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are used to learn and reconstruct normal behavioral patterns from anomaly-​free 
training data, resulting in low reconstruction errors for normal frames and higher 
errors for frames with potential anomalies. The reconstruction error matrix for 
each frame is treated as multivariate functional data, with the MS-​Plot applied to 
analyze both magnitude and shape deviations, enhancing the accuracy of anomaly 
detection. Using its capacity to evaluate the magnitude and shape of deviations, the 
MS-​Plot offers a statistically principled and interpretable framework for anomaly 
detection. The proposed methodology is evaluated on two widely used benchmark 
datasets, UCSD Ped2 and CUHK Avenue, demonstrating promising performance. 
It performs better than traditional univariate functional detectors (e.g., FBPlot, 
TVDMSS, Extremal Depth, and Outliergram) and several state-​of-​the-​art methods.

INTRODUCTION

Anomaly detection in video sequences is a critical task in computer vision, 
particularly in scenarios involving crowded environments such as public spaces, 
events, transportation hubs, and marketplaces (Santhosh et al., 2020). The goal 
is to identify unusual or potentially dangerous events that deviate from expected 
crowd behavior, such as sudden dispersals, confrontations, or individuals engaging 
in atypical activities (Nayak et al., 2021, Mu et al. 2021). Early detection of such 
anomalies is crucial for ensuring public safety, managing emergencies, and prevent-
ing incidents. In crowded areas, the task of anomaly detection becomes especially 
challenging due to the complexity and high dimensionality of spatiotemporal data. 
Video sequences in these environments consist of continuous frames with numerous 
individuals and objects interacting, creating intricate patterns of motion and behavior 
(Duong et al., 2023). This complexity requires the use of advanced methods capable 
of capturing not only spatial features within individual frames, but also temporal 
and contextual dependencies that characterize typical crowd dynamics (Zhu et al. 
2012, Pawar and Attar, 2019).

Over the past two decades, researchers have developed numerous methods to 
effectively identify abnormal events in video data (Morris and Trivedi, 2008). 
Trajectory-​based approaches track moving objects to detect deviations from typical 
patterns (Kim and Grauman, 2009, Mehran et al., 2009, Basharat et al., 2008). For 
instance, the study in (Piciarelli et al., 2008) explored anomaly detection through 
trajectory analysis using a single-​class support vector machine (SVM) clustering 
approach, effectively identifying unusual trajectories without prior knowledge of 
outlier distributions. In (Cosar et al., 2016), snapped trajectories are introduced as 
a high-​level representation that reduces computational load and identifies key scene 
regions. This combined approach detects anomalies in speed, direction, and finer 



139

motion details with fewer false alarms. Trajectory-​based methods rely on accurate 
detection and tracking but are limited by crowd density, resolution, motion, and oc-
clusion, making them more suitable for sparse crowds. However, in crowded scenes, 
frequent occlusions, intersecting paths, and the challenge of distinguishing similar 
individuals (Ma et al., 2014) reduce their effectiveness, and they lack contextual 
awareness for identifying anomalies.

Alternatively, other techniques use spatiotemporal features to represent events 
in videos without requiring trajectory analysis. These methods capture motion 
dynamics by analyzing changes in pixel intensities and patterns over time (Liet al., 
2013). Techniques such as spatiotemporal gradients (Lu et al., 2013), Histograms 
of Oriented Gradients (HOG) (Dalal and Triggs, 2005), 3D spatiotemporal gradient 
(Kratz and Nishino, 2009), and Histograms of Optical Flow (HOF) (Dalal et al., 
2006) help detect collective crowd behaviors and abnormalities at the pixel or region 
level, enhancing anomaly detection in dense and dynamic scenes. For example, in 
(Roy and Om, 2018), an SVM classifier trained on HOG features is proposed to 
automatically detect violent activities in surveillance videos, distinguishing actions 
like kicking and punching. This system triggers alerts for detected violence and 
monitors loitering duration to flag suspicious behavior in real-​time, thus enhancing 
traditional surveillance effectiveness. In (Ahad et al., 2018), a method is introduced 
for recognizing overlapping and multi-​dimensional actions using a spatiotemporal 
representation and enhanced Motion History Image (MHI). It employs Speeded-​
Up Robust Features (SURF) to capture key motion features, gradient-​based optical 
flow for motion representation, and RANSAC (Random Sample Consensus) for 
outlier removal. The nearest neighbour classifier with leave-​one-​out cross-​validation 
achieves improved recognition rates for complex actions in outdoor scenes com-
pared to traditional MHI approaches. The study in (Cheng et al., 2015) introduces 
a hierarchical framework for video anomaly detection that integrates multi-​level 
features, including 3D-​SIFT (scale-​invariant feature transform), HOF, and HOG, with 
Gaussian process regression. However, these low-​level visual features (e.g., motion 
or texture) may still struggle to fully capture higher-​level semantic information or 
complex contextual interactions in crowded scenes, limiting their effectiveness in 
more challenging anomaly detection scenarios (Duong et al., 2023).

To address these limitations, deep learning-​based methods have emerged as ad-
vanced alternatives for video anomaly detection, leveraging their capacity to capture 
high-​level semantic information and complex interactions in crowded and dynamic 
environments Duong et al. [2023]. Unlike traditional techniques, deep learning models 
such as Convolutional Neural Networks (CNNs) (Sabokrou et al., 2018, Mansour 
et al., 2021), Recurrent Neural Networks(RNNs), and Long Short-​Term Memory 
networks (LSTMs) can automatically learn and extract relevant spatial and temporal 
features directly from the data (Ullah et al., 2021). These models are particularly 
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effective in modeling nuanced deviations from normal patterns, enabling them to 
generalize better across diverse scenarios. Moreover, autoencoders and Generative 
Adversarial Networks (GANs) are commonly used to reconstruct normal patterns 
in video frames, with deviations in reconstruction used as indicators of potential 
anomalies (Luo et al., 2021, Micorek et al., 2024, Chen et al., 2022). The ability of 
deep learning models to handle complex feature representations has significantly 
improved the performance and adaptability of video anomaly detection systems 
across various application settings (Nayak et al., 2021, Duong et al., 2023, Pawar 
and Attar, 2019, Wu et al., 2024). The study in (Sabokrou et al., 2018) presents a 
method for anomaly detection in crowded scenes using fully convolutional networks 
(FCNs) with temporal data. The model enhances feature extraction by combining a 
pre-​trained CNN (a modified AlexNet) with a custom convolutional layer tailored 
to specific video data. In (Zhou et al., 2016), a spatial-​temporal CNN model is 
proposed for anomaly detection and localization using spatial-​temporal volumes 
with motion information from static camera scenes. By capturing both appearance 
and motion features through spatial-​temporal convolutions, the model enhances 
robustness. Evaluated on four benchmark datasets, it outperforms state-​of-​the-​art 
methods, especially on challenging pixel-​level criteria. In (Hong et al., 2024), a 
video anomaly detection approach leverages a frame-​to-​label and motion (F2LM) 
generator to intentionally reduce the quality of abnormal regions, followed by a 
Destroyer that transforms these areas into zero vectors, making anomalies more 
prominent. This technique surpasses state-​of-​the-​art performance on the UCSD 
Ped2, CUHK Avenue, and Shanghai Tech datasets. The study (Dilek and Dener, 
2024) proposes an efficient frame-​level video anomaly detection (VAD) method that 
utilizes transfer learning and fine-​tuning on 20 CNN-​based deep learning models, 
including variants of VGG, Xception, MobileNet, and ResNet.

Over the past decade, numerous reconstruction-​based methods for video anomaly 
detection have emerged, leveraging models that learn to reconstruct normal video 
frames or sequences and using reconstruction errors to identify anomalies (Gong et 
al., 2019; Le and Kim, 2023). The core idea of these approaches is that the model 
trained exclusively on anomaly-​free data will struggle to accurately reconstruct 
anomalous events, resulting in higher reconstruction errors for frames with unusual 
or abnormal content. This discrepancy between normal and abnormal reconstruc-
tions provides a basis for detecting anomalies effectively. In (Zhao et al., 2017), 
the authors tackle the challenge of detecting anomalies in complex video scenes by 
introducing a spatiotemporal AutoEncoder (STAE) that uses deep neural networks 
with 3D convolutions to learn spatial and temporal features. It incorporates a weight-​
decreasing prediction loss for future frame generation, improving motion feature 
learning beyond standard reconstruction loss. In (Deepak et al., 2021), a residual 
spatiotemporal autoencoder (STAE) is proposed for video anomaly detection, where 
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anomalies are identified as deviations from normal patterns using reconstruction 
loss. Residual connections enhance model performance, effectively reconstructing 
normal frames with low cost while detecting irregularities as abnormal frames. 
Another study in (Luo et al., 2019) proposed a sparse coding-​inspired Deep Neu-
ral Network (DNN) for video anomaly detection, known as Temporally-​coherent 
Sparse Coding (TSC). TSC maintains frame similarity using a temporal coherence 
term optimized via the Sequential Iterative Soft-​Thresholding Algorithm (SIATA). 
The enhanced stacked Recurrent Neural Network Autoencoder (sRNN-​AE) model 
introduces data-​dependent similarity, reduced model depth for real-​time detec-
tion, and temporal pooling for efficiency. The study in (Kumar and Khari, 2023) 
considered a Residual Variational Autoencoder (RVAE) for unsupervised video 
anomaly detection, which captures complex patterns and minimizes reconstruction 
error through low-​dimensional latent encoding and decoding. The model incorpo-
rates a ConvLSTM layer for improved spatiotemporal learning and uses residual 
connections to address the vanishing gradient problem. Recently, in (Aslam and 
Kolekar, 2024), a deep multiplicative attention-​based autoencoder (DeMAAE) 
was introduced for video anomaly detection. DeMAAE applies a global attention 
mechanism at the decoder to enhance feature learning, leveraging an attention map 
created from encoder-​decoder hidden states to guide decoding via a context vector. 
In (Le and Kim, 2023), a spatial-​temporal network achieved 97.4% AUC on UCSD 
Ped2. A Multivariate Gaussian Fully Convolutional Adversarial Autoencoder in 
(Li and Chang, 2019) scored 91.6% AUC on UCSD Ped2. The spatiotemporal 3D 
Convolutional Auto-​Encoder (ST-​3DCAE) in (Hu et al., 2022a) achieved 85.3% on 
UCSD Ped2 and 75.8% on UCF-​Crime. OF-​ConvAE-​LSTM in (Duman and Erdem, 
2019) reached 92.9% on UCSD Ped2 and 89.5% on Avenue. Finally, (Mishra and 
Jabin, 2024 achieved 86.4% on UCSD Peds1 and 88.9% on Avenue using a deep 
autoencoder with regularity-​based thresholding.

While deep learning models have significantly advanced video anomaly de-
tection, statistical methods, particularly functional data analysis (FDA), remain 
underexplored in this area. FDA offers unique advantages by treating each frame’s 
reconstruction error as a continuous, multivariate function over time, enabling the 
capture of both temporal and spatial dependencies and allowing for a more effective 
distinction between typical fluctuations and true anomalies by analyzing the shape 
and magnitude of deviations (Dai and Genton, 2018). Despite these benefits, only 
a few studies have investigated statistical approaches in video anomaly detection. 
For example, Rousseeuw et al. (2018) introduced a measure of directional outly-
ingness specifically applied to image and video data, using a statistical method for 
anomaly detection based on directional outlyingness. However, this approach has 
only been validated on images and non-​crowded video sequences, emphasizing the 
need for further testing in more complex, crowded environments. Another statistical 
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approach for anomaly detection in high-​dimensional data is the Depthgram method 
by Alemán-​Gómez et al. (2022) designed for functional data visualization in fMRI. 
Depthgram uses depth-​based 2Drepresentations to identify outliers, variability, and 
sample composition, supporting the exploration of neuroscientific patterns across 
individuals and brain regions. However, it is limited to static images, such as fMRI 
data, and has not been explored for video applications.

This study explores video anomaly detection in crowded scenes within a Func-
tional Data Analysis framework, offering a statistical perspective to enhance the 
detection process. Many statistical video anomaly detection methods (Naji et al. 2022; 
Yang et al. 2025; R. Singh et al. 2023; Le and Kim 2023; Cao, Lu, and Zhang 2024; 
Park et al. 2022; Ristea et al. 2024; Hong et al. 2024; Liu et al. 2023) often rely on 
thresholds determined in a non-​automatic and non-​systematic manner, focusing pri-
marily on anomalies in the mean or variance of reconstructed residuals. To mitigate 
these limitations, this work explores the application of the Magnitude-​Shape (MS) 
Plot, a Multivariate Functional Data Visualization and Outlier Detection approach, 
for video anomaly detection (Dai and Genton, 2018). The MS-​Plot provides a sta-
tistically principled and interpretable framework by treating reconstruction errors 
as multivariate functional data. It effectively captures both magnitude (amplitude 
deviations) and shape (pattern deviations), allowing for the detection of subtle 
anomalies and complex patterns indicative of abnormal behavior. By simultaneously 
monitoring amplitude and shape deviations, this approach provides a comprehensive 
statistical methodology to analyze and understand reconstruction errors in video 
anomaly detection. In addition, the approach trains solely on normal data, making 
it effective in scenarios with scarcely labeled anomalies by learning typical patterns 
and identifying deviations during evaluation. To illustrate, this study investigates 
two reconstruction-​based models: a simple autoencoder and the advanced MAMA 
autoencoder (Hong et al., 2024). These models learn and reconstruct normal be-
havior from anomaly-​free datasets, producing low reconstruction errors for normal 
frames and significantly higher errors for anomalous frames during testing. The 
integration of the MS-​Plot enhances this approach by jointly analyzing magnitude 
and shape deviations, offering a comprehensive framework for anomaly detection. 
This approach was evaluated on two publicly available datasets, UCSD Ped2 and 
CUHK Avenue, demonstrating superior performance compared to traditional univar-
iate functional detectors, including Functional Boxplot (FBplot) (Sun and Genton, 
2011), Total Variation Depth with Modified Shape Similarity (TVDMSS), Extremal 
Depth (ED) (Narisetty and Nair, 2016), and Outliergram (OG) (Arribas-​Gil and 
Romo, 2014). Unlike these univariate approaches, which focus on either shape or 
mean deviations, MS-​Plot captures complex, multivariate outliers, proving more 
sensitive to both subtle and significant anomalies in video data. Also, the proposed 
approach surpassing state-​of-​the-​art techniques.
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MATERIALS AND METHODS

Problem Statement

Video anomaly detection aims to identify frames with abnormal behavior by 
learning normal patterns during training and detecting deviations during testing. 
Frame-​level detection evaluates each frame for anomalies, such as unexpected ob-
jects, irregular behaviors, or environmental changes, without relying on object-​ or 
scene-​based approaches. Let ​X​ denote a video consisting of multiple frames ​X  = ​​
{​​​X​ 1​​, ​X​ 2​​, … , ​X​ T​​​}​​​​, where ​T​ represents the total number of frames. Each frame ​​X​ t​​​ at 
time ​t​ is represented as:

​​X​ t​​  =  ​​{​​​p​ ij​​​(t)​  ∣  1  ≤  i  ≤  H,  1  ≤  j  ≤  W​}​​​,​� (1)

where ​H​ and ​W​ are the height and width of the frame, and ​​p​ ij​​​​(​​t​)​​​​ denotes the 
intensity of the pixel located at ​​​(​​i, j​)​​​​ in frame ​t​.

The goal is to develop a model ​f​ that assigns a binary label ​​y​ t​​​ to each frame ​​X​ t​​​ 
such that:

​​y​ t​​  =  f​​(​​​X​ t​​​)​​​ where  ​y​ t​​  ∈  ​​{​​0, 1​}​​​​� (2)

Here, ​​y​ t​​  =  0​ indicates a normal frame, while ​​y​ t​​  =  1​ indicates an anomalous 
frame. This detection is performed at the frame level.

Frame-​level anomaly detection in videos presents challenges such as diverse 
anomaly types and limited labeled data. Anomalies range from sudden lighting 
changes to unexpected behaviors, complicating model generalization. The scarcity 
of labeled data necessitates unsupervised or semi-​supervised methods focused on 
normal patterns. This study employs autoencoder models combined with the MS-​
Plot to enhance video anomaly detection.

MS-​Plot for Functional Data Outlier Detection

The MS-​Plot, introduced by Dai and Genton (Dai and Genton 2018), detects 
outliers in functional data by evaluating magnitude and shape deviations from a 
central region. Extending the concept of functional directional outlyingness, it mea-
sures both the extent and direction of deviations. This measure allows the MS-​Plot 
to effectively capture two components of outlyingness: magnitude (distance from 
the central region) and shape (direction of deviation), making it suitable for both 
univariate and multivariate functional data.
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• 	 Mean Directional Outlyingness (MO): This quantifies the average magnitude 
of a function’s deviation from the central region across its domain, effectively 
identifying anomalies in overall amplitude or intensity. For a function ​X​​(​​t​)​​​​ 
with distribution ​​F​ X​​​, it is defined as (Dai and Genton, 2018):

​MO​​(​​X, ​F​ X​​​)​​​  =  ​∫ 
I
​ ​​ O​​(​​X​(t)​, ​F​ X​(t)​​​​)​​​w​​(​​t​)​​​ dt,​� (3)

where ​O​​(​​X​(t)​, ​F​ X​(t)​​​​)​​​​ represents the directional outlyingness at each point ​t​ in the 
domain ​I​, and ​w​​(​​t​)​​​​ is a weight function.

• 	 Variation of Directional Outlyingness (VO): This measures the variability in 
directional outlyingness across the domain, capturing deviations in the shape 
or structure of the function. By assessing this variability, VO enables the 
detection of shape anomalies or irregular patterns within the data (Dai and 
Genton 2018).

​VO​​(​​X, ​F​ X​​​)​​​  =  ​∫ 
I
​ ​​  ∥  O​​(​​X​(t)​, ​F​ X​(t)​​​​)​​​ − MO​​(​​X, ​F​ X​​​)​​​​∥​​ 2​ w​​(​​t​)​​​ dt.​� (4)

Functional Directional Outlyingness (FO) quantifies the overall outlyingness of 
a function, defined as (Dai and Genton 2018):

​FO​​(​​X, ​F​ X​​​)​​​  =  ∥  MO​​(​​X, ​F​ X​​​)​​​​∥​​ 2​ + VO​​(​​X, ​F​ X​​​)​​​.​� (5)

In Equation (5), FO combines magnitude outlyingness ​∥  MO  ∥​, representing 
deviation extent, and shape outlyingness ​VO​, reflecting structural variability. This 
decomposition enhances the ability to quantify centrality and identify abnormal 
patterns in functional data.

The MS-​Plot technique classifies observations as normal or anomalous by applying 
a threshold to the FO measure, which combines magnitude and shape deviations. 
Dai and Genton (Dai and Genton, 2018) proposed calculating FO using MO and 
VO. Assuming normal data distribution and using random projection point-​wise 
depth, they compute functional directional outlyingness. The method utilizes the 
squared robust Mahalanobis distance (SRMD) for ​​​(​​MO, VO​)​​​​ T​​, where the covariance 
matrix is determined using the Minimum Covariance Determinant (MCD) algorithm 
(Rousseeuw and Driessen, 1999). The SRMD’s tail distribution is approximated 
with a Fisher’s F distribution (Hardin and Rocke, 2005), and curves with SRMD 
values exceeding the threshold are flagged as outliers.
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Autoencoder-​Based Video Anomaly Detection

An autoencoder is a neural network framework that learns to compress input 
data into a latent representation and then reconstruct it back to its original form 
(Bengio et al. 2013). This process is facilitated by two key components: an encoder, 
which reduces the data’s dimensionality, and a decoder, which restores it (Hinton 
and Salakhutdinov, 2006).

• 	 Encoder: transforms the input data into a compact latent space, preserving 
critical features and filtering out noise and unnecessary details.

• 	 Decoder: Reconstructs the input data from the latent representation, aiming 
to reduce the reconstruction error by aligning the output closely with the 
original input.

Let ​X​ represent an input frame. The encoder function ​E​ transforms ​X​ into a latent 
representation ​Z​, and the decoder function ​D​ reconstructs the original frame as ​​̂  X​​:

​Z  =  E​​(​​X​)​​​, ​̂  X​  =  D​​(​​Z​)​​​.​� (6)

During training, the autoencoder is optimized to minimize a reconstruction loss, 
commonly the Mean Squared Error (MSE) between the input ​X​ and its reconstruc-
tion ​​̂  X​​:

​L​​(​​X, ​̂  X​​)​​​  =  ​ 1 _ N ​ ​∑ 
i=1

​ 
N

 ​​ ​​(​​​X​ i​​ − ​​̂  X​​ i​​​)​​​​ 
2
​,​� (7)

where ​N​ is the total number of pixels in the frame.
Figure 1 presents a flowchart of an autoencoder for video anomaly detection. 

Trained solely on normal frames, the autoencoder minimizes reconstruction errors 
for normal patterns. Anomalous frames deviating from these patterns result in higher 
reconstruction errors, forming the basis for anomaly detection.

Figure 1. Basic autoencoder for video anomaly detection
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The process of using an autoencoder for video anomaly detection is summarized 
as follows.

1. 	 Training Phase: The autoencoder is trained on a dataset of normal video frames, 
optimizing it to reconstruct typical, expected frames.

2. 	 Testing Phase: For each test frame ​​X​ t​​​, the autoencoder reconstructs the frame 
as ​​​̂  X​​ t​​​ and computes the reconstruction error:

​​e​ t​​  =  ∥  ​X​ t​​ − ​​̂  X​​ t​​  ∥  ,​� (8)

where ​​e​ t​​​ denotes the overall reconstruction error for frame ​​X​ t​​​.

3. 	 Anomaly Detection: A frame is identified as an anomaly when the reconstruc-
tion error ​​e​ t​​​ surpasses a specified threshold ​τ​.

​​y​ t​​  =  ​​{​​​
1
​  

if  ​e​ t​​  >  τ
​  0​  otherwise.​​​� (9)

Here, ​​y​ t​​  =  1​ indicates an anomalous frame, while ​​y​ t​​  =  0​ indicates a normal frame.
Autoencoders effectively detect video anomalies by learning compact represen-

tations of normal patterns, highlighting subtle deviations through reconstruction 
errors (Sabokrouet al., 2016). Trained exclusively on normal data, they excel in 
unsupervised settings, making them suitable for applications like surveillance and 
traffic monitoring (Duong et al., 2023). Their ability to flag deviations without la-
beled anomalies is especially valuable in scenarios with limited anomaly data (Gong 
et al. 2019). Various enhancements have been proposed to improve their detection 
capabilities (Hasan et al. 2016; Zhao et al. 2017; Hong et al. 2024; Liu et al. 2023).

MS-​PLOT FOR VIDEO ANOMALY DETECTION 
WITH RECONSTRUCTION MODELS

This study introduces a framework that integrates the MS-​Plot with reconstruction-​
based models for anomaly detection. Residuals (reconstruction errors) generated 
by these models are treated as multivariate functional data and analyzed using the 
MS-​Plot to identify anomalies. Frame-​level anomaly detection involves learning 
normal behavior patterns, calculating reconstruction errors, and applying the MS-​
Plot for multivariate functional outlier analysis. This enhances detection accuracy 
and versatility, enabling the identification of diverse anomalies in video sequences. 
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For simplicity, the MS-​Plot framework is demonstrated with an autoencoder model, 
but it can be extended to other reconstruction-​based models.

This approach consists of three steps: training a reconstruction-​based model 
on anomaly-​free data to learn normal patterns, generating residuals by comparing 
input and reconstructed frames during testing, and analyzing these residuals with 
the MS-​Plot to detect anomalies based on magnitude and shape outlyingness. This 
integration of reconstruction learning and multivariate analysis ensures effective 
anomaly detection.

Training Phase -​ Learning Normal Behavior

During training, only normal frames are provided to the model. The model is 
typically an autoencoder comprising an encoder function ​E​ and a decoder function ​
D​. The model aims to reconstruct the input frame ​​X​ t​​​ as ​​​̂  X​​ t​​​:

​​​̂  X​​ t​​  =  D​​(​​E​(​X​ t​​)​​)​​​​� (10)

The autoencoder is trained to minimize a reconstruction loss function ​L​​(​​​X​ t​​, ​​̂  X​​ t​​​)​​​​, 
which measures the difference between the original frame ​​X​ t​​​ and the reconstructed 
frame ​​​̂  X​​ t​​​. A common choice for ​L​ is the mean squared error (MSE):

​L​​(​​​X​ t​​, ​​̂  X​​ t​​​)​​​  =  ​ 1 _ HW ​ ​∑ 
i=1

​ 
H

 ​​ ​∑ 
j=1

​ 
W

 ​​ ​​(​​​p​ ij​​​(t)​ − ​​ ˆ p ​​ ij​​​(t)​​)​​​​ 
2
​​� (11)

where ​​​ ˆ p ​​ ij​​​​(​​t​)​​​​ represents the intensity of the reconstructed pixel at location ​​​(​​i, j​)​​​​.

Testing Phase -​ Residual Generation and Anomaly Detection

In the testing phase, the model receives frames from unseen video sequences. 
For each frame ​​X​ t​​​, it computes the reconstruction ​​​̂  X​​ t​​​ and the corresponding recon-
struction error matrix:

​​E​ t​​  =  ​​{​​​e​ ij​​​(t)​  ∣  1  ≤  i  ≤  H,  1  ≤  j  ≤  W​}​​​​� (12)

where ​​e​ ij​​​​(​​t​)​​​  =  ​​|​​​p​ ij​​​(t)​ − ​​ ˆ p ​​ ij​​​(t)​​|​​​​ denotes the absolute difference between the original 
and reconstructed pixel intensities.

To enhance anomaly detection, the reconstruction error matrices ​​E​ t​​​ are treated 
as multivariate functional data. For each frame ​​X​ t​​​, the MS-​Plot calculates MO and 
VO to detect deviations from normal patterns. The directional outlyingness ​O​​(​​​E​ t​​



148

, F​)​​​​ quantifies the extent to which the error matrix ​​E​ t​​​ deviates from a reference 
distribution ​F​:

​MO​​(​​​E​ t​​, F​)​​​  =  ​∫ 
I
​ ​​ O​​(​​​E​ t​​, ​F​ ​E​ t​​

​​​)​​​ w​​(​​t​)​​​ dt, VO​​(​​​E​ t​​, F​)​​​  =  ​∫ 
I
​ ​​  ∥  O​​(​​​E​ t​​, ​F​ ​E​ t​​

​​​)​​​ − MO​​(​​​E​ t​​, F​)​​​​∥​​ 2​ w​​(​​t​)​​​ dt.​�  

The MS-​Plot visualizes ​​​|​​MO​|​​​​ against ​VO​ to distinguish normal from anomalous 
frames, with the relationship defined as:

​FO  =  ∥  MO ​∥​​ 2​ + VO.​� (14)

The MS-​Plot applies a threshold on functional outlyingness ​FO​ to classify each 
frame ​​X​ t​​​ as normal or anomalous. The decision rule is:

​​y​ t​​  =  ​​{​​​
1
​   

if FO​(​E​ t​​)​  >  ​τ​ FO​​
​   

0
​   

otherwise.
  ​​​� (15)

Algorithm 1 summarizes the steps for using the MS-​Plot to analyze residuals 
and detect frame-​level anomalies.

Algorithm 1 MS-​Plot framework for anomaly 
detection based on reconstruction residuals.

Require: Functional data (reconstruction error matrices) {​​E​ 1​​​, ​​E​ 2​​​, ..., ​​E​ n​​​}, Ref-
erence distribution ​​F​ E​​​, Threshold ​​τ​ FO​​​

Ensure: Anomaly detection result for each ​​E​ i​​​ (0: normal, 1: anomaly)

1: Compute the reference distribution ​​F​ E​​​​(​​t​)​​​​ (e.g., median function) at each 
time point ​t​
2: for each error matrix ​​E​ i​​​ do
3: Compute directional outlyingness ​O​​(​​​E​ t​​, ​F​ ​E​ t​​

​​​)​​​​ at each time point ​t​:

​O(​E​ t​​, ​F​ ​E​ t​​
​​ ) = (​E​ i​​(t ) − ​F​ E(t)​​ ) × Sign(​E​ i​​(t ) − ​F​ E(t)​​)​

4: Calculate Mean Directional Outlyingness (MO) for ​​E​ i​​​:

​MO​​(​​​E​ i​​​)​​​  =  ​ 1 _ T​ ​∑ 
t=1

​ 
T
 ​​ O​​(​​​E​ i​​​(t)​, ​F​ E​(​ t​​)

​​​)​​​​

5: Calculate Variation of Directional Outlyingness (VO) for ​​E​ i​​​:

​VO​​(​​​E​ i​​​)​​​  =  ​ 1 _ T​ ​∑ 
t=1

​ 
T
 ​​ O ​​(​​​E​ i​​​(t)​, ​F​ E​(​ t​​)

​​ − MO​(​E​ i​​)​​)​​​​ 
2
​​
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6: Calculate Functional Outlyingness (FO) for ​​E​ i​​​:

​FO​​(​​​E​ i​​​)​​​  =  ∥  MO​​(​​​E​ i​​​)​​​​∥​​ 2​ + VO​​(​​​E​ i​​​)​​​​

7: end for
8: Construct MS-​Plot: Plot |MO(​​E​ i​​​)| on the x-​axis and VO(​​E​ i​​​) on the y-​axis 
for each error matrix ​​E​ i​​​
9: Set Threshold and Detect Outliers:
10: for each error matrix ​​E​ i​​​ do
11: if FO(​​E​ i​​​) > ​​τ​ FO​​​ then
12: Classify ​​E​ i​​​ as anomaly (​​y​ i​​  =  1​)
13: else
14: Classify ​​E​ i​​​ as normal (​​y​ i​​  =  0​)
15: end if
16: end for
17: return Anomaly labels {​​y​ 1​​​, ​​y​ 2​​​, ..., ​​y​ n​​​} for all error matrices

Evaluation Metrics for Anomaly Detection in Videos

In video anomaly detection, evaluation metrics like True Positive Rate (TPR), False 
Positive Rate (FPR), Precision, F1 Score, and Accuracy are essential for assessing 
the effectiveness of identifying anomalies while minimizing false detections. These 
metrics quantify detection effectiveness by comparing model predictions against 
ground truth labels. The mathematical definitions of these metrics are summarized 
in Table 1, where ​TP​, ​FP​, ​TN​, and ​FN​ represent True Positives, False Positives, 
True Negatives, and False Negatives, respectively.

Table 1. Summary of evaluation metrics for video anomaly detection
Metric Equation

True Positive Rate (TPR) ​TPR  =  ​ TP _ TP + FN​​

False Positive Rate (FPR) ​FPR  =  ​ FP _ FP + TN​​

Precision ​Precision  =  ​ TP _ TP + FP​​

F1 Score ​F1  =  2 ⋅ ​ Precision ⋅ Recall  ________________  Precision + Recall​​

Accuracy
	 ​Accuracy  =  ​ TP + TN  __________________  TP + FP + TN + FN​​
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TPR measures the proportion of actual anomalies correctly identified, while FPR 
indicates the rate of normal frames misclassified as anomalies, a critical factor in 
reducing false alarms in video data. Precision evaluates the accuracy of predicted 
anomalies, reflecting the proportion of correctly identified anomalies among all 
flagged instances. Accuracy captures the overall proportion of correctly classified 
frames, encompassing both normal and anomalous ones. Finally, the F1-​score pro-
vides a balanced assessment by combining Precision and Recall, particularly useful 
in scenarios with class imbalance.

RESULTS AND DISCUSSION

Data Description

In this section, the investigated anomaly detection methods are tested on two 
widely-​used benchmark datasets: the UCSD Pedestrian (Ped2) dataset (Mahadevan 
et al. 2010) and the CUHK Avenue dataset (Lu et al. 2013), summarized in Table 2.

Table 2. Details of the UCSD Ped2 and CUHK avenue datasets
Dataset Total Frames Training Frames Testing Frames Resolution (pixels)

UCSD Ped2 4,560 2,550 2,010 360×240

CUHK Avenue 30,652 15,328 15,324 640×360

UCSD Ped2 dataset: The UCSD Ped2 dataset (Mahadevan et al. 2010) is a 
widely-​used benchmark for video anomaly detection, particularly in surveillance 
contexts. It captures video sequences of a pedestrian-​only walkway, where anomalies 
such as bicycles, skateboards, and vehicles disrupt typical pedestrian activity. The 
dataset is divided into a training set with 16 clips (2,550 frames) containing only 
normal pedestrian behavior and a testing set with 12 clips (2,010 frames) featuring 
both normal events and anomalies. This structure allows models to learn typical 
patterns during training and evaluate their ability to detect anomalies. Figure 2 
illustrates examples from the dataset, highlighting various anomalies, including 
cyclists, vehicles, and skaters, which challenge models to accurately differentiate 
normal and abnormal events.
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Figure 2. Sample frames from the UCSD Ped2 dataset showing anomalies: (a) 
Cyclist, (b) Van and cyclist, (c) Cyclist and skater, and (d) two cyclists. Red boxes 
highlight anomalous regions

The UCSD Ped2 dataset is recorded at a resolution of 240×360 pixels with a frame 
rate of 10 frames per second (fps). It includes frame-​ and pixel-​level annotations 
in the test set, marking anomalies, anomalies timing and location, and facilitating 
detailed performance evaluation. Frame-​level annotations assess a model’s ability 
to detect anomalies within a frame, while pixel-​level annotations enable precise 
localization of anomalous events. Its controlled environment and clear distinction 
between normal and anomalous events make it a widely accepted standard for eval-
uating video anomaly detection models. This dataset is essential for benchmarking 
new methods, assessing model accuracy in anomaly detection, and comparing 
performance across established metrics. Table 3 outlines the anomalous frames and 
total video lengths in the UCSD Ped2 dataset, focusing on videos with both normal 
and anomalous events for MS-​Plot analysis.
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Table 3. Anomalous frame ranges and total frame count for each test video in the 
UCSD Ped2 dataset

Test Video Anomalous Frame Range Total Frames

Video 1 61–180 180

Video 2 95–180 180

Video 3 1–146 150

Video 4 31–180 180

Video 5 1–129 150

Video 6 1–159 180

Video 7 46–180 180

Video 8 1–180 180

Video 9 1–120 120

Video 10 1–150 150

Video 11 1–180 180

Video 12 88–180 180

CUHK Avenue dataset: The CUHK Avenue dataset (Lu et al. 2013) is a widely 
used benchmark for video anomaly detection. Captured by a fixed camera overlook-
ing an avenue at the Chinese University of Hong Kong, it offers consistent scene 
composition, varied lighting conditions, and interactions among multiple pedestrians. 
The dataset contains 37 video sequences, recorded at 25 frames per second (fps) 
with a resolution of 640 × 360 pixels, comprising approximately 30,652 frames. It 
includes 16 training videos featuring normal pedestrian activities, such as walking 
and entering or exiting the scene, and 21 testing videos containing both normal and 
abnormal events. Abnormal behaviors include running, throwing objects, loitering, 
walking in unusual directions, and abandoning items. Figure 3 presents examples 
from the CUHK Avenue dataset, showcasing a range of anomalies, such as running, 
walking in unconventional directions, and loitering.

Figure 3. Sample frames from the CUHK Avenue dataset showing anomalies: (a) 
running, (b) walking in unconventional directions, and (c) loitering
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Detection Results Using UCSD2 Ped2 Dataset

In the first experiment, the potential of the MS-​Plot technique as an effective de-
tection framework is demonstrated by employing three distinct reconstruction-​based 
models: a simple autoencoder and the MAMA-​based model (Hong et al. 2024). Each 
model is trained exclusively on anomaly-​free data to establish a baseline representa-
tion of normal behavior. The autoencoder architecture used in this study features an 
encoder with three convolutional blocks, each comprising a 3×3 Conv2D layer with 
ReLU activation followed by a 2×2 MaxPooling layer. The encoder’s convolutional 
layers include 32, 16, and 8 filters. The decoder mirrors this structure, using 3×3 
Conv2D layers with ReLU activation and 2×2 upsampling, concluding with a 3×3 
Conv2D layer (three filters) and a Sigmoid activation function for output generation. 
Input images are resized to 64×64 pixels, normalized to [0, 1], and processed in 
batches of 32. The model is trained for 50 epochs using the Adam optimizer and a 
Mean Squared Error (MSE) loss function to measure reconstruction error.

The second approach combines the MAMA reconstruction-​based model (Hong 
et al. 2024) with the MS-​Plot for anomaly detection. The MAMA model operates 
in two stages: the F2LM generator processes video frames through three parallel 
streams—raw frames, semantic labels (DeepLabv3), and motion data (FlowNet2)—
using a Feature Transform Convolutional (FTC) block to generate high-​quality 
reconstructions for normal events and degraded outputs for anomalies. In the second 
stage, the Destroyer network enhances these distinctions by suppressing low-​quality 
regions in the F2LM output. To enhance temporal context and motion evolution, 
the model processes five consecutive frames at each time point. The residuals gen-
erated by the two considered reconstruction-​based models are analyzed using the 
MS-​Plot, which takes the residual matrix as input and evaluates anomalies through 
a multidimensional assessment of magnitude and shape outlyingness. By treating 
the residual matrix as functional data, the MS-​Plot detects subtle and complex 
anomalies, leveraging its nuanced analysis of deviations and the models’ ability 
to handle diverse normal patterns, thereby improving sensitivity and accuracy in 
video anomaly detection.

Tables 4 and 5 summarize the detection performance of the investigated models 
on the UCSD Ped2 testing set, using the MS-​Plot to analyze reconstruction errors. 
Table 4 highlights the results for the AE-​MS-​Plot method, demonstrating varying 
performance across the testing videos. The method achieves perfect TPR and 
AUC scores for certain videos (e.g., Videos 9–11), reflecting accurate detection 
of anomalies. However, its performance falters in scenarios like Video 8, where 
cyclists and skaters move in different directions, leading to notably low TPR and 
Accuracy scores. Similarly, Videos 1 and 5, where a bike appears in crowded areas, 
show higher false positive rates, indicating difficulty in distinguishing anomalies 
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in complex scenes. These results suggest that while the AE-​MS-​Plot method can 
effectively detect clear deviations, it faces challenges in scenarios involving subtle 
anomalies or overlapping movements, emphasizing the need for models capable of 
handling diverse anomaly patterns.

Table 4. Detection performance of AE-​MS-​plot on UCSD Ped2 test videos
Video TPR FPR Accuracy Precision F1-​score AUC

1 100.00 46.67 84.44 81.08 89.55 78.09

2 18.60 0.00 61.11 100 31.37 77.53

3 95.89 0.00 96.00 100 97.90 98.18

4 95.33 0.00 96.11 100 97.61 97.90

5 100.00 33.33 95.33 94.85 97.36 84.66

6 98.74 9.52 97.78 98.74 98.74 95.06

7 63.70 0.00 72.78 100 77.83 83.13

8 23.33 0.00 23.33 100 37.84 63.41

9 100 0.00 100 100 100 100

10 100 0.00 100 100 100 100

11 100 0.00 100 100 100 100

12 98.92 0.00 99.44 100 99.46 99.52

Table 5. Detection performance of MAMA-​MS-​plot on UCSD Ped2 test videos
Dataset TPR FPR Accuracy Precision F1-​score AUC

1 97.50 1.79 97.73 99.15 98.32 98.08

2 97.67 1.11 98.30 98.82 98.25 98.43

3 98.59 0.00 98.63 100.00 99.29 99.38

4 98.00 0.00 98.30 100.00 98.99 99.24

5 97.60 4.76 97.26 99.19 98.39 96.60

6 97.42 4.76 97.16 99.34 98.37 96.53

7 97.71 0.00 98.30 100.00 98.84 98.97

8 98.86 0.00 98.86 100.00 99.43 99.66

9 97.41 0.00 97.41 100.00 98.69 98.87

10 98.63 0.00 98.63 100.00 99.31 99.47

11 98.30 0.00 98.30 100.00 99.14 99.32

12 95.70 1.20 97.16 98.89 97.27 97.40
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The results in Table 5 demonstrate the superior performance of the MAMA-​
MS-​Plot method in detecting different types of anomaly in crowded videos within 
the UCSD Ped2 dataset. The method consistently achieves high TPR, Precision, 
F1-​scores, and AUC values across most videos, demonstrating its capability to 
identify both clear and subtle anomalies effectively. Compared to the AE-​MS-​Plot 
method, the MAMA-​MS-​Plot provides enhanced accuracy and maintains low false 
positive rates, emphasizing its effectiveness in handling diverse testing conditions 
and crowded environments. This indicates that the sophisticated reconstruction 
mechanisms in these models generate residuals sensitive enough for the MS-​Plot 
to detect subtle deviations that a simpler autoencoder might miss. Overall, the MS-​
Plot framework enhances anomaly detection by analyzing magnitude and shape 
deviations in residuals over time, capturing subtle anomalies, and reducing false 
positives in complex scenarios.

Comparison of MS-​Plot and Univariate 
Functional Anomaly Detection Methods

The second experiment compares the MS-​Plot-​based approach with established 
univariate functional anomaly detection methods, including Functional Boxplot 
(FBPlot) (Sun and Genton, 2011), Total Variation Depth with Modified Shape 
Similarity (TVDMSS) (Huang and Sun, 2019), Extremal Depth (ED) (Narisetty 
and Nair, 2016), and Outliergram (OG) (Arribas-​Gil and Romo, 2014). To apply 
these methods, residual matrices from the autoencoder models were reshaped into 
one-​dimensional vectors. A brief overview of each method is provided for context 
before comparing their performance with the MS-​Plot.

• 	 The FBPlot, introduced by Sun and Genton (Sun and Genton, 2011), extends 
the traditional boxplot for functional data by using depth measures, such as 
modified band depth (MBD), to detect outliers. It centers on the median curve 
and constructs an envelope representing the central 50% of data, identifying 
outliers as curves that deviate beyond 1.5 times the interquartile range.

• 	 The TVDMSS method (Huang and Sun, 2019), proposed by Huang and Sun, 
identifies functional outliers using total variation depth (TVD) for magni-
tude deviations and modified shape similarity (MSS) for shape anomalies. 
Thresholds on TVD and MSS scores allow detection of outliers in magni-
tude, shape, or both.

• 	 The ED (Narisetty and Nair, 2016), proposed by Narisetty and Nair, ranks 
functional data based on “extremeness” to detect both boundary and central 
outliers. Curves with ED values below a threshold are flagged as outliers.
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• 	 The OG (Arribas-​Gil and Romo 2014), introduced by Arribas-​Gil and Romo, 
identifies shape outliers in functional data using Modified Band Depth 
(MBD) for centrality and Half-​Region Depth (HRD) for spread. Outliers are 
visualized as points deviating from the main cluster in an MBD-​HRD plot, 
emphasizing unusual shapes.

Table 6 presents the comparative results of the proposed MS-​Plot-​based approach-
es (AE-​MS-​Plot and MAMA-​MS-​Plot) against traditional univariate functional 
anomaly detection methods (FBPlot, TVDMSS, ED, and OG) on the UCSD Ped2 
dataset. The analysis highlights notable differences in performance, with MS-​Plot-​
based methods, particularly MAMA-​MS-​Plot, demonstrating superior results across 
all evaluated metrics. These findings underscore the effectiveness of MS-​Plot in 
capturing both magnitude and shape deviations, offering a more comprehensive 
detection framework compared to univariate techniques. For example, MAMA-​MS-​
Plot achieves an AUC of 98.74%, along with high TPR and precision values (97.90% 
and 99.68%, respectively), demonstrating strong detection accuracy with a minimal 
false positive rate (FPR of 1.45%). In comparison, AE-​MS-​Plot achieves a moderate 
AUC of 88.3%, with a TPR of 82.46%, precision of 94.11%, and an FPR of 23.48%. 
These results highlight the MS-​Plot’s effectiveness, with MAMA-​MS-​Plot excelling 
in accuracy and sensitivity. In contrast, univariate methods applied to autoencoder 
residuals perform poorly compared to MS-​Plot-​based approaches (Table 6). For 
instance, AE-​FBPlot and AE-​TVDMSS achieve an AUC of 52.41% with a TPR of 
27.19%, reflecting low sensitivity to anomalies. Even the best univariate method, 
AE-​ED, attains an AUC of 60.16%, far below the performance of MS-​Plot-​based 
techniques. Additionally, ED and OG methods applied to vectorized residuals show 
inconsistent TPR and FPR values, further highlighting their limitations.

Table 6. Comparison of average performance: MS-​plot vs. univariate methods on 
UCSD Ped2 test videos

Approach TPR FPR Accuracy Precision F1-​score AUC

AE-​MS-​Plot 82.46 23.48 81.39 94.11 87.90 88.3

MAMA-​MS-​Plot 97.90 1.45 98.01 99.68 98.78 98.74

AE-​FBPlot 27.19 22.38 36.39 84.48 41.14 52.41

AE-​TVDMSS 27.19 22.38 36.39 84.48 41.14 52.41

AE-​ED 48.40 28.07 52.50 89.09 62.72 60.16

AE-​OG 0.00 0.00 17.60 0.00 0.00 50.00

MAMA-​FBPlot 3.09 0.00 19.98 100.00 12.76 51.54
continued on following page
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Approach TPR FPR Accuracy Precision F1-​score AUC

MAMA-​TVDMSS 3.77 0.00 20.54 100.00 15.14 51.88

MAMA-​ED 4.69 1.75 21.00 92.68 8.93 51.47

MAMA-​OG 0.00 0.00 17.60 0.00 0.00 50.00

DMAD-​FBPlot 0.19 0.00 17.58 100.00 0.37 50.09

DMAD-​TVDMSS 0.19 0.00 17.58 100.00 0.37 50.09

DMAD-​ED 11.05 17.84 23.45 74.58 19.25 46.61

DMAD-​OG 49.81 55.56 48.88 80.94 61.67 47.13

This comparison reveals the superiority of MS-​Plot-​based methods over uni-
variate approaches. By analyzing both magnitude and shape outlyingness, MS-​Plot 
effectively detects anomalies in functional residuals data. Unlike univariate methods 
like FBPlot and ED, which rely on single-​dimensional measures, MS-​Plot captures 
nuanced deviations in reconstruction errors, critical for frame-​level video anomaly 
detection. Its ability to handle variability in residuals and assess both the level and 
direction of outlyingness enables the detection of subtle shifts missed by univariate 
methods, improving overall detection accuracy.

MS-​Plot Visualization Results based on UCSD Ped2 Testing Set

This study utilizes the UCSD Ped2 testing set to demonstrate the MS-​Plot’s 
ability to visually represent frame-​level anomaly detection, as illustrated in Figure 
4. The 3D MS-​Plot, with (​​​|​​MO​|​​​​) on the x-​axis, (​VO​) on the y-​axis, and frame num-
bers on the z-​axis, highlights anomalies (red dots) and normal frames (blue dots) 
using residuals from the MAMA-​based autoencoder. By excluding videos with 
solely anomalous frames (Table 3), the analysis highlights the MS-​Plot’s ability 
to distinguish anomalies from normal behavior in mixed-​event scenarios and track 
their progression over time.

Figure 4 illustrates the MS-​Plot’s capability to distinguish normal frames (blue 
points) from anomalies (red points) using magnitude outlyingness (​​​|​​MO​|​​​​) and shape 
outlyingness (​VO​). Normal frames cluster at lower ​​​|​​MO​|​​​​ and ​VO​ values, while 
anomalies show higher values, often forming distinct clusters. Elevated ​VO​ values 
highlight unusual shape variations, such as those caused by cyclists or skaters. The 
z-​axis, representing frame numbers, tracks the temporal progression of anomalies, 
effectively visualizing their persistence and separation from normal behavior.

Table 6. Continued
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Figure 4. 3D MS-​plot representation for videos in the UCSD Ped2 testing set
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MS-​Plot Results Based on CUHK Avenue Data

We extend the evaluation of the two investigated models, the AE-​MS-​Plot and 
MAMA-​MS-​Plot approaches, to the CUHK Avenue dataset to further analyze 
their performance. The CUHK Avenue dataset is particularly challenging due to 
its diverse set of anomalous behaviors, such as running, loitering, and abandoning 
objects, captured in a dynamic and semi-​structured environment. By examining 
the performance of the MS-​Plot-​based methods on individual videos, the analysis 
provides insights into the robustness and sensitivity of these approaches to varying 
anomaly patterns and complexities within the dataset. Following the same protocol 
as the UCSD Ped2 dataset, both models are trained exclusively on anomaly-​free 
data to learn typical behavioral patterns and subsequently applied to the test set for 
anomaly detection. This methodology ensures that the models generalize effectively 
from normal data without prior exposure to anomalous events. The results from 
univariate functional detectors on the CUHK dataset were excluded due to their poor 
performance. The performance of the AE-​MS-​Plot and MAMA-​MS-​Plot models 
on the CUHK Avenue dataset is detailed in Tables 7 and 8. From Tables 7, the AE-​
MS-​Plot performs well on simpler anomalies (e.g., Videos 1, 4, and 12 with AUC > 
97%) but struggles with complex or predominantly anomalous frames (e.g., Videos 
3, 10, and 19 with AUC of 50%), highlighting its limitations in handling diverse 
scenarios. The unsatisfactory AE-​based results may stem from dataset imbalances, 
particularly in CUHK Avenue, where the dominance of normal frames amplifies the 
impact of false negatives. Moreover, frames containing partial abnormal events, such 
as a small portion of a bike or an object at the start of a video, further complicate 
detection, revealing the limitations of the AE-​based approach.

Table 7. Performance of AE-​MS-​plot on CUHK test videos
Video TPR FPR Accuracy Precision F1-​score AUC

1 94.90 0.00 98.40 100.00 97.38 97.70

2 40.29 10.01 84.27 34.36 37.09 65.40

3 100.00 100.00 9.35 9.35 17.10 50.00

4 94.62 0.00 99.47 100.00 97.24 97.50

5 92.14 0.00 97.51 100.00 95.91 96.30

6 91.92 0.00 97.27 100.00 95.79 96.20

7 67.62 0.00 94.35 100.00 80.68 84.00

8 100.00 0.00 100.00 100.00 100.00 100.00

9 15.92 0.00 76.11 100.00 27.46 58.20
continued on following page
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Video TPR FPR Accuracy Precision F1-​score AUC

10 100.00 100.00 19.21 19.21 32.23 50.00

11 100.00 0.00 100.00 100.00 100.00 100.00

12 100.00 0.00 100.00 100.00 100.00 100.00

13 92.59 0.00 98.90 100.00 96.15 96.50

14 72.60 0.00 96.03 100.00 84.13 86.50

15 84.44 20.04 80.36 29.46 43.68 82.40

16 91.92 12.07 88.47 54.17 68.16 90.10

17 79.61 0.00 82.74 100.00 88.65 90.00

18 83.02 0.00 84.54 100.00 90.72 91.70

19 100.00 100.00 53.88 53.88 70.03 50.00

20 44.06 0.00 58.15 100.00 61.17 72.20

21 64.15 10.00 71.23 94.44 76.40 77.30

The MAMA-​MS-​Plot performs well on the CUHK Avenue dataset, achieving 
high AUC values above 95% in videos like 1, 4, 8, 10, and 13 (Table 8). However, 
it faces challenges in videos with complex anomalies, such as 9 and 18, where AUC 
scores drop but remain above 88%. These results indicate the method’s overall re-
liability while highlighting areas for potential improvement in detecting anomalies 
in highly skewed scenarios.

Table 8. Performance of MAMA-​MS-​plot on CUHK test videos
Video TPR FPR Accuracy Precision F1-​score AUC

1 84.92 3.15 93.11 92.51 88.55 91.21

2 84.89 3.18 95.45 77.63 81.10 91.18

3 95.35 3.36 96.52 74.55 83.67 96.32

4 93.55 1.65 97.88 86.14 89.69 96.27

5 82.70 1.02 93.82 97.41 89.46 91.16

6 89.15 1.18 95.55 97.47 93.12 94.30

7 80.95 1.01 95.85 94.44 87.18 90.29

8 90.00 0.00 96.97 100.00 94.74 95.32

9 76.88 0.72 92.92 97.71 86.05 88.40

10 93.79 0.30 98.57 98.69 96.18 97.07

11 81.42 0.00 92.75 100.00 89.76 91.03

12 79.92 0.79 95.43 96.14 87.28 89.89

Table 7. Continued

continued on following page
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Video TPR FPR Accuracy Precision F1-​score AUC

13 95.06 0.00 99.27 100.00 97.47 97.85

14 90.41 2.09 96.83 88.00 89.19 94.48

15 96.67 2.75 97.19 77.68 86.14 97.28

16 91.92 1.25 97.83 91.92 91.92 95.65

17 77.93 0.00 81.32 100.00 87.60 89.29

18 78.49 0.00 80.41 100.00 87.95 89.57

19 80.30 1.77 88.57 98.15 88.33 89.59

20 78.71 0.00 84.07 100.00 88.09 89.68

21 79.25 0.00 84.93 100.00 88.42 89.94

The overall AUC results show an improvement with the MAMA-​MS-​Plot (91.43%) 
over the AE-​MS-​Plot (81.40%), demonstrating enhanced anomaly detection perfor-
mance through its advanced residual analysis combined with the MS-​Plot framework.

Comparison with SOTA Methods

Table 9 provides an overall comparison of AUC scores for the proposed MS-​Plot-​
based approaches and state-​of-​the-​art (SOTA) methods on the UCSD Ped2 dataset. 
The MAMA-​MS-​Plot achieves an impressive AUC of 98.74%, while the AE-​MS-​Plot 
records 88.30%, showcasing the overall effectiveness of the MS-​Plot framework in 
accurately identifying video anomalies. Specifically, compared to other detection 
methods, the MAMA-​MS-​Plot demonstrated the highest performance, achieving 
the best AUC score among the evaluated approaches.

Table 9. Comparison of AUC (%) with SOTA methods on the UCSD Ped2 dataset
Method AUC (%)

MPPCA (Kim and Grauman, 2009) 77.00

Motion-​appearance model (Zhang et al., 2016) 90.00

Spatial Temporal CNN (Zhou et al., 2016) 86.00

Conv-​AE (Hasan et al., 2016) 90.00

AMDN (Xu et al., 2015) 90.80

GMFC-​VAE (Fan et al., 2020) 92.20

StackRNN (Luo et al., 2017a) 92.20

MGFC-​AAE (Li and Chang, 2019) 91.60

Table 8. Continued

continued on following page
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Method AUC (%)

ST-​CaAE (Li et al., 2020) 92.90

MemAE (Gong et al. 2019) 94.10

DAW (Wang et al. 2018) 96.40

MPN (Lv et al. 2021) 96.90

ConvLSTM (Luo et al., 2017b) 88.10

Spatiotemporal AE (STAE) (Zhao et al., 2017) 91.20

Conv2D (Hasan et al., 2016) 90.00

TMAE (J. Hu et al., 2022) 94.10

MAMC (Ning et al., 2024) 96.70

Cascade Reconstruction (Zhong et al., 2022) 97.70

MAMA (Hong et al., 2024) 98.20

AE-​MS-​Plot 88.30

MAMA-​MS-​Plot 98.74

The MAMA-​MS-​Plot method demonstrates improved performance over the 
original MAMA-​based approach, achieving an AUC of 98.74% compared to 98.20%. 
This improvement highlights the benefits of using the MS-​Plot framework for anom-
aly detection, particularly in its ability to enhance the interpretability and precision 
of detection outcomes. In the original MAMA model, anomaly detection is based 
on empirically determined thresholds primarily based on abnormal changes in the 
magnitude of residuals. These thresholds, while functional, lack a systematic foun-
dation, which can lead to inconsistencies when addressing diverse anomaly patterns 
or capturing more nuanced deviations in behavior. The integration of the MS-​Plot 
framework addresses this limitation by treating the residuals of the MAMA model 
as multivariate functional data. The MS plot evaluates outlyingness (amplitude 
deviations) and shape (pattern deviations), providing a multidimensional analysis 
of residual patterns. This capability is particularly beneficial in video anomaly 
detection, where anomalies often exhibit subtle or complex deviations that may 
not be effectively captured by simpler thresholding techniques. Using the MS-​Plot 
framework, the MAMA-​MS-​Plot approach offers a statistically principled method 
to analyze residuals, enhancing the consistency and reliability of anomaly detection. 
The framework’s capacity to capture both amplitude and shape deviations allows for 
a more comprehensive understanding of anomalies, ultimately improving detection 
performance in complex and dynamic video environments.

We compare the proposed MS-​Plot-​based methods with several state-​of-​the-​art 
anomaly detection techniques in the CUHK Avenue dataset, as detailed in Table 

Table 9. Continued
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10. The MAMA-​MS-​Plot approach achieves an AUC of 91.43%, demonstrating its 
strong competitiveness among SOTA methods. In particular, the previous highest 
reported AUC was 91.30%, achieved by SD-​MAE (Ristea et al. 2024). The MAMA-​
MS-​Plot exceeds this by a small but meaningful margin of 0.13%, setting a new 
benchmark for anomaly detection performance in this data set.

Table 10. Comparison of AUC (%) with SOTA methods on the CUHK avenue dataset
Method AUC (%)

Unmasking (Tudor Ionescu et al., 2017) 80.60

StackRNN (Luo et al., 2017a) 81.70

MemAE (Gong et al., 2019) 83.3

FastAno (Park et al., 2022) 85.30

STemGAN (Singh et al., 2023a) 86.00

EVAL (Singh et al., 2023b) 86.02

MESDnet (Fang et al., 2020) 86.3

Any-​Shot Sequential (Doshi and Yilmaz, 2020) 86.40

AMMC-​Net (Cai et al., 2021) 86.60

ASTNet (Le and Kim, 2023) 86.70

Context Pre (D. Li et al., 2022) 87.10

Learning not to reconstruct (Astrid et al., 2021) 87.10

Siamese Net (Ramachandra et al., 2020) 87.20

Object-​centric AE (Ionescu et al., 2019) 87.40

AKD-​VAD (Croitoru et al., 2022) 88.30

AnomalyRuler (Yang et al., 2025) 89.70

Two-​stream (Cao et al., 2024) 90.80

MAMA (Hong et al., 2024) 91.20

SD-​MAE (Ristea et al., 2024) 91.30

AE-​MS-​Plot 81.40

MAMA-​MS-​Plot 91.43

This improvement, while incremental, underscores the value of integrating 
the MS-​Plot framework, which provides a systematic and statistically principled 
approach to anomaly detection. By treating residuals as multivariate functional 
data, the MAMA-​MS-​Plot captures both magnitude and shape deviations, enabling 
more precise differentiation between normal and anomalous frames. In contrast, 
traditional methods often rely on empirically determined thresholds or univariate 
analyses, which may miss subtle or multidimensional patterns indicative of anom-
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alies. The MS-​Plot’s ability to enhance the performance of already strong models 
like MAMA highlights its potential as a generalizable and effective addition to 
video anomaly detection pipelines. This advantage is particularly significant given 
the challenging nature of the CUHK Avenue dataset, which features diverse and 
complex anomalous behaviors.

CONCLUSION

This study demonstrates the efficacy of the Magnitude-​Shape (MS) Plot frame-
work for video anomaly detection, combining statistical functional data analysis 
with reconstruction-​based models. By treating reconstruction errors as multivar-
iate functional data, the MS-​Plot captures both magnitude and shape deviations, 
enabling accurate identification of anomalies in complex, crowded video scenes. 
The integration of autoencoders with the MS-​Plot enhances anomaly detection by 
leveraging their capacity to model normal behavior and identify deviations with 
statistical rigor. Experimental results on benchmark datasets, including UCSD 
Ped2 and CUHK Avenue, highlight the advantages of the proposed framework 
over traditional univariate functional detectors and several state-​of-​the-​art meth-
ods. Specifically, the MAMA-​MS-​Plot approach achieves consistently high AUC 
scores, showcasing its capability to generalize across diverse scenarios and detect 
both subtle and pronounced anomalies effectively.

The findings emphasize the potential of MS-​Plot-​based frameworks to address 
the challenges of video anomaly detection, such as the variability of anomalies 
and limited labeled data. An important direction for future work is to focus on 
developing unsupervised and robust statistical methods that do not rely on anomaly-​
free training data. Such methods would further enhance the practicality of video 
anomaly detection by eliminating the dependence on curated normal datasets and 
addressing the inherent challenges of real-​world applications, such as data scarcity 
and variability in anomaly types.
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