(s) > 0), with U(s)
being a zero-mean Gaussian process, are independent Gaus-
sian and truncated Gaussian spatial processes with Matérn
covariance and correlation functions (see Wang et al. (2023a)
for the choice of parameterization), respectively. We adopt
the Matérn covariance rather than the RBF kernel because it
offers greater flexibility and interpretability, with a smooth-
ness parameter v controlling mean-square differentiability;
the RBF kernel is the limiting case v — oo, yielding often
unrealistically smooth sample paths for geo-spatial applica-
tions. Here A(s), a location-specific scalar that dictates the
amount of the truncated Gaussian process W (s) added to
W (s), can be specified with any legitimate real values.

If observed at n locations, then let Z = {Z(s;),...,
Zs))', W = {W(s1),...,W(s,)}', and WH =
(Wt(sy),..., WH(s,)}T. We have W ~ N, (0, £(81)) and
W ~ TN, (0;0,C(0>)), where 7N, (a; m, K) represents
an n-dimensional truncated Gaussian distribution cut from
below a with mean vector m and covariance matrix K; X (61)
and C(#,) are the Matérn covariance and correlation matrices
with 01 = (02, B1,v1) " and 02 = (B2, 12) .

We then define the skewness matrix as

H = diag(h(s1), ..., h(sp)) = 611,

RIS
+3dydiag n Z(Ki,z(o.)l’i,):(ol)+li,C(02)Pi,C(oz))} ,

i=1

where (A; s4,), Pi,z0,)) and (X; c@,), Pi,c,)) denote the
i-th eigenvalue-eigenvector pairs of the covariance and corre-
lation matrices of the observed and latent Gaussian processes,
respectively. The coefficients §; € R and 8, € R control the
global and spatially varying skewness effects.

Motivation and interpretation. The construction of H fol-
lows three guiding principles: interpretability, statistical
parsimony, and ergodicity. Each diagonal entry h(s;) rep-
resents the local magnitude of skewness at location s;, and
its definition through the weighted eigen-decomposition of
¥ (01) and C(0,) provides a clear geometric interpretation.
The eigenvectors P; 5 9,) and P; c(y,) identify the principal
directions of spatial dependence, while the corresponding
eigenvalues quantify the contribution of each direction. Con-
sequently, A(s;) aggregates the dominant modes of spatial
variability, assigning larger weights to directions associated
with higher eigenvalues, and thereby aligns local skewness
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with the main axes of spatial dependence. This coupling
ensures that asymmetry in the process reflects intrinsic spa-
tial patterns rather than random perturbations.

Furthermore, the two coefficients (81, §2) decompose the
overall skewness into a global and a spatially varying compo-
nent: §1I,, captures a shared, direction-invariant asymmetry
across the entire domain, while §; scales the contribution of
the principal components of the covariance and correlation
structures. This linear combination is intentionally parsi-
monious, analogous to a linear regression decomposition,
where §; acts as an intercept representing baseline skewness
and 4, as a slope parameter modulating the effect of spatial
eigenstructure. Such a regression-style design balances flexi-
bility with simplicity, avoiding the over-parameterization that
would arise from a full or unconstrained H, while maintain-
ing interpretability and coherence with the spatial correlation
geometry.

Under this construction, when 6, = 0, the GSUN process
becomes stationary because /(s) is constant across locations;
otherwise, 6, # 0 introduces spatially adaptive skewness
determined by the leading eigen-directions of X(#;) and
C(#2), producing a controlled form of non-stationarity. In
compact notation, Z ~ SUN,,(0,X(0),H,0,C(0>)),
and equivalently Z = W + HWT.

Compared with the SUN spatial model in Zareifard and
Khaledi (2013), the GSUN process allows for a distinct latent
dependence structure with its own range and smoothness
parameters, thereby extending the flexibility of dependence
modeling in the skewed component. Defining H as a diag-
onal matrix composed of a linear combination of a global
skewness term and a weighted average of eigenvectors leads
to a more interpretable and stable representation than scaling
%.(01) by a constant, as done previously.

Ergodicity and smoothness. The GSUN process also sat-
isfies the requirement of vanishing correlations at large
distances. Specifically,

cov{Z(s;), Z(s;)} = X(01);,j + H; ; var(WT); ;H; ;.

As the distance between s; and s; grows, both X(0;); ;
and var(W+),-, j converge to zero under the Matérn kernel
and Proposition 2 in the Supplementary Materials, imply-
ing cov{Z(s;), Z(s;)} ~ 0. Thus, the process is ergodic, in
contrast to the classical SN and ST spatial processes.
Finally, regarding mean-square differentiability, when a
spatial process is a convolution of a smooth and a rough
process, the differentiability is inherited from the rougher
component. Hence, for GSUN, the mean-square differentia-
bility depends primarily on v; or v, whichever is smaller.
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3.2 Spatial Interpolation

We can rely on the kriging method for spatial interpolation.
For instance, we note that the SUN has closed conditional
distributions (Arellano-Valle and Azzalini 2022; Wang et al.
2024). Let

Zy\ _ &1\ (Y ¥\ (H -
<Z2> SUNm s ((Sz) ’ (‘1’21 ‘1’22) ’ (H2> ik r)

with n = n; 4 na. Then, following from Proposition
3.2 in Arellano-Valle and Genton (2010) with a Gaus-
sian density generator, we can plug in the new param-
eterization proposed in Section 2.2 to obtain the con-
ditional distribution of the SUN as (Z{|Z, = zp) ~
SZ/anl,n(f;'liz, ‘1’1.2, H1.2, T1.2, 1"1.2), where

§lo=8+ (‘I’lz‘l’z}l + H1.21:1‘2HI2‘1’2721) (z2 — &),
Hio = (H — ¥ ¥, Koy,

Vi, =¥ — ‘1’12‘1’2_21‘1’21,

712 = yialt + TioH) W) (20 — &),

Tio= a7+ H] w3, Hy) "y ),

Y12 = diag((T" +H] w3, Hy) /2.

Here, Z; represents the values to be predicted, and z;
represents the observed values. Interpolated values can be
obtained by calculating the first moment of Z|Z;. Addition-
ally, we can determine location-specific prediction intervals
by computing the covariance matrix of Z|Z; and extracting
the marginal variances from the diagonal. Both computations
are efficient and straightforward as described in Section 2.2.
In addition, the computations of conditional distribution and
expectation are implemented in the sn R-package (Azzalini
2023).

4 Neural Bayes Estimators
4.1 Background

Parameter inference for high-dimensional spatial models has
long been challenging due to the significant computational
costs involved in evaluating high-dimensional multivari-
ate probability and cumulative distribution functions. The
GSUN model, like others, requires the assessment of both
multivariate Gaussian density and the ratios of two mul-
tivariate cumulative Gaussian distributions. Deep learning
methods have become more popular as a potential solution
to mitigate the heavy computation costs associated with dis-
tribution functions. In brief, these approaches mainly focus

on approximating the likelihood function, the likelihood-
to-evidence ratio, and the posterior distribution using deep
neural networks (Sainsbury-Dale et al. 2025). Furthermore,
Zammit-Mangion et al. (2025) provided a detailed and com-
prehensive discussion of the theoretical basis and applica-
tions of deep learning methodologies in statistical inference
and modeling.

Recent advances in deep learning have led to the devel-
opment of a new parameter point estimator called the neural
Bayes estimator. This estimator uses deep neural networks
to map a set of data samples to estimates of the underly-
ing parameters. As described in the study by Sainsbury-Dale
et al. (2025), the neural Bayes estimator is computationally
efficient, approximately Bayes, likelihood-free, and amor-
tized. Once trained on sufficient data, it allows for much
faster inference compared to traditional methods like Markov
Chain Monte Carlo (MCMC) or maximum likelihood esti-
mation. The neural Bayes estimator was initially used in
spatial statistics with deep Convolutional Neural Networks
(CNNs) introduced in Chapter 9 of Goodfellow et al. (2016).
However, this approach was limited to spatial data on regu-
larly spaced grids. Sainsbury-Dale et al. (2025) extended the
capabilities of the neural Bayes estimator to work with irreg-
ularly spaced grids using graphical neural networks, greatly
expanding its potential applications.

4.2 Link to Bayes Risk

In this section, we extend the concept of the neural Bayes
estimator to the proposed GSUN process. The starting point
is the theoretical Bayes risk, defined as the posterior expected
loss:

R(B) =/®/ZL<®, é(z,ﬂ)) f(Z|©)dZdT (@), )

where ®@ = (01, 02, &1, 62) denotes the parameter vector,
I1(-) is a prior measure on the parameter space, and f (Z|©)
is the joint density of the GSUN spatial process conditional
on ©. Specifically, Z|©® ~ SUN, ,(0, £(01), H, 0, C(6>)),
with X (81) and C(#,) being the Matérn covariance and cor-
relation matrices, respectively.

The Bayes estimator of © is formally defined as

~ Baves . ~
O = agnin Foz|1(©.6)].

which explicitly depends on the choice of the loss function
L(-, -). For instance, under a quadratic loss, the Bayes esti-
mator corresponds to the posterior mean, whereas under an
absolute loss it corresponds to the posterior median. In gen-

~ Bayes
eral, Q(Za)y “ does not admit a closed-form solution due to the
high dimensionality of ® and the intractability of the SUN
posterior.
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To approximate (2) in practice, we employ the neural
Bayes estimator proposed by Sainsbury-Dale et al. (2025),
which minimizes a Monte Carlo approximation of the Bayes
risk over simulated data:

K

R ] .
B = argﬂmln < ]; L(G)k, @(zk,ﬂ)) . 3

where z; is the kth realization of the GSUN process simu-
lated from f(Z|@®*) and @(Zk _g) denotes the point estimate
of ® predicted by a neural network parameterized by .
The loss function L(-, -) here is the same as in (2), ensuring
that the empirical risk in (3) is a consistent Monte Carlo
approximation of the theoretical Bayes risk as K — oo.
According to the universal approximation theorem (Hornik
et al. 1989; Zhou 2020), a sufficiently large and deep neural
network can approximate any measurable function, includ-
ing the true Bayes estimator @?Za)y . Hence, minimizing (3)
effectively provides a data-driven, neural approximation to

~ B
the intractable posterior mapping Z +— ®(Za)y *

4.3 Algorithm

The training process of a neural Bayes estimator must involve
a large number of simulations, K. Specifically, we start by
simulating ©* from its prior and then simulate Z*", where n
denotes the sample size and k represents the count of training
samples, from the corresponding distribution. When choos-
ing priors, Lenzi et al. (2023) advised against using priors
with concentrated weights on a particular value, such as the
Gaussian prior. Therefore, in our training process, we use uni-
form priors for all parameters. Additionally, given the need

Algorithm 1 Training and Inference of Neural Bayes Esti-

mators
Training
Require: Sample size n, number of replicates N, spatial model
f(Z]9®), prior [1(®), neural network architecture for (:)(zu, p-L(.)a
non-negative loss function, a dropout rate D
Procedure:

(1) Simulate ©% ~ T1(©)

(2) Simulate N replicates of Z¥" ~ f (Z)0%)

(3) Compute é(zk.n, p) With dropout rate D on each layer

(4) Compute L(@k, é)]((zk,n,'g))

(5) Backward propagate and update 8

(6) Repeat (1) - (5) until a pre-specified criterion is met
Stopping Criterion:

The loss L(@k, é(zk‘ny ﬂ)) < €1, for L consecutive simulations

Inference
Require: the observed sample z
Procedure:
Plug in the sample z into the neural networks directly and obtain
Ow.p)
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to repeatedly simulate new parameters and data for the neu-
ral network, an “on-the-fly” simulation is an advantageous
approach to prevent overfitting the network (Sainsbury-Dale
et al. 2024) on specific data samples. In other words, for each
training step, we simulate @F and Z¥" from scratch and then
input the data into the proposed network to update 3.

One common challenge in spatial statistics is the limited
number of replicates N, which has led to the development
of various covariance functions (for more information, see
Wang et al. (2023a)). Conventionally, we can assume that
N = 1; however, based on the empirical evidence from the
training stage, it appears that setting N to a slightly larger
value, such as 10, can accelerate the learning process. This
could be because averaging across repetitions stabilizes the
underlying characteristics of the generated data. As a result,
we have implemented this approach in the training process
of our neural Bayes estimator. Additionally, based on the
findings of Srivastava et al. (2014), randomly deactivating
certain neurons during training can help prevent overfitting.
Therefore, we have also introduced a dropout rate D as a
hyper-parameter; refer to Algorithm 1 for a detailed descrip-
tion of the training algorithm.

As described in Algorithm 1, the training stage involves
numerous sampling repetitions of ©* and subsequently Z to
achieve a uniform and sufficient coverage of the ranges of all
parameters. Consequently, the Neural Bayes Estimator may
need millions of training samples and a considerable amount
of time to be properly trained. However, once the estimator is
trained, the inference process becomes quite efficient because
itis a straightforward plug-in procedure, which is also called
amortized inference (Sainsbury-Dale et al. 2025).

Additionally, when simulating ® from its prior distribu-
tion, it is important to avoid (81, §2) being close to 0 at the
same time. Indeed, if (&1, §7) are both 0, then the GSUN
process reduces to a conventional Gaussian process and,
therefore, the parameters (8>, v;) become void and non-
estimable.

From a modeling perspective, this implies that the latent
process W (s) no longer contributes to the joint dependence
structure, and all skewness-induced effects vanish. In such
cases, the neural Bayes estimator naturally reverts to produc-
ing predictions consistent with the Gaussian process that best
approximates the underlying mildly skewed process through
a shifted mean vector and a perturbed covariance matrix.

5 Architecture and Spatial Data
Representation

In this section, we present the two main blocks of our neural
Bayes estimator for the GSUN process.
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5.1 Graphical Attention Networks

Graphical Neural Networks (GNNs) arise naturally as a
solution in the case of spatial processes. The realization
of the study area can be represented directly as an undi-
rected graph, where the nodes are specific locations, and
the values are the corresponding realizations. The edges are
drawn between two nodes if they are neighbors, thus rep-
resenting the spatial information. Recent advancement in
graphical neural networks (Kipf and Welling 2016; Gilmer
et al. 2017) provided a framework to extend deep learning
towards graph-structured data whether the goal is a node-
level, edge-level or graph-level task. Among all graphical
neural networks, the Graphical Attention Networks (GATSs)
by Velickovi¢ et al. (2018) significantly outperformed the
previous GNN architectures such as the Graphical Convolu-
tional Networks (GCNs) by Kipf and Welling (2016). The
main novelty of GATs is the introduction of an attention
mechanism that allows the model to adaptively weight node
neighbors concerning their importance; hence, more flexible
and expressive representations are possible.

Consider an undirected graph G = (V, £), where V is
the set of nodes and £ is the set of edges. Let N; = {j €
VI|(i, j) € &} denote the set of neighbors of node i. Each
node i € V is associated with a feature vector F; € R/,
where f is the dimensionality of the input feature space.
The goal of GCNs is to learn the node embeddings v; € R/ /,
where f” is the dimensionality of the output feature space, by
iteratively aggregating feature information from neighboring
nodes. A common GCN layer aggregates node information
by performing a weighted sum of neighboring node features:

L _gog®

FQ_H) =0 Z
i /7. J ’
JEN; Ui} did;

where G/ is a trainable weight matrix at layer /, d; and d b
denote the degrees of node i and j, and o is a nonlinear
activation function. Although this method takes advantage
of information from a local neighbourhood, it does so in a
very uniform way, without discriminating between different
nodes’ neighbours, and this could make it difficult for the
model to learn complex dependencies among nodes.

GATs remove this limitation by introducing the self-
attention mechanism, allowing the nodes to assign different
weights to their neighbors. For any pair of nodes i and j, we
first compute the unnormalized attention coefficient:

¢;j = LeakyReLU { a' (GF; ||GFj)} :

where G € R/™%/ is a learnable weight matrix shared for
all nodes, a € R2/" is the attention vector, and || denotes

the vectorization of the feature vectors of nodes i and j.
Herein, LeakyReLLU(x) = max(0.2x, x) introduces the non-
linearity. The attention coefficient e;; reflects the importance
of node j’s features to node i. The corresponding attention
coefficients are then normalized across all neighbors of node
i using the softmax function:

exp(eij)

S A\ 4
ZkeNl» exp(eik) ( )

Olij

Considering these normalized attention coefficients, the
updated representation for node 7 is computed as a weighted
sum of the feature vectors of its neighbors:

1+1 l
F§+)=G Z Ol,'J'GFE-) ’
JEN;U{i}

where o (-) denotes a non-linear activation function. The
attention mechanism allows the model to learn which neigh-
bors are more relevant for the task at hand and provides more
flexibility compared to GCNs.

In order to enhance the learning capacity of the model,
GAT incorporates multi-head attention: it deploys K inde-
pendent attention mechanisms to calculate multiple series
of attention coefficients; all resulting node representations
obtained from each head are then combined by concatena-
tion (intermediate layers) or averaging (when the layer is the
last). Formally, multi-head mechanisms were defined as:

(t+1) ®© gD
ko= > i GUF

jeN;Ui

K
”k:l"

where || ,5:1 denotes the vectorization operation and ozi(j].‘)

are the attention coefficients from the k-th attention head.
This approach improves the model’s expressiveness because
the model can grasp different aspects of node relationships
through multiple attention heads.

5.2 Encoder Transformer

The state-of-the-art Encoder architecture (Vaswani 2017) has
founded many approaches for modeling dependence struc-
tures, of which the main novelty is in using self-attention
mechanisms to efficiently model long-range dependencies
without any recurrence nor convolution.

The architecture of the Encoder consists of a stack of L
identical layers, each having two major sub-components: a
multi-head self-attention mechanism and a feed-forward neu-
ral network (FFN).

The self-attention mechanism enables the model to learn
the latent dependence structure of the data by first projecting
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the input data into three distinct spaces: the query (Q), key
(K), and value (V), where

Q=XWy, K=XWg, V=XWy,

with Wo, W, Wy € RY*% as learnable weight matri-
ces. Then, the mechanism computes the scaled outer product
between the queries and keys, which is defined as the atten-
tion scores:

Attention(Q. K, V) = soft QK')y
ention(Q, K, V) = softmax .
Vi

Here, softmax(-) is identical to the softmax function men-
tioned in equation (4) but is applied row-wise to QK " //d.
The attention scores are divided by +/dj to ensure identical
scales of the outer products and therefore an even distribution
of the attention scores when a softmax function is applied.
In addition, such an operation also stabilizes the gradients
during training.

The Encoder utilizes the multi-attention mechanism as
a method for enlarging the model’s capacity for capturing
relations of various types. Instead of one Attention block, it
has & parallel attention heads, each performing attention with
an independent query, key, and value matrices. The outputs
of attention serve as vectors that are further concatenated and
linearly transformed:

h = MultiHead(Q, K, V) = [head, ..., head;|Wyg,

where each attention head is computed as:
head; = Attention(Q;, K;, V;),

and Wy e R"*d i a learnable output projection matrix.

Following the multi-head self-attention, each layer of the
Encoder applies a FFN to the learned embeddings. In partic-
ular, this FFN consists of two linear transformations with a
ReLU activation in between:

FFN(h) = ReLUW, + b))W> + by,

where Wy € R9*4sr, W, € R47*4 and d gy is the dimen-
sionality of the hidden layer. The nonlinear transformation
added by the FFN component further increases the capacity
of the model and projects the embeddings to a higher dimen-
sion before lowering the dimension again to d.

To stabilize training and improve convergence, both the
multi-head attention and FFN layers output are passed
through a layer normalization operation following the work
of Ba (2016), and residual connections are added to promote
gradient flow. Formally, the output of the /-th encoder layer

@ Springer

is computed as:

h;l) = LayerNorm (h;l_l) + MultiHead(hEl_l))) ,

h{*" = LayerNorm (h{” + FFNh{"))

These residual connections improve the model’s ability to
propagate gradients during back-propagation, making deeper
models easier to train.

5.3 Graphical Representations of the Spatial Data
and the Neural Bayes Estimator Network

In this section, we visually illustrate the graphical repre-
sentation of the spatial data in detail and demonstrate the
architecture of the neural Bayes estimator for the GSUN spa-
tial process.

5.3.1 Spatial Data

Figure 1 depicts 2-D spatial data denoted with an undirected
graph G = (V, &). This graphical representation is obtained
by plotting the locations of the spatial data on the domain of
interest and treating each location as a node; we connect two
nodes (locations) if their distance is within a pre-specified
radius, R. Here, each node embedding E; = (z;, x;, y,-)T
with i = 1,...,n, where z; is a realization of the spatial
process at location (x;, y;) € [0, 17%. When training the neu-
ral Bayes estimator, we set R = 0.34 so that the GATs can
reach a sufficient coverage of the study region within 3 steps
of aggregation (3 layers). Lastly, the edges & represent con-
nectivity only because spatial information has already been
contained in the node-level embeddings and formatted into
the input of the neural Bayes estimator, see Figure 2.

5.3.2 Network Architecture

In this section, we visualize the architecture of the neural
Bayes estimator in Figure 2. First, we format the input as
two parts, G and D, where § is the graphical representation
(defined in Section 5.3.1) of the spatial data and D € R"**" is
the distance matrix for their corresponding locations. There
are two paths of forward propogation in this network. First,
G is passed through 3 layers of GATs, where each layer con-
tains 8 attention heads (n-head = 8) and outputs the node-level
embeddings as 32,256, and 512 dimensional vectors, respec-
tively. Here, we set the output dimensions to powers of 2 for
maximum. General Processing Unit (GPU)) capacity at the
training stage.

Then, the node-level embeddings are stacked in a column-
wise manner in the “VStack” block. Here, the dimensionally
transformed distance matrix D is added to the stacked embed-
dings. The network, then, passes the aggregated data to a
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Fig. 1 Graphical representation of the spatial data with undirected
edges. The circle in black denotes a pre-specified radius R to define
the neighboring nodes. The red arrow denotes the radius, R

FFN layer to be prepared as the input of the encoder block.
As mentioned in Section 5.2, the encoder block, consist-
ing of 6 encoders with 8 attention heads for each and 512
for the dimension of the input embeddings d, will further
capture and extract dependencies within the data. Moreover,
the output is then collapsed into a 1-D vector and passed
through a FFN layer for the last prediction layer. Because
there are N replicates of (G, D), the network will process
each replicate in parallel, a concept that has been defined
as deepsets in Zaheer et al. (2017). Hence, before going
through the final prediction layer, the data are averaged across
the batch dimension. Finally, the prediction layer maps the
data to the parameter estimates ©. We set d and the output
sizes of all FFN layers as powers of 2 for maximum GPU
capacity and they are tuned according to the convergence
efficiency during training. The hyper-parameter tuning of the
network architecture is demonstrated in Figure 3. Figure 3a
shows that having an encoder transformer block indeed helps
the Bayes estimator to converge, which can be attributed to
the enhanced modeling capacity and more profound under-
standings of the inherent dependence structure. Otherwise,
the estimator experiences relatively large volatility even with
5x 107 simulated training data. In detail, Figure 3b has shown
that having more layers of a particular architecture does not
always lead to better efficiency. Redundant layers can cause
the neural Bayes estimator to converge at a slower rate (more
simulations needed to be properly trained).

! GAT blocks v

4
n-heads=8, dim=32
FFN (nx512)
n-heads=8, dim=256 E
n-heads=8, dim=512 @

( N
>L Vstack J FFN (nx512)

N

U
Encoder

(n-layers=6, d=512)

%

~
Flatten FFN (2048)
_J

U

~
[ Avg [ FEN cq)

Params

Fig.2 GAT- and Encoder-based neural Bayes estimator for the GSUN
spatial process. n-heads denotes the number of attention heads for the
multi-head attention mechanism. dim demonstrates the output dimen-
sion of each GAT layer. n-layers represents the number of encoder
blocks. d is the dimension of the input embeddings of the encoder
block. The numbers in the parenthesis for each FEN layer illustrate its
output dimension

6 Simulation Study

In this section, we illustrate and analyze the performance
of our proposed neural Bayes estimator for the GSUN spa-
tial process. First, we compare the inference performance of
our network with a CNN-based network architecture, which
has been used for amortized inference in Goodfellow et al.
(2016) and Sainsbury-Dale et al. (2024) for Gaussian pro-
cesses. Second, we show that the GSUN process has its
own distinct features through the probability integral trans-
form (PIT) when compared to Gaussian and Tukey g-and-h
(Xu and Genton 2017) processes. Lastly, we demonstrate the
uncertainty quantification of our neural Bayes estimator and
verify its validity.

6.1 Analysis of inference results
We compare the inference results of our neural Bayes esti-

mator with the inference results obtained from a CNN-based
estimator, see Figure S1 in Section S.2 of the Supplementary
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Training Loss for the Neural Bayes Estimators

35 —— Proposed Neural Bayes Estimator

—— 3-GAT Layer Only
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15

10

0 1000 2000 3000 4000 5000
Epochs (10%)
(a) Training loss for the proposed neural Bayes estima-
tor with and without an encoder block.

Fig. 3 Hyper-parameter tuning for the proposed neural Bayes esti-
mator. The red line denotes the threshold 10>, The learning rates
start as 1073 and are manually adjusted (multiplied by 0.1) at

Materials. In addition, Section S.2 also includes a detailed
description and explanation of the network structure and
associated ammortized inference. Both Bayes estimators are
sufficiently and identically trained such that their empirical
Bayes risks fall below 10> for a sufficiently large number of
consecutive simulations, see Figure S2 in the Supplementary
Materials.

To train the neural Bayes estimator, we simulate o2 ~
Uu@.3,3), pr ~ UO.01,1), vi ~ UO3,2), o ~
U@O.01,1), v, ~ U0.3,2), § ~ U(=3,3), and §, ~
U(-3, 3), where U(l, u) denotes a uniform distribution on
the interval (I, u). We choose these intervals to maintain a
reasonable coverage of the ranges of the true values while
avoiding exploding the number of samples needed from sim-
ulation to train the network.

When §; = 0and §, = 0, the GSUN spatial model reduces
to the conventional Gaussian process. As a result, the range
(B2) and smoothness (1) parameters for the latent truncated
process become non-estimable. Therefore, we remove them
when calculating L(®", é)(zn’ 8))» which is chosen as the
Mean Square Error (MSE) loss. During the training process,
we relax the condition for such situations to avoid weakly
estimable cases, low-quality data that can potentially pollute
the neural network, by removing B and v, from the loss
when (81, 82) € [—0.1, 0.1]%.

To obtain the inference results of the trained neural
Bayes estimator, we simulate N = 1 replicate of Z ~
SUN ., (0,X(01),H,0,C(02)) with n = 400, 900, 1600
and ® = (1,0.15,1,0.1,0.5, 0.55, —0.3)—r from randomly
generated locations. During inference, one can easily restruc-
ture the data into multiple sets of n = 100 samples and format
these datasets as replicates for input. In doing this, the esti-
mator is not limited to a fixed sample size n = 100. It is
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Training Loss for the Neural Bayes Estimators

40

| |

30

—— Proposed Neural Bayes Estimator
—— 2-GAT Layer & One Encoder Block
4-GAT Layer & One Encoder Block

25

0 1000 2000 3000 4000 5000
Epochs (10%)
(b) Training loss curves for the proposed neural Bayes
estimators with various GAT layers.

(100, 500, 1000, 3000) x 104 epochs. The radius R is adapted to the
differing numbers of GAT layers such that the aggregations can suffi-
ciently cover the study region within the specified number of layers

important to note that here we set the sample size n = 100
only for the purpose of training the estimator more efficiently.

In Figure 4, we can see that the empirical posterior dis-
tribution H(@|Z, B) for both Bayes estimators is centered
around specific values close to the true values and becomes
more concentrated as the sample size increases.

In addition, the neural Bayes estimator proposed in this
work outperforms the conventional CNN-based structure in
terms of accuracy and stability. Figure 4 illustrates that the
empirical distributions of © calculated using the proposed
estimator have smaller IQRs across all parameters and the
corresponding means are closer to the true values compared
to those computed with the CNN-based estimator for most
cases. Furthermore, o2/ ;612”1 and 1/ ;62%”2, computed using
the proposed estimator, better comply with the theory of
consistent estimation for in-domain asymptotics proposed
in Zhang (2004). Such advantages can be attributed to the
more expressive graphical representation of spatial data and
the well-crafted architectures that allow for a more profound
understanding of the dependence structure and a stronger
modeling capacity.

6.2 Uncertainty Quantification

In this section, we explore the uncertainty quantifica-
tion method for our proposed neural Bayes estimator. In
Sainsbury-Dale et al. (2025), the authors have mentioned
that one way to quantify the uncertainty of the neural Bayes
estimator is to train another neural Bayes estimator that can
learn various quantiles of the estimates based on the given
sample realizations. Nonetheless, such method requires train-
ing numerous independent networks because it is difficult
for a particular network to learn to output all quantiles
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Fig. 4 The boxplots of the parameter estimates obtained from the
proposed neural Bayes estimator (marked in Blue and denoted as
GAT-n) and the CNN-based Bayes estimator (marked in Green and

(continuous) at once. Therefore, in this work, we present a
simulation-based approach, which can accurately and effi-
ciently approximate the quantiles and originate from a
similar idea to the bootstrap approach proposed in Sainsbury-
Dale et al. (2024). A detailed description is illustrated in
Algorithm 2.

To validate our proposed algorithm, we generate one repli-
cate of Z,, with ® = (2,0.03,0.5,0.3, 1, —0.7,0.5) " with
n = 400, 900, 1600 and then apply Algorithm 2. To demon-

GAT-400  CNN-400 ~ GAT-900  CNN-900 ~ GAT-1600 CNN-1600

GAT-400  CNN-400 ~ GAT-900 ~ CNN-900 ~ GAT-1600 CNN-1600

denoted as CNN-n) for N = 500 replicates of n = 400, 900, 1600
realizations of the GSUN process in [0, 1]? simulated from ® =
(1,0.15,1,0.1, 0.5, 0.55, —0‘3)T. The red lines denote the true values

strate the accuracy of our uncertainty quantification method,

N
we plot the empirical distributions of ©; g, for k = 500
with a bootstrap sample size j = 1000, together with the

empirical distributions of é)(z,,, ) where N = 500, for cov-
erage analysis.
Figure 5 demonstrates that the empirical distributions of

A k . . .. .. -
0 ;, p) becomes increasingly similar to the empirical distri-

. AN . . .
butions of @, g as sample size n increases. In particular,
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Fig.5 The empirical densities of ®, gy (marked in Cyan and denoted

Ak
as E-n) and ©; 8) (marked in Blue and denoted as A-n) obtained
from the proposed neural Bayes estimator with N = 500 replicates of

when n = 1, 600, the two empirical distributions almost pre-
cisely overlap for all parameters except for (o2, B, v1). For
(02, B, v1) at n = 1, 600, there are slightly visible devia-
tions between the two empirical distributions, but they still
overlap over a large bulk. Hence, the empirical quantiles of

Ak . .
©;, p) can serve as an accurate estimate for the quantiles of
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n = 400, 900, 1600 realizations of the GSUN process in [0, 17? sim-
ulated from ® = (2,0.03,0.5,0.3, 1, —0.7,0.5) T and Algorithm 2,
respectively

AN
©,, p)- In addition, in our simulation study, j does not play
a significant role when j > 500. However, if j < 500, the

~ k
empirical distributions of ©; g can considerably deviate

.. . AN .
from the empirical distributions of ®, g, due to potential
biases. Hence, it would be safer to set j to be a large number.
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6.3 Comparative Study with Gaussian and Tukey
g-and-h Processes

In this section, we conduct a comparative study on the
GSUN random field in contrast to the Gaussian and Tukey
g-and-h random fields (Xu and Genton 2017) regarding the
probability integral transformations (PIT) to demonstrate its
practicality.

Gaussian random fields are commonly used to model
spatial data and dependence structures (Haran 2011). They
are based on a trend structure and a valid covariance func-
tion, such as the Matérn covariance family, where various
parameterizations are discussed in Wang et al. (2023a). Their
practicality has been repeatedly verified in real-life appli-
cations. In this regard, it is consequential to note that the
Gaussianity assumption has intrinsic limitations in terms of
symmetry and tail weight, which may not hold for many real-
istic datasets that exhibit skewness and heavy-tail properties,
such as precipitation (Mondal et al. 2023).

To address these concerns, Xu and Genton (2017) pro-
posed Tukey g-and-h random fields, defined as follows:

Y(s) =& +X(s)' B+ T (s),

where £ € R is the shift parameter, v > 0 is a scale param-
eter, and X(s), 8 € RP are the covariate vector observed
at location s and its regression coefficient. Here, T(s) =
T n{Z ()} and 7 1, (2) = g~ (exp(gz) — Dexp(hz?/2) is the
Tukey’s g-and-A transformation introduced in Tukey (1977),
with Z(s) as a Gaussian process. In this case, g dictates the
amount and direction of skewness (to the right if g > 0 and
to the left if g < 0) and & governs the tail behavior (where a
larger & leads to heavier tail weights). Lastly, if arandom vec-
tor Z ~ Nn(”’na %), T = Tg,h(Z) ~ an(/'an X, 8 h),
where GH,,(,,, X, &, h) denotes a multivariate Tukey g-
and-h distribution with shift g, dispersion matrix X,, and
g, h for skewness and tail-heaviness.

To apply the Probability Integral Transform (PIT), we
need to calculate the cumulative distribution functions (cdfs)
for each case. The cdf for the Gaussian distribution is well

Algorithm 2 Uncertainty Quantification of Neural Bayes
Estimator

Require: Trained neural Bayes estimator /§ , graphical spatial data
(G, D), number of bootstrap samples j, number of replicates k
Procedure:

(1) Take j bootstrap samples on (G, D)

(2) Input (G, D);, ¥i = 1,.... j into B to obtain 6

(3) Compute the average of O fori=1,..., j and denote it as

(4) Simulate k replicates of Z~ f (Zl(:)) and denote it as ZF
N3
(5) Input Z* independently into 8 to obtain O;.p)

A k
(6) Compute the empirical quantiles using @ ; g,

known and used regularly. The cdf for the GSUN random
field can be easily derived using Proposition 4 in the Sup-
plementary Materials. For the TGH random field, we can
apply the inverse Tukey’s g-and-h transformation t ; }11 {Y(s)}
to obtain the underlying Gaussian field Z(s) and then use the
Gaussian cdf for PIT.

Moreover, we can use the Maximum Likelihood Estima-
tion (MLE)-based inference as implemented in Abdulah et al.
(2018) and Mondal et al. (2023) for parameter estimation of
the Gaussian and TGH spatial models.

Figure 6 demonstrates the PIT results under three different
spatial models. In particular, Figure 6a shows that the PIT is
quite uniformly distributed compared to the results shown in
Figures 6b and 6¢, which contain obvious concentrations in
either the center or the tail. Hence, the GSUN spatial process
hasits own distinct asymmetry and tail-weight differing from
the Gaussian and TGH fields.

The same conclusion can also be drawn in Figures 6g
and 6j, where we can see a striking difference between TGH
and GSUN. Figures 6d and 6f demonstrate that both GSUN
and TGH involve the Gaussian process as a special case.
In addition, Figures 6¢ and 6g indicate that GSUN and TG
typically have a different mean and tail weight; TG has a
heavier tail weight even if there is only skewness (h = 0)
in the model. Figure 6j indicates that when 4 is rather large,
TGH has much heavier tails than GSUN, further highlighting
the difference between TGH and GSUN.

7 Application to Pb-contaminated Soil Data

In this section, we apply the GSUN to the same real data as
in Zareifard and Khaledi (2013), which contains 117 obser-
vations of Pb-contaminated areas in soils of a region of north
Iran, to compare GSUN with SUGLG. In detail, we fit the
GSUN and the SUGLG model proposed in Zareifard and
Khaledi (2013) to obtain the parameter estimates and then
plot the PIT results with the fitted models.

Figure 7 shows that the PIT with the GSUN model is
closer to a uniform distribution (indicated by the red hor-
izontal line) compared to the PIT with SUGLG. The sum
of squared distances between the uniform histogram and
the GSUN and SUGLG histograms are 0.366 and 0.877,
respectively. Such results are anticipated because the GSUN
model allows for more flexibility in the latent process that
involves its own range and smoothness parameters, while
the SUGLG model assumes the same covariance structure for
the observed and latent processes. In addition, GSUN uses
one additional parameter to control skewness compared to
SUGLG and the skewness matrix H in GSUN is an aggrega-
tion of the principal components of the covariance matrices
of the observed and latent processes (the skewness matrix
is set as a scalar multiple of the correlation matrix of the
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Fig. 6 The PIT results for a sample realization of the GSUN,
Gaussian, Tukey g (TG), and Tukey g-and-h (TGH) processes sim-
ulated from @ = (2,0.03,0.5,0.01,1,1,—-3)T for the GSUN,
0, = (02,8 v)T = (2,003,057 for the Gaussian, 0,, =

PIT

PIT

PIT

PIT
1.0

2.0

1.5

0.5

0.0

7\ T T T
00 02 04 06 08 1.0

(a) GSUN - GSUN.

2.0

1.5

0.5

< |
[}

T T T T
00 02 04 06 08 1.0

(d) GSUN - Gaussian.

2.0
I}

1.5

0.5

0.0

0.0 0.2

T T
04 06 08 10

(g) GSUN - TG.

1.5

0.5

0.0

T T
0.0 0.2

T T
04 06 08 1.0

(j) GSUN - TGH.

2.0

1.5

0.5

S

7\ T T T
00 02 04 06 08 1.0

(b) Gaussian - GSUN.

<
o

]
<

[ N )
<

©
<}

< |
S}

T T T T
00 02 04 06 08 1.0

(e) Gaussian - Gaussian.

15 20
I}

10
[

0.5

0.0

00 02 04 06 08 10

(h) Gaussian - TG.

1.5

1.0

0.5

o

T T T T
00 02 04 06 08 10

(k) Gaussian - TGH.

(0%, B,v,9)7 =(2,0.03,0.5,0.3)T, and 8,5, = (6%, B, v, 8, h)| =

@ Springer

e
o

0.5

0.0

7\ T T T T
00 02 04 06 08 1.0

(c) TGH - GSUN.

2.0

1.5

0.5

e
[}

T T T
00 02 04

T T 1
06 08 1.0

(f) TGH - Gaussian.

° 010 012 014 0‘.6 018 110
(i) TG - TG.

° 010 012 014 0‘.6 018 110
(1) TGH - TGH.

(2,0.03,0.5,0.3, 0.4)T for the TG and TGH at n = 1600 randomly
generated locations on [0, 112 using the GSUN, Gaussian, TG, and TGH
models. The caption, Model - Model, indicates that we apply the cdf of
the former model to the realization generated using the latter



Statistics and Computing (2026) 36:64 Page150f17 64
Fig.7 The PIT results for the w _ w _
117 observations of - — - —
Pb-contaminated areas in soils — ]
of a region of north Iran using () ] 1 [] o |
GSUN and SUGLG spatial - ] - - ]
models. The red horizontal line E |
indicates a uniform density 0 0

o ] S

N

o o

00 02 04 06 08

GSUN

observed process in SUGLG), carrying more statistical intu-
ition and interpretability, and therefore allowing for a better
fit of the data.

8 Conclusion

In this work, we used a more convenient parameterization
of the SUN distribution. Here, H represents the direction of
skewness, providing a straightforward representation. This
parameterization also helps to avoid the numerical instabil-
ity issue from the original parametrization. Additionally, we
proposed a GSUN spatial model derived from a concise re-
parameterization. This model ensures vanishing correlations
at large distances and offers a more statistically interpretable
skewness matrix. The GSUN process is more general com-
pared with the conventional Gaussian process model. It
includes the Gaussian process as a special case and models
the range and smoothness of the latent process that governs
the skewness, in contrast to keeping them fixed as in Zareifard
and Khaledi (2013).

Due to the complexity of the parameter inference of the
SUN distribution, we adopted a neural Bayes estimator to
obtain point summaries of the parameters. This was achieved
using a GAT- and Encoder-structured neural network while
minimizing the Bayes risk. The neural Bayes estimator can
be time-consuming in the training process and requires mil-
lions of simulations. However, once trained sufficiently, the
inference stage is quite efficient. To this end, the proposed
neural Bayes estimator in this work outperforms the con-
ventional CNN-based architectures in terms of accuracy and
stability, indicating the more enhanced modeling capacity of
GAT and Encoder together with the graphical representation
of spatial data.

Moreover, we compared the GSUN model with Gaussian
and Tukey g-and-h models, two popularly used spatial mod-
els, to demonstrate its uniqueness through PIT plots. We
applied the GSUN spatial process to 117 observations of

T 1
1.0

I T T T T 1
00 02 04 06 08 10

SUGLG

Pb-contaminated areas in soils of a region of north Iran and
showecased its better fit over the SUGLG process.

Although the proposed GSUN framework and neural
Bayes estimator demonstrated strong flexibility and predic-
tive performance, several natural extensions and limitations
merit further investigation.

First, the current formulation was developed for spa-
tially continuous domains with a single latent skewness field.
Extending the GSUN process to spatio-temporal or mul-
tivariate spatial settings would enable the joint modeling
of space-time dependence and cross-covariance structures,
potentially revealing additional advantages of the GSUN rep-
resentation.

Second, although the neural Bayes estimator provides sub-
stantial computational efficiency once trained, it requires a
large number of simulated realizations during the training
phase. Future work may consider variance reduction strate-
gies, transfer learning, or amortized inference approaches to
alleviate this computational burden and improve scalability
to high-dimensional spatial datasets.

Finally, the present study assumed Matérn covariance
functions for both observed and latent processes. Incorporat-
ing alternative covariance families or nonstationary kernels
could further improve modeling flexibility and allow the
GSUN framework to capture more complex spatial hetero-
geneity, particularly when the assumption of isotropy is not
realistic.
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tary material available at https://doi.org/10.1007/s11222-025-10801-
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