Large-Scale Spatial Data Science with ExaGeoStat

Marc G. Genton

In collaboration with S. Abdulah, Y. Sun, H. Ltaief, D. Keyes

Spatio-Temporal Statistics and Data Science (stsds.kaust.edu.sa) Statistics Program (stat.kaust.edu.sa) King Abdullah University of Science and Technology

August 5, 2022

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

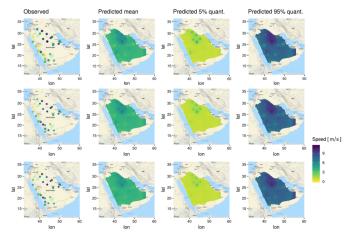
Large-Scale Spatial Data Science with ExaGeoStat

Spatial Statistics Overview

2 / 72

Spatial Data Example

Wind speed (hourly) at 28 stations in Saudi Arabia in June 2010



Source: Lenzi, A., and Genton, M. G. (2020), Spatio-temporal probabilistic wind vector forecasting over Saudi Arabia, *Annals of Applied Statistics*, 14, 1359-1378.

Large-Scale Spatial Data Science with ExaGeoStat

https://github.com/ecrc/exageostat

Matérn Covariance Function

We consider mean-zero Gaussian random fields with Matérn covariance

The popular parameterization of Matérn covariance function:

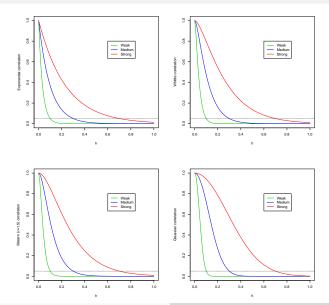
$$\operatorname{cov}\{Z(\boldsymbol{s}_{i}), Z(\boldsymbol{s}_{j})\} = \sigma^{2} \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\|\boldsymbol{s}_{i}-\boldsymbol{s}_{j}\|}{\beta}\right)^{\nu} K_{\nu}\left(\frac{\|\boldsymbol{s}_{i}-\boldsymbol{s}_{j}\|}{\beta}\right) + \tau^{2} \mathbb{1}_{\{i=j\}}$$

where $K_{\nu}(\cdot)$ is the modified Bessel function of the second kind of order ν , $\Gamma(\cdot)$ is the Gamma function, and $\mathbb{1}$ is the indicator function

The four parameters determining the covariance structure are: the partial sill σ^2 , range $\beta > 0$, smoothness $\nu > 0$, and nugget τ^2 The effective range is the distance at which the correlation function reaches a small value, e.g. 5%

```
On the unit square, one can say the dependence is weak / medium / strong if the effective range is for example 0.1 / 0.3 / 0.7
```

Plots of Matérn Covariance Functions

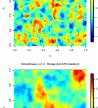


Large-Scale Spatial Data Science with ExaGeoStat

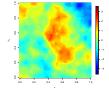
Simulated Gaussian Random Fields using Matérn Range Bu0.025 (weak)

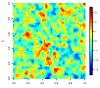
moothness y=0.5 Range 5=0.100 (medium)

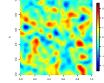




Smoothness v=1.0 Range 6=0.175 (strong)







othness very Range BuQ.058 (weak)

Smoothness vs1.5 Rance 8x0.063 (medium)

Smoothness v=1.5 Range (si0.148 (strong)

https://github.com/ecrc/exageostat

Covariance Parameter Estimation with Likelihoods

For simplicity, we focus on zero-mean stationary Gaussian random fields The log-likelihood for n locations:

$$\ell(\boldsymbol{ heta}) = -rac{n}{2}\log(2\pi) - rac{1}{2}\log|\boldsymbol{\Sigma}(\boldsymbol{ heta})| - rac{1}{2}\boldsymbol{Z}^{ op}\boldsymbol{\Sigma}(\boldsymbol{ heta})^{-1}\boldsymbol{Z}$$

where

4

$$\mathbf{Z} = \begin{pmatrix} Z(\mathbf{s}_1) \\ \vdots \\ Z(\mathbf{s}_n) \end{pmatrix}, \mathbf{\Sigma}(\boldsymbol{\theta}) = \begin{pmatrix} C(\mathbf{s}_1, \mathbf{s}_1; \boldsymbol{\theta}) & \dots & C(\mathbf{s}_1, \mathbf{s}_n; \boldsymbol{\theta}) \\ \vdots & \ddots & \vdots \\ C(\mathbf{s}_n, \mathbf{s}_1; \boldsymbol{\theta}) & \dots & C(\mathbf{s}_n, \mathbf{s}_n; \boldsymbol{\theta}) \end{pmatrix}$$

- Log determinant and linear solver require a Cholesky factorization of the given covariance matrix $\Sigma(\theta)$
- Cholesky factorization requires $O(n^3)$ floating point operations and $O(n^2)$ memory

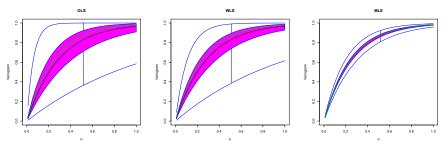
Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimator

$$egin{array}{rcl} \widehat{oldsymbol{ heta}} &=& rgmax\,\ell(oldsymbol{ heta}) \ &=& rgmin\{\log|oldsymbol{\Sigma}(oldsymbol{ heta})|+oldsymbol{Z}^{ op}oldsymbol{\Sigma}(oldsymbol{ heta})|+oldsymbol{Z}^{ op}oldsymbol{\Sigma}(oldsymbol{ heta})|^{-1}oldsymbol{Z}\} \end{array}$$

Simulated Data Example

- Exponential variogram: $2\gamma(h) = 1 \exp(-h/\theta)$ with $\theta = 0.25$
- Mean-zero GP generated at 400 random locations in unit square
- Estimate θ by OLS, WLS, MLE with 1000 replicates
- Functional boxplots (Sun and Genton, 2011)
- Note: no outlier detection (the factor is set to be large in order to see the variability better)
- More in Yan and Genton (2018)



Prediction

For Gaussian random fields, kriging coincides with the conditional mean

$$\begin{pmatrix} \mathbf{Z} \\ Z(\mathbf{s}_0) \end{pmatrix} \sim N_{n+1} \begin{pmatrix} \mathbf{0}, \begin{pmatrix} \mathbf{\Sigma}(\theta) & \mathbf{k}(\theta) \\ \mathbf{k}(\theta)^{\top} & C(\mathbf{s}_0, \mathbf{s}_0; \theta) \end{pmatrix} \end{pmatrix}$$

where $\boldsymbol{k}(\boldsymbol{\theta}) = (C(\boldsymbol{s}_1, \boldsymbol{s}_0; \boldsymbol{\theta}), \dots, C(\boldsymbol{s}_n, \boldsymbol{s}_0; \boldsymbol{\theta}))$ The conditional distribution is

$$Z(s_0)|\mathbf{Z} \sim N(\mathbf{k}(\mathbf{\theta})^{\top} \mathbf{\Sigma}(\mathbf{\theta})^{-1} \mathbf{Z}, C(s_0, s_0; \mathbf{\theta}) - \mathbf{k}(\mathbf{\theta})^{\top} \mathbf{\Sigma}(\mathbf{\theta})^{-1} \mathbf{k}(\mathbf{\theta}))$$

• Solution of system of linear equation $\Sigma(\theta)^{-1}Z$ also needs a Cholesky factorization of $\Sigma(\theta)$

When Size of Dataset Becomes Large

- $O(n^3)$ floating point operations and $O(n^2)$ memory requirements for exact computations
 - High-Performance Computing is needed when *n* is large
 - ExaGeoStat software
- Various approximation methods have been proposed to ease the computation and memory burden
- 2021 KAUST Competition on Spatial Statistics for Large Datasets investigates the performance of different approximation methods with large synthetic data generated by *ExaGeoStat* (https://cemse.kaust.edu.sa/stsds/ 2021-kaust-competition-spatial-statistics-large-datasets)
 Huang, H., Abdulah, S., Sun, Y., Ltaief, H., Keyes, D. E., and Genton, M. G. (2021), "Competition on spatial statistics

for large datasets (with discussion)," Journal of Agricultural, Biological, and Environmental Statistics, 26, 580-595.

- Launched November 23, 2020; Ended February 1, 2021
- 29 research teams worldwide registered and 21 teams successfully submitted their results

Task Data model Data size GP estimation 1aGP 90.000 1bprediction GP predict 10,000 conditional on 90,000 predict 10,000 conditional on 90,000 2a prediction Tukey g-and-h prediction 2hGP & Tukey g-and-h predict 100,000 conditional on 900,000

• Competition consists of four parts

- Metric for GP estimation: Mean Loss Efficiency (MLOE) and Mean Misspecification of the Mean Square Error (MMOM)
- Metric for prediction: RMSE

Top winners:

- Sub-competition 1a:
 - 1 SpatStat-Fans: smoothed full-scale approximation
 - 2 GpGp: Vecchia's approximation
 - 3 RESSTE(CL/krig): composite likelihoods
- Sub-competition 1b:
 - 1 RESSTE(CL/krig): plug-in kriging (composite likelihood estimates)
 - 2 HCHISS: plug-in kriging (Vecchia's approximation estimates)
 - 3 Chile-Team: plug-in kriging (conditional pairwise likelihood estimates)

• Sub-competition 2a:

- 1 RESSTE(Tukey-g-h-trans-GPGP): TGH + GPGP kriging
- 3 GpGp(quick): basis functions for nonstat cov + GPGP kriging
- 3 HMatrix: hierarchical matrix approximation
- 3 RESSTE (nonpara-trans-GPGP): nonpara + GPGP kriging
- Sub-competition 2b:
 - 2 RESSTE(nonpara-trans-GPGP): TGH + GPGP kriging
 - 2 RESSTE(Tukey-g-h-trans-GPGP): nonpara + GPGP kriging
 - 2 Tohoku-University: covariance tapering

Sub-competition	Submission	Score	Rank
1a	ExaGeoStat(estimated-model)	154	0
	SpatStat-Fans	156	1
	GpGp	186	2
	RESSTE(CL/krig)	229	3
1b	ExaGeoStat(true-model)	72	0
	RESSTE(CL/krig)	78	1
	ExaGeoStat(estimated-model)	79	1.5
	HCHISS	93	2
	Chile-Team	113	3

Sub-competition	Submission	Score	Rank
2a	RESSTE(Tukey-g-h-GpGp)	7	1
	HMatrix	8	3
	RESSTE(nonparametric-GpGp)	8	3
	GpGp(quick)	8	3
2b	Tohoku-University	4	2
	RESSTE(Tukey-g-h-GpGp)	4	2
	RESSTE(nonparametric-GpGp)	4	2

- Through the competition, we have better understood when each approximation method became inadequate
- The full datasets with one million spatial locations are publicly available at: https://doi.org/10.25781/KAUST-8VP2V which act as benchmarking data for future research
- The exact MLEs and lowest RMSEs achieved by researchers worldwide are released so that other methods can have an easy comparison
- 2022 competition included univariate nonstationary spatial data, space-time data, and bivariate spatial data; 20 teams of which 15 submitted results; analysis coming out soon!

High-Performance Computing (HPC) Exascale Computing for Spatial Statistics

High Performance Computing (HPC)

• Why HPC? Because of the flood of data in 2020:

- The average internet user generates 1.5 GB of traffic per day (compared to 650MB in 2015)
- Smart hospital generates over 3,000 GB per day
- Self driving car generates over 4,000 GB per day
- A connected plane generates over 40,000 GB per day
- A connected factory generates over 1,000,000 GB per day
- Typical HPC workloads: Astrophysics, Bioinformatics, AI, Finance, Weather and Climate, and Cyber Security

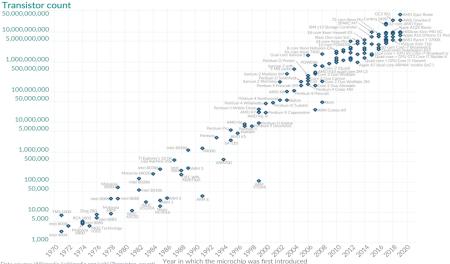
Parallel Computing

- A type of computation where many calculations or the execution of processes are carried out simultaneously
- Large problems can often be divided into smaller ones, which can then be solved at the same time
- Parallelism has long been employed in high-performance computing, but has gained broader interest due to the physical constraints preventing frequency scaling (i.e., end of Moore's law)
- As power consumption by computers has become a concern in recent years, parallel computing has become the dominant paradigm in computer architecture, mainly in the form of multicore processors

Moore's Law

Moore's Law: The number of transistors on microchips doubles every two years Our World in Data

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.



Data source: Wikipedia (wikipedia.org/wiki/Transistor count)

Large-Scale Spatial Data Science with ExaGeoStat

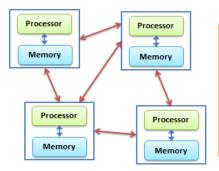
Distributed Computing

- Multiple system processors can communicate with each other using messages that are sent over the network
- With a sufficiently fast network we can in principle extend this approach to millions of CPU-cores and beyond
- Benefits: Scalability, Reliability, and Performance
- Challenges: Complex architectural, construction, and debugging processes

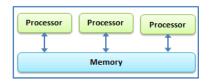
II. High-Performance Computing (HPC)

Parallel computing VS Distributed computing

Distributed Computing



Parallel Computing



What is HPC?

- High-Performance Computing (HPC) is the use of parallel processing for running advanced application programs efficiently, reliably and quickly
- It is an aggregation of computing powers to solve problems which are either **too large** for standard computers or take **too long**
- Depending on the HPC system, the compute nodes, even individually, might be much more powerful than a typical personal computer
- They often have multiple processors (each with many cores), and may have accelerators (such as Graphics Processing Units (GPUs))
- HPC does not mean only parallel processing, it mainly means high computing capabilities through a number of computing units

II. High-Performance Computing (HPC)

What is HPC?

• HPC term applies to systems that function above a TFLOPS or $O(10^{12})$ floating-point operations per second (Flops/s)

Name	Unit	Value
kiloFLOPS	kFLOPS	10 ³
megaFLOPS	MFLOPS	10 ⁶
gigaFLOPS	GFLOPS	10^{9}
teraFLOPS	TFLOPS	10 ¹²
petaFLOPS	PFLOPS	10^{15}
exaFLOPS	EFLOPS	10 ¹⁸
zettaFLOPS	ZFLOPS	10^{21}
yottaFLOPS	YFLOPS	10 ²⁴

The Japanese Fugaku: the Most Powerful Supercomputer in the World

- Fugaku Supercomputer (Japan, 1st ranked; now 2nd since June 2022) has around 537.2 PFlops/s theoretical peak performance for 7,630,848 cores (achieves 442 PFlops/s) cost : \$1 billion!
- You can think of Fugaku as putting 20 million smartphones in a single room, or equivalently 300,000 standard servers in a single room

https://my.matterport.com/show/?m=2TLoTcWigBf (Virtual tour)

Other Supercomputers in the list https://www.top500.org (June 2022)

- 1st Frontier (US, ORNL) has around 1685 PFlops/s theoretical peak performance for 8,730,112 cores (achieves 1102 PFlops/s)
- 2nd Fugaku
- 4th Summit (US, ORNL) has around 200 PFlops/s theoretical peak performance for 2,414,592 cores (achieves 148 PFlops/s) cost: \$200 million!
- 11th JUWELS Booster Module (Germany 70 PFlops/s)
- 12th HPC5 (Italy 51 PFlops/s)
- 21st Marconi-100 (Italy 29 PFlops/s)
- 23rd Piz Daint (Switzerland 27 PFlops/s)
- 33rd PANGEA III (France 25 PFlops/s)
- 60th Dragao (Brazil, Petroleo Brasileiro 14 PFlops/s)
- 82nd MareNostrum (Spain 10 PFlops/s)
- In Saudia Arabia:
 - 18th Dammam-7 (Aramco 55 PFlops/s)
 - 97th Shaheen-2 (KAUST 7 PFlops/s)

Why HPC?

- Scientific simulation and modeling drive the need for greater computing power
- Single-core processors are not enough for the simulations needs
- Making processors with faster clock speeds is difficult due to the power/heat limitations
- It is also expensive to put huge memory on single processor
- Solution: parallel computing divide up the the work among numerous linked system
- The use of HPC in modeling complex physical phenomena such as weather, fluid dynamics, molecular interactions, astronomy calculations and engineering design is well known to researchers in those fields

Computational Statistics for Weather Prediction Applications

- Applications from climate and weather science often deal with a very large number of measurements regularly or irregularly located in a certain geographical region
- In geospatial statistics, these data are usually modeled as a realization from a Gaussian spatial random field
- This translates into evaluating the log-likelihood function, involving a large dense covariance matrix
- Computing this covariance matrix in large-scale is prohibitive and requires innovative ideas

II. High-Performance Computing (HPC)

Geospatial Statistics Motivation

- With the explosion of spatial data coming from different sources such as sensors and monitoring devices, large scale computations became an important goal for associated applications
- Hardware availability and underlying supported algorithms in linear algebra motivated us to build robust parallel software to deal with large scale geospatial modeling and prediction

II. High-Performance Computing (HPC)

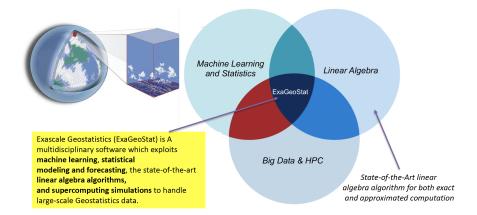
Geospatial Statistics Motivation

- "Increasing amounts of data are being produced (e.g., by remote sensing instruments and numerical models), while techniques to handle millions of observations have historically lagged behind. [...] computational implementations that work with irregularly-space observations are still rare." -Dorit Hammerling, NCAR, July 2019
 - 1M X 1M DP matrix requires 8TB, $N^3 \approx 10^{18}$ Flops
 - Traditional approaches: Global low rank Covariance tapering (zero outer diagonals)
 - Better approaches: Hierarchical low rank Reduced precision outer diagonals

Geostatistical Modeling in Exascale Era

- Parallel computing in Gaussian process calculation becomes a necessity to avoid computational and memory restrictions associated with Geostatistics applications
- The evaluation of the Gaussian log-likelihood function requires $O(n^2)$ storage and $O(n^3)$ operations
- Assume n = 1M, the total required space is 8TB, the total number of flops is one Exaflops (10^{18}) flops
- Applications for climate and environmental predictions are among the principal simulation workloads running on today's supercomputer facilities
- However, hardware alone is not enough to scale applications, usually the parallel algorithms are limiting the hardware usage

ExaGeoStat Framework



ExaGeoStat in a Nutshell

- Exploits synergistically machine learning, statistical modeling and forecasting, HPC, and the state-of-the-art linear algebra techniques to process large-scale Geostatistics data
- Scales the statistical approaches to analyze large geostatistics data
- Optimizes the performance on different hardware architectures
- Includes an internal synthetic geostatistics data generator for conducting numerical simulations with different kernels to better understand the statistical models
- Supports currently univariate, multivariate, and space-time Gaussian stationary geostatistics, non-Gaussian (Tukey *g*-and-*h*) random fields (soon also covering non-stationary kernels)

ExaGeoStat Components

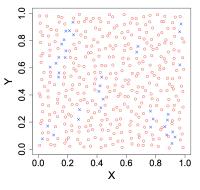
• Synthetic Dataset Generator

- Generate large-scale Geospatial datasets which can be separately used as benchmark datasets for other software packages https://ecrc.github.io/exageostat/md_docs_examples.html
- Maximum Likelihood Estimator (MLE)
 - Evaluate the Gaussian maximum likelihood function on large-scale geospatial datasets
 - Support full machine precision accuracy (full-matrix) and Tile Low-Rank (TLR) approximation
- ExaGeoStat Predictor
 - Predict unknown measurements at new geospatial locations by leveraging the MLE estimated parameters

Synthetic Dataset Generator

- Builds the covariance matrix $\mathbf{\Sigma}(\boldsymbol{\theta}_t)$ using a specific kernel and truth parameter vector $\boldsymbol{\theta}_t$
- Computes Cholesky factorization of $\boldsymbol{\Sigma}(\boldsymbol{\theta}_t)$: $\boldsymbol{\Sigma}(\boldsymbol{\theta}_t) = \boldsymbol{V} \cdot \boldsymbol{V}^{\top}$
- Generates Z vector: $\mathbf{Z} = \mathbf{V} \cdot \mathbf{e}$, $\mathbf{e} \sim N(0, 1)$ i.i.d.

Figure: An example of 400 points irregularly distributed in space, with 362 points (o) for maximum likelihood estimation and 38 points (x) for prediction validation.



Maximum Likelihood Estimator (MLE)

• The log-likelihood function:

$$\ell(oldsymbol{ heta}) = -rac{n}{2}\log(2\pi) - rac{1}{2}\log|oldsymbol{\Sigma}(oldsymbol{ heta})| - rac{1}{2}oldsymbol{Z}^{ op}oldsymbol{\Sigma}(oldsymbol{ heta})| - rac{1}{2}oldsymbol{Z}^{ op}oldsymbol{\Sigma}(oldsymbol{ heta})|$$

- Optimization loop with different θ to maximize the likelihood function estimation until convergence
 - Generate the covariance matrix $\Sigma(\theta)$ using a specific kernel and the parameter vector θ (θ comes from the optimization function)
 - Log determinant and linear solver requires a Cholesky factorization of the given covariance matrix $\Sigma(\theta)$
- Cholesky factorization requires $O(n^3)$ floating-point operations and $O(n^2)$ memory storage
- NLOPT optimization library has been used to maximize the likelihood function until convergence in both cases

ExaGeoStat Predictor

• Assuming $\Sigma_{11} \in \mathbb{R}^{m \times m}$, $\Sigma_{12} \in \mathbb{R}^{m \times n}$, $\Sigma_{21} \in \mathbb{R}^{n \times m}$, and $\Sigma_{22} \in \mathbb{R}^{n \times n}$

$$\begin{bmatrix} \mathbf{Z}_1 \\ \mathbf{Z}_2 \end{bmatrix} \sim N_{m+n} \left(\begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}, \begin{bmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{bmatrix} \right)$$

• The associated conditional distribution can be represented as

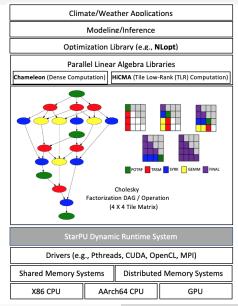
$$\mathbf{Z}_1 | \mathbf{Z}_2 \sim \mathit{N}_m(\boldsymbol{\mu}_1 + \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} (\mathbf{Z}_2 - \boldsymbol{\mu}_2), \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21})$$

• Assuming that the known measurements vector Z_2 has a zero-mean function (i.e., $\mu_1 = 0$ and $\mu_2 = 0$), the unknown measurements vector Z_1 can be predicted using

$$\mathbf{Z}_1 = \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{Z}_2$$

• Solution of system of linear equation $(\Sigma_{22}^{-1}Z_2)$ requires also the Cholesky factorization of Σ_{22}

ExaGeoStat Software Layers



Large-Scale Spatial Data Science with ExaGeoStat

Portability

Dynamic Runtime Systems

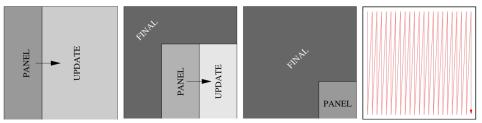
- Parallel coding on different hardware architectures requires different skills and coding tools:
 - Shared-memory systems (ex., OpenMP)
 - GPUs (ex., OpenCL, CUDA)
 - Distributed systems (ex., Message Passing Interface (MPI))
- Eventhough specific programming tools can utilize the usage of the underlying hardware architecture, it requires a lot of work to add portability capabilities to the parallel programs
- Dynamic Runtime Systems is the approach to the development of parallel applications
- Programmers only specify the potential parallelism in their programs but not how parallel execution is implemented on a specific system

Dynamic Runtime Systems, Cont.

- Operate directly on the sequential code and schedule the various tasks across the underlying hardware resources (task-based parallelism)
- Ensure that the data dependencies are not violated
- Enhance the software productivity by abstracting the hardware complexity from the end users
- QUARK
 - UTK, US
 - QUeuing And Runtime for Kernels
 - Multi-core environment
- PaRSEC
 - UTK, US
 - Parallel Runtime Scheduling and Execution Controller
 - Shared Memory, GPUs, Distributed Systems
- StarPU
 - INRIA Bordeaux, France
 - A unified Runtime System for Heterogeneous Multicore Architectures
 - Shared Memory, GPUs, Distributed Systems

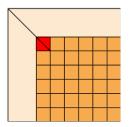
State-of-the-art Linear Algebra Libraries

- Block-based algorithms
- LAPACK/MKL
 - The matrix computation is decomposed in two successive panels
 - Parallel performance is only exploited during the update of the training submatrix
 - Synchronization points in-between computational phases impede parallel performance
 - Block-columns algorithm
 - MKL is a vendor optimized library for LAPACK block algorithms



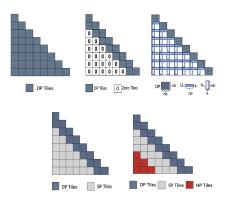
State-of-the-art Linear Algebra Libraries

- Tile Algorithms
 - PLASMA, Chameleon, and FLAME
 - The dense matrix is broken into tiles
 - Weaken the synchronization points by bringing the parallelism in multithreaded BLAS



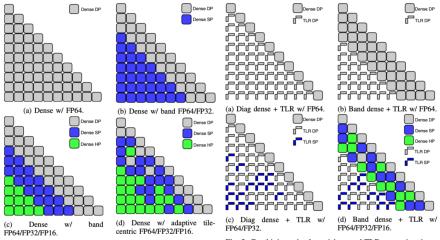
	\/// ,	////	
////	WW		
////	WW		
	\/// .		WM

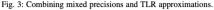
ExaGeoStat Covariance Matrix Representation



- 1- Exact Computation
- 2- Diagonal Super Tile approximation
- 3- Tile Low-Rank (TLR) approximation
- 4- Double/Single Precision approximation
- 5- Double/Single/Half Precision approximation

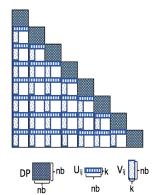
Responsibly Reckless Matrix Algorithms for HPC





Tile-Low Rank Approximation

- Tile Low-Rank (TLR) Algorithms
 - HiCMA Library (KAUST, 2017)
 - Use SVD, approximate each off-diagonal tile, keep the most significant k (matrix rank) singular values and their left and right singular vectors, U and V
 - Depend on Selected accuracy (application specific)
 - Two variations can be provided:
 - Fixed Rank
 - Fixed Accuracy
 - In the case of fixed accuracy, *k* varies from one tile to another. Therefore, load imbalance issues appear
 - Solution: rely on dynamic runtime systems



Tile-Low Rank Approximation

0

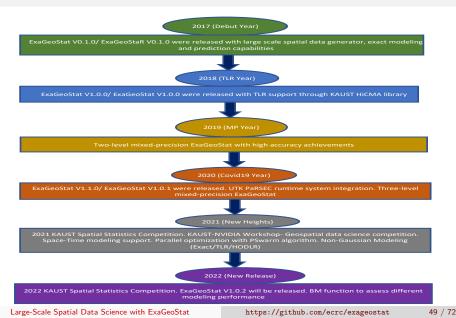
- Climate/ weather modeling applications requires 10⁻⁹ accuracy threshold
- Using Exponential covariance function $C(h; \theta) = \theta_1 \exp(-\frac{h}{\alpha})$

• Example, rank distribution on
$$2k \times 2k$$

matrix where $nb = 500$, 2D problem

0	500	133	47	35	154	83	44	33	59	49	38	30	40	37	33	29	33	32	30	27 -
	133	500	139	48	86	163	86	44	50	59	50	38	37	41	37	33	32	33	32	30
	47	139	500	137	44	86	153	83	38	49	59	49	33	37	41	37	30	32	33	32
	35	48	137	500	33	44	83	164	30	38	49	59	29	33	37	41	27	30	32	33
	154	86	44	33	500	134	48	34	165	84	44	33	59	50	38	30	41	37	33	30
5	- 83	163	86	44	134	500	139	48	86	163	85	44	49	59	50	38	37	40	37	33 -
	44	86	153	83	48	139	500	137	44	86	172	86	38	50	59	49	33	37	40	37
	33	44	83	164	34	48	137	500	33	44	86	166	30	39	50	59	29	33	37	41
	59	50	38	30	165	86	44	33	500	143	48	35	164	85	44	33	59	49	38	31
	49	59	49	38	84	163	86	44	143	500	143	48	84	159	87	44	49	59	49	38
10	- 38	50	59	49	44	85	172	86	48	143	500	134	44	86	156	81	38	49	58	49-
	30	38	49	59	33	44	86	166	35	48	134	500	33	45	86	157	30	39	49	59
	40	37	33	29	59	49	38	30	164	84	44	33	500	138	48	35	162	86	44	33
	37	41	37	33	50	59	50	39	85	159	86	45	138	500	142	48	85	165	85	45
	33	37	41	37	38	50	59	50	44	87	156	86	48	142	500	133	44	84	159	85
15	- 29	33	37	41	30	38	49	59	33	44	81	157	35	48	133	500	33	44	81	157-
	33	32	30	27	41	37	33	29	59	49	38	30	162	85	44	33	500	142	47	34
	32	33	32	30	37	40	37	33	49	59	49	39	86	165	84	44	142	500	136	48
	30	32	33	32	33	37	40	37	38	49	58	49	44	85	159	81	47	136	500	130
	27	30	32	33	30	33	37	41	31	38	49	59	33	45	85	157	34	48	130	500
	0	-	-	-	-	5	-	-	-	-	10	-	-	-	-	15	-	-	-	_

ExaGeoStat Development Timeline



ExaGeoStat Under the Microscope

- ExaGeoStat is an open-source software which is available at https://github.com/ecrc/exageostat
- ExaGeoStatR is available at https://github.com/ecrc/exageostatR
- ExaGeoStat 0.1.0 (Nov. 9th 2017)
 - Support exact computation using Chameleon dense Linear algebra library and StarPU runtime system
 - Support real and synthetic geospatial datasets
- ExaGeoStat 1.0.0 (Nov. 6th 2018)
 - Tile-Low Rank approximation (TLR) using HiCMA TLR approximation
 - Super Diagonal Tile (SDT) approximation
 - Performance results of TLR-based computations on shared and distributed-memory systems attain up to 13X and 5X speedups
 - Support Out-Of-Core (OOC) execution
- ExaGeoStat 1.1.0 (June 6th 2020)
 - Mixed-precision approximation
 - Multivariate modeling support

List of Publications

- Abdulah, S., Ltaief, H., Sun, Y., Genton, M. G., & Keyes, D. E. (2018). ExaGeoStat: A High Performance Unified Software for Geostatistics on Manycore Systems. IEEE Transactions on Parallel and Distributed Systems, 29(12), 2771-2784.
- Abdulah, S., Ltaief, H., Sun, Y., Genton, M. G., & Keyes, D. E. (2018, September). Parallel Approximation of the Maximum Likelihood Estimation for the Prediction of Large-scale Geostatistics Simulations. In 2018 IEEE International Conference on Cluster Computing (CLUSTER) (pp. 98-108).
- Abdulah, S., Ltaief, H., Sun, Y., Genton, M. G., & Keyes, D. E. (2019, December). Geostatistical Modeling and Prediction using Mixed Precision Tile Cholesky Factorization. In 2019 IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC) (pp. 152-162). IEEE.
- Abdulah, S., Li, Y., Cao, J., Ltaief, H., Keyes, D. E., Genton, M. G., & Sun, Y. (2019). ExaGeoStatR: A Package for Large-scale Geostatistics in R. (arXiv:1908.06936).
- Hong, Y., Abdulah, S., Genton, M. G., & Sun, Y. (2021). Efficiency Assessment of Approximated Spatial Predictions for Large Datasets. Spatial Statistics, 43:100517.
- Huang, H., Abdulah, S., Sun, Y., Ltaief, H., Keyes, D. E., and Genton, M. G. (2021). Competition on spatial statistics for large datasets (with discussion). Journal of Agricultural, Biological, and Environmental Statistics, 26, 580-595.
- Salvaña, M. L. O., Abdulah, S., Huang, H., Ltaief, H., Sun, Y., Genton, M. G., & Keyes, D. E. (2021). High Performance Multivariate Geospatial Statistics on Manycore Systems. IEEE Transactions on Parallel and Distributed Systems, 32, 2719-2733.

List of Publications

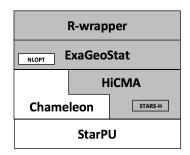
- Mondal, S., Abdulah, S., Ltaief, H., Sun, Y., Genton, M. G., and Keyes, D. E. (2022). Parallel approximations of the Tukey g-and-h likelihoods and predictions for non-Gaussian geostatistics. International Parallel and Distributed Processing Symposium, to appear.
- Salvaña, M. L., Abdulah, S., Ltaief, H., Sun, Y., Genton, M. G., and Keyes, D. E. (2022). Parallel space-time likelihood optimization for air pollution prediction on large-scale systems. In: Platform for Advanced Scientific Computing Conference (PASC '22), Basel, Switzerland, Article No. 17, 1-11.
- Abdulah, S., Cao, Q., Pei, Y., Bosilca, G., Dongarra, J., Genton, M. G., Keyes, D. E., Ltaief, H., & Sun, Y. (2022), Accelerating Geostatistical Modeling and Prediction with Mixed-precision Computations: A High-productivity Approach with PaRSEC. IEEE Transactions on Parallel and Distributed Systems, 33, 964-976.
- Cao, Q., Abdulah, S., Alomairy, R., Pei, Y., Nag, P., Bosilca, G., Dongarra, J., Genton, M. G., Keyes, D. E., Ltaief, H., and Sun, Y. (2022). Reshaping geostatistical modeling and prediction for extreme-scale environmental applications. Super Computing 2022 (finalist for Gordon Bell prize), to appear.

52 / 72

ExaGeoStatR Package

ExaGeoStatR

• ExaGeoStatR is a package for large-scale Geostatistics in R that supports parallel computation of the Gaussian maximum likelihood function on shared memory, GPU, and distributed memory systems



Existing Gaussian Likelihood Calculations in R packages

Package	$\operatorname{geo} \mathbf{R}$	fields	ExaGeoStatR
Function name	likfit	MLESpatialProcess	exact_mle
Mean	estimated	estimated	fixed as zero
Variance	estimated	estimated	estimated
Spatial Range	estimated	estimated	estimated
Smoothness	estimated	fixed	estimated
Default optimization method	Nelder-Mead	$BFGS^1$	${ t BOBYQA}^2$

¹·BFGS: Broyden-Fletcher-Goldfarb-Shanno. ²· BOBYQA: bound optimization by quadratic approximation

Existing Gaussian Likelihood Calculations in R packages (geoR-Example)

- library(geoR)
- sigma_sq = 1
- beta = 0.1 #chooseonefromc(0.3, 0.1, 0.03)
- nu = 0.5 #chooseonefromc(0.5, 1, 2)
- sims = grf(n = 1600, grid = "reg", cov.pars = c(sigma_sq, beta), kappa = nu, RF = FALSE)
- Rdata = list(x = sims\$coords[, 1], y = sims\$coords[, 2], z = sims\$data)

Existing Gaussian Likelihood Calculations in R packages (fields-Example)

- library(fields)
- grid = list(x = (1:40)/20, y = (1:40)/20)
- xy = expand.grid(x = (1:40)/20, y = (1:40)/20)
- obj = matern.image.cov(grid = grid, theta = 0.1, smoothness = 0.5, setup = TRUE)
- $sigma_sq = 1$
- sims.fields = sqrt(sigma_sq) * sim.rf(obj)
- data.fields.reg = list(x = xy[, 1], y = xy[, 2], +z = c(sims.fields))

ExaGeoStatR Installation

- ExaGeoStatR prerequisites
 - Intel MKL (set MKLROOT): Link
 - GIT (through Homebrew or Link)
 - CMake (through Homebrew or Link)
 - pkg-config (through Homebrew or Link)
 - gfortran (through Homebrew or Link)
 - wget (through Homebrew or Link)
 - NLopt (self-installation)
 - GSL (self-installation)
 - hwloc (self-installation)
 - StarPU (self installation)
 - Chameleon (Self-installation)
 - Stars-H (Self installation)
 - HiCMA (Self-installation)

ExaGeoStatR Installation

• Installing ExaGeoStatR from GitHub

```
library("devtools")
install_git(url="https://github.com/ecrc/exageostatR" )
```

• To enable MPI support for distributed memory systems

```
library("devtools")
install_git(url="<u>https://github.com/ecrc/exageostatR</u>", configure.args=C)'--enable-mpi'))
```

• To enable CUDA support for GPU systems

```
library("devtools")
install_git(url="<u>https://github.com/ecrc/exageostatR</u>", configure.args=C)'--enable-cuda'))
```

ExaGeoStatR Main Functions

Function Name	Description
exageostat_init	Initiate ExaGeoStat instance.
simulate_data_exact	Generate Z measurements vector.
simulate_obs_exact	Generate \mathbf{Z} measurements vector on n given 2D locations.
exact_mle	Exact parameter vector evaluation.
dst_mle	DST approximation parameter vector evaluation.
tlr_mle	TLR approximation parameter vector evaluation.
exageostat_finalize	Finalize active ExaGeoStat instance.

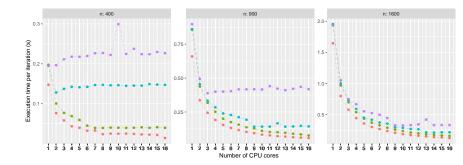
Code Examples (Example 1)

 Generating Z vector using random irregular (x, y) locations with exact MLE computation

```
library("exageostatr")
                                                            #Load ExaGeoStatR lib.
seed
             = 0
                                                            #Initial seed to generate XY locs.
sigma_sq = 1
                                                            #Initial variance.
          = 0.1
                                                            #Initial smoothness.
beta
          = 0.5
                                                            #Initial range.
nu
dmetric = 0
                                                            #0 --> Euclidean distance.
                                                            #1--> great circle distance.
             = 1600
                                                            #n*n locations grid.
n
#theta out[1:3]
                                = -1.99
exageostat_init(hardware = list (ncores=2, ngpus=0,
ts=320, pgrid=1, ggrid=1))#Initiate exageostat instance
#Generate Z observation vector
             = simulate_data_exact(sigma_sq, beta, nu,
data
dmetric. n. seed) #Generate Z observation vector
#Estimate MLE parameters (Exact)
             = exact mle(data, dmetric, optimization = list(clb = c(0.001, 0.001, 0.001))
result
cub = c(5, 5,5), tol = 1e-4, max_iters = 20))
#print(result)
#Finalize exageostat instance
exageostat_finalize()
```

ExaGeoStatR on Shared-memory System

• 16-core Intel Sandy Bridge Xeon E5-2650 Chip



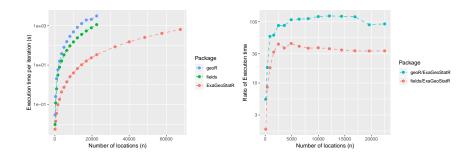
geoR - fields - ExaGeoStatR Comparison (Time)

• Average on 100 samples

The average execution time per iteration (seconds)									
Package		geoR		fields			ExaGeoStatR		
$\beta = \nu =$	0.03	0.1	0.3	0.03	0.1	0.3	0.03	0.1	0.3
0.5	1.39	1.49	1.47	0.75	0.97	0.99	0.10	0.12	0.12
1	1.35	1.49	1.56	0.66	0.90	0.90	0.09	0.13	0.13
2	1.34	1.56	1.57	0.67	0.91	0.93	0.09	0.13	0.13
The	The average number of iterations to reach the tolerance								
$\beta = \nu =$	0.03	0.1	0.3	0.03	0.1	0.3	0.03	0.1	0.3
0.5	160	157	135	73	72	70	231	204	237
1	193	33	23	75	75	80	318	320	275
2	216	25	20	100	70	85	427	436	332

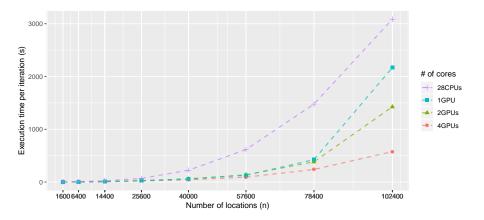
III. ExaGeoStatR Package

geoR - fields - ExaGeoStatR Comparison (Speedup)

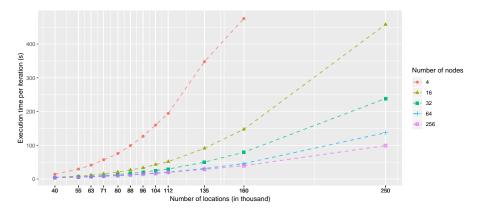


III. ExaGeoStatR Package

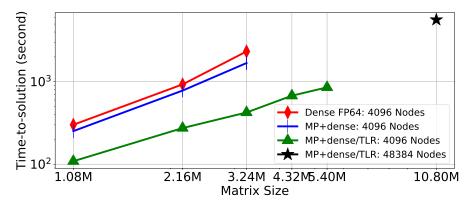
ExaGeoStatR Performance on Heterogeneous System (CPU/GPU)



ExaGeoStatR Performance on Distributed-Memory System (Shaheen-II)



ExaGeoStat Performance on Distributed-Memory System (Fugaku)



Performance of Matérn 2D space-time of strong correlation on 4096 and 48384 Fugaku nodes

Code Examples (Example 2)

 Generating Z vector using random irregular (x, y) locations with TLR MLE computation

library("exage	eostatr")	#Load ExaGeoStatR lib.					
seed	= 0	#Initial seed to generate XY locs.					
sigma_sq	= 1	#Initial variance.					
beta	= 0.03	#Initial smoothness.					
nu	= 0.5	#Initial range.					
dmetric	= 0	<pre>#0> Euclidean distance,</pre>					
		<pre>#1> great circle distance.</pre>					
n	= 900	#n∗n locations grid.					
tlr_acc	= 7	#Approximation accuracy 10^-(acc)					
tlr_maxrank	= 450	#Max Rank					

```
#Initiate exageostat instance
exageostat_init(hardware = list (ncores=2, ngpus=0,
ts=320, lts=600, pgrid=1, qgrid=1))#Initiate exageostat instance
#Generate Z observation vector
data = simulate_data_exact(sigma_sq, beta, nu,
dmetric, n, seed) #Generate Z observation vector
#Estimate MLE parameters (TLR approximation)
result = tlr_mle(data, tlr_acc, tlr_maxrank, dmetric, optimization =
list(clb = c(0.001, 0.001, 0.001), cub = c(5, 5, 5), tol = 1e-4, max_iters = 20))
#print(result)
#Finalize exageostat instance
exageostat_finalize()
```

Code Examples (Example 3)

 Generating Z vector using random (x, y) irregular locations with DST MLE computation

```
library("exageostatr")
                                                             #Load ExaGeoStatB lib.
seed
               = 0
                                                            #Initial seed to generate XY locs.
sigma_sq = 1
                                                            #Initial variance.
beta = 0.03
                                                            #Initial smoothness.
nu
         = 0.5
                                                            #Initial range.
dmetric = 0
                                                            #0 --> Euclidean distance.
                                                            #1--> great circle distance.
        = 900
                                                            #n*n locations grid.
n
dst_thick
          = 3
                                                            #Number of used Diagonal Super Tile (DST
#Initiate exageostat instance
exageostat_init(hardware = list (ncores=4, ngpus=0,
ts=320, lts=0, pgrid=1, ggrid=1))
#Generate Z observation vector
data
               = simulate data exact(sigma sg, beta, nu,
dmetric, n, seed) #Generate Z observation vecto
#Estimate MLE parameters (DST approximation)
               = dst mle(data, dst thick, dmetric, optimization =
result
list(clb = c(0.001, 0.001, 0.001), cub = c(5, 5, 5), tol = 1e-4. max iters = 20))
#print(result)
#Finalize exageostat instance
exageostat finalize()
```

Code Examples (Example 4)

Generating Z vector using given (x, y) locations with exact MLE computation

```
library("exageostatr")
                                                                       #Load ExaGeoStatR lib.
                                                                       #Initial variance.
sigma_sq
                = 1
                                                                       #Initial smoothness.
beta
               = 0.1
              = 0.5
                                                                       #Initial range.
nu
dmetric
                = 0
                                                                       #0 --> Euclidean distance.
                                                                       #1--> great circle distance.
               = 1600
                                                                       #n*n locations grid.
n
               = rnorm(n = 1600, mean = 39.74, sd = 25.09)
                                                               #x measurements of n locations.
х
                = rnorm(n = 1600, mean = 80.45, sd = 100.19)
                                                               #y measurements of n locations.
v
#Initiate exageostat instance
exageostat init(hardware = list (ncores=2, ngpus=0,
ts=320, lts=0, pgrid=1, ggrid=1))#Initiate exageostat instance
#Generate Z observation vector based on given locations
                = simulate obs exact( x, y, sigma sg, beta, nu, dmetric)
data
#Estimate MLE parameters (Exact)
result
               = exact mle(data, dmetric, optimization =
list(clb = c(0.001, 0.001, 0.001), cub = c(5, 5, 5), tol = 1e-4, max iters = 20))
#print(result)
#Finalize exageostat instance
exageostat_finalize()
```

Code Examples (Example 5)

• Batch R script on Distributed Environment Example

#!/bin/bash
#SBATCH --job-name=job_name
#SBATCH --output=output_file.txt
#SBATCH --partition=XXXX
#SBATCH --notes=4
#SBATCH --ntasks=4
#SBATCH --ntasks=per-node=1
#SBATCH --ctuse_00:30:00

srun Rscript Rtest.r

71 / 72

Thank You!

Questions?